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TRACES OF TJMO-SOBOLEV SPACES

ROBERT S. STRICHARTZ1

Abstract. The trace operator RF(x) = F(x, 0) where F\x, t) is a function of

x e R" and / G R1 maps Ia(BMO), the 5MO-Sobolev space of Riesz potentials of

order a of functions of bounded mean oscillation on R" + 1, onto the homogeneous

Besov space A¡J(oo, oo) on R", for a > 0. A right inverse is given by the extension

operator Ef(x, t) = &H*rWf@).

1. Introduction. The space Ia(BMO) of Riesz potentials of order a of functions of

bounded mean oscillation has been studied in [4], [8], and [9] as a substitute for the

7p-Sobolev spaces when/? = oo. One point left open in [8] is the characterization

of the traces of functions in Ia(BMO) for a > 0. Since Ia(BMO) Ç A°(oo, oo) (this

was proved in [8] and was essentially known earlier) and the trace of functions in

A°(oo, oo) must obviously also be in A°(oo, oo) for a > 0, the trace operator

RF(x) = F(x, 0) maps Ia(BMO) into A°(oo, oo). In this paper we will prove that

the mapping is onto by showing that the extension operator

Efix, t) = ^'(e-^/a))

= (47r)-n/2rnff(x - y)e-W2/4'2 dy

maps A°(oo, oo) into Ia(BMO) for all a > 0. This is an exact analogue of the

well-known theorem of Gagliardo [3] and Stein [6] that 7? maps Ia(Lp) onto

A-a-i/piP'P) for 1 </> < oo and a > \/p, with the same extension operator. The

trace theorem can be routinely transplanted to the context of compact manifolds

and submanifolds; in particular the Lp estimates for elliptic boundary value

problems [1] are valid for 7?M0-Sobolev spaces on the manifold and Besov spaces

on the boundary.

2. Preliminaries. A general reference for all unexplained notation is Stein [7]. A

locally integrable (real or complex valued) function defined on R" is said to be of

bounded mean oscillation if the mean oscillation of / on any cube Q

MO(f, ß) - t¿t f \f(x) - M(f Q)\ dx
Ivrl jq

is unformly bounded, where M(f Q) denotes the mean of/on Q,

M(fQ)=^-Jf(x)dx
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and \Q\ denotes the Lebesgue measure of Q. The Banach space BMO consists of

functions of bounded mean oscillation modulo constants equipped with the norm

11/11 wo = supe MO(f, Q).
The Riesz potentials are defined on the space of tempered distributions modulo

polynomials by IJ= <5~l(\è\~ejXQ), where a G R, so we may define the BMO-

Sobolev spaces Ia(BMO) as the image of BMO under Ia.

We will be interested only in the case a > 0 when Ia(BMO) consists of locally

integrable functions modulo polynomials (with a little care one can define

Ia(BMO) as a space of functions modulo polynomials of degree < a). In the

important special case when a is an integer we can describe Ia(BMO) more

succinctly as the space of functions whose derivatives of order exactly a are BMO.

The homogeneous Besov space A°(oo, oo) is for noninteger a > 0 simply the

usual Holder class of order a, with Zygmund's modification of using higher

difference for integer a. Thus for 0 < a < 1,/ G A°(oo, oo) if and only if |/(x -f- y)

— f(x)\ < M\y\a with the least M the A°(oo, oo)-norm, identifying functions that

differ by constants, while for a = 1 the condition is |/(x + 2v) — 2/(x + y) +

f(x)\ < M\y\. There are myriad equivalent characterizations of these spaces; our

preference is for one due to Peetre [5] that treats all values of a simultaneously:

/GA°(oo, oo) if and only if ||o, *f\\00 < Ms" for all j > 0 where as(x) =

s~"a(x/s) are the dilations of a fixed test function a (note ô,(£) = ô(si-)) which

satisfies the conditions

(1) à G ^ with support in an annular ring, say ¿ < |£| < 4.

(2) â = 1 in a smaller annular ring, say {■ < ||| < 2.

(3) â is radial and nonnegative.

The least M is equivalent to the A°(oo, oo)-norm. The exact choice of a does not

change the class A°(oo, oo), and conditions (2) and (3) can be considerably

weakened. We note in passing that j™ ô(s£)2(ds/s) is a positive radial function

homogeneous of degree zero, hence a nonzero constant for £ # 0, from which we

can conclude

(2.1) f=cros*os*f^
Jq S

for certain constant c provided we identify functions modulo polynomials. This is

perhaps the key identity in the entire theory of Besov spaces.

Now let x G R" and t G R1. We will use lower case letters such as / to denote

functions of x and upper case letters such as F to denote functions of x and t. The

trace operator RF(x) = F(x, 0) is not always well defined for locally integrable F.

However if F G Ia(BMO) for a > 0 then F G A°(oo, oo) (see [8, Theorem 3.4])

and so is continuous. From the Hölder-Zygmund description of A°(oo, oo) it

follows that 7? maps A°(oo, oo) of R" to A°(oo, oo) of RnX for a > 0.

The extension operator

7¿/(x, r) = ^(e-^M))

is well defined for any tempered distribution /, and obviously is right-inverse to 7?,

REf = f.
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Theorem. E is a bounded operator from A¡)(oo, oo) to Ia(BMO) for all a > 0.

3. Proof of Theorem. We will prove the theorem in the special case when a = k,

an integer; the result in general then follows by interpolation since both scales of

spaces are preserved by the complex method of interpolation (see [2] for Besov

spaces and [8] for TiA/O-Sobolev spaces). Thus suppose/ G A°(oo, oo), so

(3.1) \\os*f\\x<Msk

where M = ||/||a0(oo,oo)- To prove the theorem for a = k we need to show that

Ef G Ik(BMO), or equivalently (d/dx)B(d/dtyEf G BMO for all integers j and

multi-indices ß with./ + \ß\ = k. Writing (d/dx)B(d/dtyEf = G we need to show

(3.2) MO(G, Q)<cM

for every cube Q in R"+' with sides parallel to the axes, where M is the constant in

(3.1) and c is independent of/ (the value of c may vary from equation to equation).

Any such cube Q is of the form Qr X Ir where Qr is a cube in R" of side length r

and Ir is an interval in R1 of length r.

Now from the identity (2.1) we have

and given the cube Q and hence r we can split G into two parts G = Gx + G2,

where we take the integral from 0 to r in (3.3) for Gx, and from r to oo for G2. To

establish (3.2) we will show

(3.4) - f sup | G,(x, t)\ dt < cM
r J ¡r  x

and

(3.5) - f sup |G2(x, /) - G2(xo, i0)| dt < cM

where (x0, t0) is the center of Q, for then

MO(G, Q) < 2M(\G - G2(Xo, tQ)\, Q)

< 2M(\GX\, Q) + 2M(\G2 - G2(Xq, t0)\Q) < cM.

To establish (3.4) and (3.5) we need to examine the form of G. Since Ef =

^V<^/(ö)wehave

G - {t)\i)Ef= ^l(p^)e-^\(m))

where p and qk are polynomials in R" and qk is homogeneous of degree k. If we

write

(3.6) h,(x) = <5-x{p(tÇ)e-Wqk(Ç))

then

Jrr ds
°s*h,*<>s *f—

0 s
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hence

ds

ds

Sup\Gx(x,t)\<f\\os*h,\\x\\os*AL-
x Jq S

<Mfsk-x\\os*ht\\x

Lemma. ||q, * A,||, < g(t/s)e~c,2/s2s~k for some polynomial g.

Proof. We have

*,.*,= r1(oX^('SK'2|£l ?*(!))•

The L'-norm is unchanged by the change of variable £—»j~'| on the Fourier

transform side, so

Ha, * ht\\x = s-k\\<?-x(â(®p(ts-x$e-W/%(è))\\x

Thus it suffices to show

\\o * h,\\x < g(t)e-« .

But this follows easily from the well-known estimate

\\°*M<c   2   1(41%«Wo
\ß\<n + l \\\ °S/\ß\-

since â has support in an annular ring.   Q.E.D.

Returning to the proof of the theorem, we apply the lemma to obtain

- f sup|G,(x, 01 dt <M- f f g(t/'s)é**f*s-x ds dt
r Jj   x r JjJ0

< M- f rg(t/s)e^^ dt s~x ds
r J0 J0

= M- f rg(t)e^ dtds=cM
r Jo Jo

which proves (3.4).

Turning to (3.5), we first write

G2(x, t) - G2(xo, t0) = (G2(x, t) - G2(x0, i)) + (G2(xn, 0 - G2(xo, *„))

and estimate the two differences separately. For the first we have

/ /(«, * *,(* -y)-*** h,(x0 - y))°s *f(y) dy—

< M (°° [la, * h,(x-y) - as . h,(x0 - y)\ dy sk~x ds.

But by the fundamental theorem of the calculus

f\os * h,(x -y)~ os* h,(x0 - y)\ dy

<\x- x0\ff\Vxas * h,(x0 -y+X(x- x0))| dy dX

<|x -x0| |V>, *h,\\x.
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For x G Qr we have |x — x0| < cr so

sup |G2(x, t) - G(x0, t)\ < Mcrr\\Vxas * h^s^1 ds.
xeQ Jr

The second difference can be estimated, for t G Ir, using the mean value

theorem, by

|G2(x0, 0 - G2(xo, t0)\ < f°°\\(t - t0)-as * A II ||a, •/]]„ —

where r, G 7r. But now all x and t first derivatives of as * h, are of the same form

with k increased by 1, so we may apply the Lemma to estimate both || V^o, * h,\\x

and 11(9/30(0, * ht)\\x by cs~k~x since g(t)e~'2 is bounded. Thus

- f sup |G2(x, 0 - G2(x0, <0)| dt <cM¡ f°V2 dsdt = cM

which establishes (3.5) and completes the proof of the theorem.
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