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Traces of weighted Sobolev spaces. Old and new

Petru Mironescu * Emmanuel Russ

September 14, 2014

Abstract

We give short simple proofs of Uspenskii’s results characterizing Besov spaces as trace
spaces of weighted Sobolev spaces. We generalize Uspenskii’s results and prove the optimality
of these generalizations. We next show how classical results on the functional calculus in
the Besov spaces can be obtained as straightforward consequences of the theory of weighted
Sobolev spaces.
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1 Introduction

1.1 Traces

Let us start by recalling three well-known facts from trace theory. First fact: every function
U € WLL(R” x (0,00)) has a trace f € LY(R"). Second fact: if f € LY(R"), then there is some U =
U(f) € WELR” x (0,00)) the trace of which is f. Third fact: one cannot pick U such that the
mapping f — U is linear continuous.

The first two facts are due to Gagliardo [9], the third one to Peetre [13].

Uspenskii [26] discovered that the expected generalizations of the first and of the third fact
to two (or more) derivatives are wrong. More specifically, Uspenskii proved the following results.
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First fact: if U € W21(R" x (0,00)), then U has a trace f in the Besov space Bil([R{”), which is
strictly contained in W11(R"?). Second fact: if f € B %,1(Rn), then there is some U = U(f) € W21(R"? x
(0,00)) the trace of which is f. Third fact: one can pick U such that the mapping f — U is linear
continuous.

As one may expect, the above results contain some routine information: e.g. when U € W?! we
have f € L, and when f € Bil we may pick U € W1, Additionally, by straightforward arguments
we may assume that f and U are smooth and that f is compactly supported. Therefore, the heart
of the proof consists in proving the maximal order estimates for smooth functions, e.g. the fact
that the second order derivatives of U are controlled by a suitable semi-norm of f in B% ;- With
this in mind, Uspenskii’s results can be essentially rephrased as follows. ,

1.1 Theorem. Let s >0, 1< p <oo and let [ be an integer such that [ >s. Let F € C®°(R" x [0,00)).
Set f(x) =F(x,0), x € R*. Then

flh <Y [ ORI, g de. (1.1)

b,p |a|=l 0

1.2 Theorem. Let s >0 and 1 < p <oo. Let f € C°(R"). Then f has an extension U € C®°(R" x
[0,00)) such that:

(e.o]
/ P11 0U (o) o ny dE SIF 15, V@ eN**! such that |al > . (1.2)
0 p:p

Moreover, we may choose U depending linearly on f.

One recovers the results on the trace of W2! by taking in Theorems 1.1 and 1.2 s=1, p=1
and |a| =1 =2.

In the above, the suitable semi-norms to be considered on B3, ,, will be described in the body of
the paper.

Uspenskii’s proof is rather elementary, but long and tricky. The above results are quoted in
Maz’ya [11, Section 10.1.1, Theorem 1, p. 512], with a proof of Theorem 1.1 and a partial proof of
Theorem 1.2. The first goal of this paper is to present a very short proof of the above results, based
only on standard ingredients. Our arguments apply to more general Besov spaces and range of
partial derivatives 0%, and yield Theorems 1.3 and 1.4 below.

Before stating these results, let us introduce some notation. A multi-index a € N**! is split as
a=(B,y), with BeN" and y e N.

Given an integer I, we set

M1 =1(B,0) N 1Bl = LU0, D). (1.3)
Given a real s, we set

Py =1(B,y) eN"" ¥ > 0U{(B,0) N5 | B > s). (1.4)
We may now state our first results.

1.3 Theorem. Let s >0, 1< p <ooand 1<q <oo, and let / be an integer such that [ >s. Let
F e C®°(R" x[0,00)). Set f(x) =F(x,0), x € R". Then

[e.@]
g, S 2 / 19 HOUF (L)Y gy e (1.5)
’ ac ;)0



1.4 Theorem. Let seR, 1<p <ocoand 1<q <oo. Let f € CP(R"). Then f has an extension
U € C*°(R" x [0,00)) such that:

(e o]
/ 909109, )|, gn, dE < |f|%;q, Vae ;. (1.6)
o :

Moreover, we may choose U depending linearly on f.
The semi-norms we consider in Theorems 1.3 and 1.4 will be specified in the body of the paper.

1.5 Remark. Clearly, Theorem 1.3 improves Theorem 1.1 as soon as [ = 2.
On the other hand, Theorem 1.4 improves Theorem 1.2 even when s > 0, since we allow |a| <s
provided we have y > 0. Thus, for example, when f € Bi 1> then we may pick U such that not only

U € W21 but we also have
o0
f e
0

1.6 Remark. An explicit example of function f which is in Wb! but not in Bi 1> and thus is not
the trace of any W?! function, can be found in [6, Remark A.1, p. 1238].

oUu
E(',é‘)

de < oo.
L1R")

1.7 Remark. Theorem 1.3 is inspired by Maz’ya’s remarkably simple proof of Theorem 1.1 [11,
Section 10.1.1, Theorem 1, p. 512-513], and the proof we present in Section 3 merely extends the
ideas in [11].

In contrast, Theorem 1.2 is more difficult to prove, at least when [ = 2. When / = 2 the most
delicate part in Uspenskii’s proof of Theorem 1.2 consists in controlling the cross terms 0°U, with
a =(B,y) such that f # 0 and y # 0; and this is the part of the proof missing in [11]. Most of the
variants of Theorem 1.2 that we could find in the literature do not involve the cross terms, and are
thus easier to establish then Theorem 1.2. Such variants were e.g. obtained by Triebel [22] and
Bui [7] following a pioneering work of Taibleson on Holder spaces [19], [20]. See also the historical
references in Triebel’s monographs [21, p. 192-196], [23, p. 184], [24, p. 52-54].

The reader may wonder why, when y = 0, we impose in Theorem 1.4 the condition || >s. The
reason is given by the following simple result.

1.8 Proposition. Let seR,1<p<ooand 1< g <oo. Let f € CP(R"), f 0. Let F € C*°(R" x[0,00))
satisfy F(-,0) = f. Then

(0]
/ 2091 68 F (., £)|| 2, o, di = 00, Va & P, 1.7
0

We now return to Theorem 1.2. Uspenskii proved that, in Theorem 1.2, we may let U be “the”
harmonic extension of f.! This still the case in the setting of Theorem 1.4, but in general not for
the full set & of multi-indices.

1.9 Theorem. Let seR, 1<p <ocoand 1<q <oo. Let f € C°(R"). Then the harmonic extension
V of f satisfies:

(o.0]
/ gqlal=9)-1 ||6“V(-,6)||ZP(R,L) de < IfI%S , Ya e N1 such that |a| > s. (1.8)
0 p.q

The condition |a| > s is optimal, as shown by the following

IThat is, U(x,€) = f = P.(x), where P is the Poisson kernel.

3



1.10 Proposition. Let se R, 1<p <ooand 1<q <oo. Let f € CP([R"), f #0. Let V be the
harmonic extension of . Then

o0
/ gqllal=s)-1 ||0“V(-,8)||EP(R,,) de = oo, ¥ a € N**! such that |a| <s. (1.9)
0

When s > 0, by combining Theorem 1.3 with Theorem 1.9 we obtain the first part of the next
result, already noticed by Uspenskii when p = q.
In order to state Theorem 1.11 below, let us define, for F € C®°(R" x [0,00)), the “energy”

(o)
EF)=EspF)= Y [ 119 0F(, 0|1, mm de, (1.10)
lal=L/0
where seR, 1<p<o0,1<qg<oo,and /eN.
1.11 Theorem. Let seR, 1< p <ooand 1<q <oo. Let [ > s be a non negative integer.

1. If s > 0, then for every f € C°(R") the harmonic extension V of f satisfies the following
“almost Dirichlet principle”

E(V) < E(F), for every smooth extension F of f. (1.11)

2. If s =0, then we have the semi-norm equivalence

E(WV)~ lflq;q. (1.12)

1.12 Remark. When s <0, [ =0, and p = q € (1,00), item 2 in Theorem 1.11 was obtained by
Marcus and Véron [10].2 The approach in [10], based on interpolation, excludes the case where

p=1
When s < 0, the conclusions of Theorem 1.3 and item 1 in Theorem 1.11 do not hold, as shown
by the next two results.

1.13 Proposition. Let f € C°(R™).

1. Let s<0,1<p=<ooand 1=<gq <oo. Then there exists a sequence (F;) € C°(R" x [0,00)) of
extensions of f such that

[e.0]
lim [ 997 0%F (o) f oy dE =0, Va e N**1, (1.13)

Jj— Jo
2. Let 1< p <ooand 1<q <oo. Then we may choose F; such that

lim [ 0 F (0|7 de =0, ¥ a e N**1\{(0,0)). (1.14)

Jj—o0 Jo

The above proposition shows that (1.11) does not hold when s < 0 or when s =0 and ¢ > 1.
The case where s =0 and g =1 is more delicate. Indeed, if F € C°(R" x [0,00)) is an extension of

f € CP(R"), then
9
—F(.e)d
/0 % (,e)de

I 1
0

—F(,¢)
and thus (1.14) with ¢ =1 does not hold when f # 0 and a = (0,1).

de=
oe ¢
In this case, we establish the following substitute of Proposition 1.13.

LP(R™)

=IflLr®m),
LP@R™)

2In a ball, but this is not relevant for the result.



1.14 Proposition. Let 1 < p <oco and let [/ > 0 be an integer. Then:

1. Every f € C2°(R") has an extension F' € C®°(R" x [0,00)) such that

o0
/ e FC e)lnr@nyde SIf lLe@ny, ¥ a €N such that |a| =1. (1.15)
0

2. There exists a sequence (fk) c CP(R") such that IIfk lzr@®r) =1 and |fk|B° |00
D,

The first item of Proposition 1.14 can be seen as an L? version of Gagliardo’s inverse trace
result “ter W1 > L1”,

To summarize: on the one hand, Theorems 1.3 and 1.4 and Proposition 1.8 exhaust the (non)
estimates that can be achieved using extensions. On the other hand, Theorem 1.9 and Proposition
1.10 describe all the (non) estimates satisfied by the harmonic extension. Finally, Theorem 1.11
and Propositions 1.13 and 1.14 give necessary and sufficient conditions for the validity of the
“almost Dirichlet principle”.

We next return to Peetre’s result on the non existence of a linear continuous map
LY R 3 f— U(f) e WHL(R™ x (0,00))

such that tr U(f) = f [13]. This result has the following consequence. Let { € C2°(R) be such that
((0) = 1. Consider the linear map

LR > f—U(f)x,e) ={(e)V(x,e), with V the harmonic extension of f.

Since clearly trU(f) = f and f — U(f) € LY(R" x (0,00)) is linear continuous, we find (by Peetre’s
result and a straightforward closed graph argument) that for an arbitrary f € L1(R") we need not
have VU € L', and thus that we need not have VV € L. This leads to the question answered in
our next result.

1.15 Theorem. Let f € LY(R"). Let V be the harmonic extension of f. Then
VV e L'(R" x(0,00)) < f € BY ;.

Moreover, we have the norm equivalence

1 [e%)
/ |V(x,€)|dxd€+/ IVV (x,e)ldxde ~ ||f | Ligny + | f1go - (1.16)
0 JRre 0o Jre L1

Here, B(l) 1 is a homogeneous Besov space that will be described in the body of the paper, as
well as its corresponding semi-norm | | BY -

1.16 Remark. Condition f € B? | is quite restrictive, and a map in CZ° may not belong to B? , (see
Proposition 5.8). The reason is that even if f is smooth, VV (-,€) may not decay sufficiently fast as
€ — 00. Thus the following version of Theorem 1.15 accounts better of the smoothness of f.

1.17 Theorem. Let f € L1(R"). Let V be the harmonic extension of f. Then we have the norm
equivalence

1 1
/ |V(x,e)|dxds+/ IVV (x,e)ldxde ~ |Ifllgo . 1.17)
0 JRrn 0 JRrn L1



More generally, when s < 0 local versions of our results (i.e., not involving fooo de, but only
fol de) are needed for characterizing the inhomogeneous spaces Bz’q.

1.18 Remark. A general remark concerning the above results, and in particular Uspenskii’s The-
orems 1.1 and 1.2. The most difficult part consists in estimating U (or V) in terms of f. As we will
see in the proofs, estimates are much easier when, instead of considering the harmonic extension
V = f % P,, we consider another extension U = f * p., where p is a better suited kernel. Actually,
for such U estimates can be obtained almost for free and using very little technology; see Section
4. The difficulties arise from the bad properties of the Poisson kernel P. We will explain how to
cope with this using methods developed in the late 60’s in the theory of the Hardy spaces (and
detailed in Stein’s monograph [17, Chapter III]).

1.19 Remark. Estimates which do not involve cross terms adapt to the case where q = oo [22],
[7]. When q = oo, the case of cross terms has not been investigated in the present work. Some of
our arguments relying on Hardy’s inequalities with exponent ¢ (which are not valid when g = 00),
extending our results to this limiting case would require a new ingredient.

Our paper is organized as follows. The basic facts on Besov spaces relevant to the statements
and proofs are recalled in Section 2. In Section 3, we prove Theorem 1.3. Section 4 is devoted to
the proof of Theorem 1.4. Additional results implying in particular the optimality of Theorems
1.3 and 1.4 are discussed in Section 5. Also in Section 5, we prove Theorem 1.15. In Section
6, we explain how to recover standard results on the superposition operators in Besov spaces by
combining the theory of weighted Sobolev spaces with modest technology.
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2 Preliminaries

Hardy inequalities and Nikolskii’s estimates

We work in Q :=R" x R,.

A point in Q is of the form (x,¢), x € R*, € = 0.

As already mentioned in the introduction, a multi-index a € N
peN" and y e N.

As standard when working in usual function spaces, we deal only with smooth maps. The
case of general maps is obtained from the special case of smooth maps using standard techniques.
Ideally, we would like to deal only with compactly supported functions, but when we work in
Q it will be more convenient to consider the slightly larger class of smooth maps U € C*°(Q2;C)
satisfying the following decay condition at infinity:

n+1

is split as a = (B,y), with

oY 9'pl oo ar+l Hlhl .

_/ 755U 0dL VYN, VBEN', V(x,e) Q. 2.1)
Note that C2°(Q2) maps satisfy (2.1). So do functions of the form U(x,¢) = f * p.(x), where f €
CP([R*;C) and p € .“(R"). Another example of such map is “the” harmonic extension Ul(x,¢) =
f * P¢(x) (with P the Poisson kernel) of f € C2°(R";C).
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In addition to straightforward identities and estimates, our arguments rely on two simple
well-known results: Hardy’s inequalities and Nikolskii’s estimates, that we recall here.

2.1 Proposition. Let g €[1,00), r € (0,00) and let g be a nonnegative measurable function. Then
we have “Hardy’s inequality at 0”

1/q

([ ([ o) <

and “Hardy’s inequality at co”

0 oo q 1/q q 0o 1/q
( / tr—l( / g(u)du) dt) 57( / u’+q—1(g(u))qdu) . (2.3)
0 t 0

2.2 Proposition. Let 0 <rj <rg<ooand 1 < p < oo be fixed. Then for every a € N, u € LP(R")
and R > 0 we have the “direct Nikolskii’s estimates”

oo 1/q
( / u—”q—l(g(u))qdu) 2.2)
0

N R

supp & < B(O,R) = [0%u| ppgey SR ullLo@en) (2.4)
and the “reverse Nikolskii’s estimates”

supp % < B(0,r3R)\ B(0,71R) = llulrr@) SR7* sup 10w || o ) - (2.5)
a|l=

See e.g. [18, Chapter 5, Lemma 3.14] for the first result, and [8, Lemma 2.1.1] for the second
one.

Some basic facts about the Besov spaces

The Besov spaces Bj, ,(R") can be defined for 0 < p < oo and 0 < g < oo, but we discuss here
only the range 1 < p <00, 1 < g < oo, which relevant for our results on traces. .

We first focus on inhomogeneous Besov spaces. Fix a sequence of functions (¢’);>0 € #(R")
such that:

1. supp ¢° < B(0,2) and supp ¢’ < B(0,2"1)\ B(0,2/71) for all j = 1.

2. For all multi-index a € N, there exists ¢, > 0 such that ‘D“(pj(x)) < ca2_j|“|, for all x € R*
and all j = 0.

3. For all x € R", it holds ¥ ;> @’ (x)=1.
An example of such a sequence (¢”) >0 1s given by ¢ =@ and

@’ = P9-j —Po1-j, ¥ j =1, where p € #(R") satisfies supp ¢ cB(0,2) and p=1in B(0,3/2). (2.6)
Let f € #'(R™). For all j >0, let fj:= f * ¢’. One has

f= Z fj, where the series converges in &'. (2.7
7=0

2.3 Definition (Definition of inhomogeneous Besov spaces). Let se R, 1<p <ocoand 1<g¢g <oo.
Define Bj, , = B}, ,(R") as the space of tempered distributions f € Z'(R™) such that

1/q
Iflss, = 1flBs @ = (Z 294 f; II%p) < oo.
j=0



Recall [23, Section 2.3.2, Proposition 1, p. 46] that Bj, ,(R") is a Banach space which does

not depend on the choice of the sequence ((pj )j=0, in the sense that two different choices for the
sequence (¢’) >0 give rise to equivalent norms. Once the ¢’’s are fixed, we refer to the equality
f=Xj>0f;in & as the (inhomogeneous) Littlewood-Paley decomposition of f.

Let us now turn to the definition of homogeneous Besov spaces. Let (¢’);cz be a sequence of
functions satisfying:

1. supp ¢’ < B(0,2/"1)\B(0,2/71) for all j€ Z.

2. For all multi-index a € N”, there exists ¢, > 0 such that ‘D“(pj(x)‘ <277 for all x e R®
and all j e Z.

3. For all x e R", it holds }_ jc7 P(x)=1.

An example of such a sequence (¢/) ez is given by

(pj =@9-j —Po1-j, VjEZ, where p € ./ (R") satisfies / @=1. (2.8)

n

Define again f; := f * ¢’ for all j € Z. Note that, in general, when f € .7/(R"), the sum ¥ jez fj is
not f. E.g. when f =1 we have f; =0, Vj € Z. However, we have

f= ij in .Z'(R") if f € LP(R™) for some 1 < p < oo. (2.9)
Jjez

Although the equality f =} ; f; does not always hold, the series }_;c7 f; will be referred to as “the
homogeneous Littlewood-Paley decomposition” of f, and we write “f =} ez f;”.

In the special case where the ¢’’s are as in (2.8), the homogeneous Littlewood-Paley decompo-
sition reads

f=Y f;, where fj = fi(f,0)= [ * (pg-j — pg1-;), VEZ. (2.10)
Jjez

2.4 Definition (Definition of homogeneous Besov spaces). Let se R, 1 <p <oco and 1 < g < oco.
Define B;,q(IR”) as the space of f € .#'(R") such that

1/q

_ — ' q

\f1Bs,, =B @) = (Z 2574 || fj||Lp) < oo. (2.11)
JEZ

Recall the following result [23, Section 5.1.5, Theorem, p. 240].

2.5 Lemma. The space Bf,,q(lR”) does not depend on the choice of the sequence (¢/) jez.

Among the various characterizations of Besov spaces, we will need the one by finite order differ-
ences. Let f :R" — C. For all integers M =0 and all x,h € R", set

Mpon_ S (M)
Ay flx)=) ; D" fx+Lh). (2.12)
=0

An immediate consequence of the definition of | | B, is

2.6 Lemma. Let 0<ry<rg, l<p<ooand 1<q <oo. If fe . [R") is such that supp f
B(0,roR)\B(0,r1R), then we have

155 oy ~ B NI Loy (2.13)



Proof. Let I denote the integer part, and set

k :=1(logy(r1R)), ¢ = I(logy(raR)).

Note that

¢ -k <loggro—logori+1, (2.14)
and that

fi=0ifj<korj>¢+1. (2.15)

We next note that the ¢/’s given by (2.6) satisfy
o7 I paeny S 1. (2.16)

By combining (2.15) and (2.16), we find that

. 41 . +1 . 41 . .
_ SJq || £. — sjq J sjq J
SR ||f||zp(Rn)-
On the other hand, by (2.14) and (2.15) we have
1 |9 +1 /1
RN pgny =R || 2 £ SR Y N fillis@e S 2 29NN gy = 1F1gs - (2.18)
k LP(RP) k k P4

We complete the proof of the lemma by combining (2.17) and (2.18). O

Besov spaces can be characterized by means of the differences AhM [23, Section 5.2.3], [14,
Theorem, p.41], [25, Section 1.11.9, Theorem 1.118, p. 74]. Let us recall the following results.

2.7 Proposition. Let s>0,1<p <ocoand 1<q <oo. Let M > s be an integer. Then:

1. In the space B;yq(IR{”) we have the equivalence of semi-norms

1/q
- —sq M q dh
B3, ,®m) (/R RN ALF| IhI”) . (2.19)
2. The full B;,q norm satisfies
1/q
\ N —sq M q dh
17 g, @) ”f”LP([R”)"'(/lhlsllhl ‘Ah . |h|n)
and
”f”B;,q([R”) ~ I fllLp ) + |f|B;’q(Rn)- (2.20)



3 Direct trace theorem: proof of Theorem 1.3

Here, we fix [ > s and consider the semi-norm

9  _r9 3.1
|f| ;,q |f|B§,’q(Rn) / ”Ahf”Lp |h|n+sq ( )

considering an /-dependent semi-norm considerably simplifies the proof.
As mentioned in the introduction, we adapt here Maz’ya’s elegant proof [11, p. 512-513]. We
rely on the following elementary lemma, whose proof is postponed.

3.1 Lemma. Let / >0 be an integer and F € C*°(Q2;C). We set

ID F(x,e)l = ) [0“F(x,e)l.
aEeM

Let x,h € R". Set f(x) = F(x,0) and r = |h|. Then

l l l l
ALF@ISA Y [ ¢7UD Fx+th,jrlde+rt Y. [ ¢7DF(x + jh,tr)ldt. (3.2)
j=1J0 j=0J0

Recall that . consists of all the multi-indices @ = (8,y) of length [ such that either f =0, or

Y =0.
Assuming Lemma 3.1 proved for the moment, we proceed to the

Proof of Theorem 1.3. Set K(¢) = |D;F(-,¢)llLrrn)- Integrating (3.2) in x, we obtain (with r = |h])
l l ! Ir
AL Fllipe@ny St Y K(ir)+r! /O K @r)de Srt Y K(ir)+ /0 1K () de. (3.3)
J=1 j=1

In view of (3.1) and (3.3), in order to establish (1.5) it suffices to prove that

/ |RIP SR (GIRD) dh < / e1=9-11K(e)1? de,V j >0, (3.4)
n 0
and
A q dh 0o
/ ( / t’—lK(t)dt) [ateg / 11K ()] de. (3.5)
n 0 0

Passing to spherical coordinates, we see that the two quantities in (3.4) are proportional, and thus
(3.4) holds. Also in spherical coordinates, (3.5) amounts to

© 1 le q oo
/ / 1K@ de| < / =91 K ()7 de. (3.6)
0 gsq+1 0 0
In turn, (3.6) follows from Hardy’s inequality at 0 (2.2) applied with r = sq and g(¢) = ¢/ 1K (¢).
The proof of Theorem 1.3 (except Lemma 3.1) is complete. O

3.2 Remark. In establishing (3.4) and (3.5), we did not rely on the fact that / > s. However, if
the right-hand side of (3.1) is finite for some / < s, then f is a polynomial of degree <[ —1; see
Proposition 5.1 below. Thus, if say F € C2° and the right-hand side of (1.5) is finite for some / < s,
then f =0.2

3This can also be obtained from Proposition 1.8.
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In order to complete the proof of Theorem 1.3, it remains to prove Lemma 3.1. This lemma
is a clear consequence of the identity (3.7) and of the estimate (3.8) below, that we state as two
lemmas.

3.3 Lemma. For x,h € R" and [ € N* we have, with r = |A|:

l . l .
Af=Y (l,)(—l)JAlrenF(x +jh,0)+ ) (l,)(—l)J“A;F(x, Jr). (3.7
j=0 j=1

Proof. We start from the identity

l . l ,
flx)=) (j_)(—l)JF(x, i+ (l,)(—l)“lF(x, jr), Vx € R™.

j:O J:1

As a consequence,

L (1
Nf@ = Y|, Dk k)

k=0
Lo(1 L1 : L1 ;

= Y | |G Y N Fae+ kR, jr)+ Y | (-1 F(x+ kA, jir)
i=o\k j=0\J Jj=1
L (1 L (1 ,

= X, (—1)kA£enF(x+kh,O)+Z(,)(—1)’+1A2F(x, Jr.
k=0 j=1 J

In the second term of the last equality, we exchanged the sums over / and ;. O

3.4 Lemma. Let / >0 be an integer. Let y = (x,¢) € Q and let # € R**! be such that [y, y + Al c Q.
Write h = (h',h,+1) € R” xR, and assume that either A’ =0 or #,,.1 =0. Then, with r = |i|, we have

l
IALF(y)l grl/o "1 D, F(y + th)|dt. (3.8)
Proof. Set G(t)=F(y+th), t€[0,l]. Then clearly

Al F(y) = AYG(0) and IGP(t) < ' |DF(y + th).

Therefore, it suffices to prove that

l
1IN G(0)] < / NGO @) de. (3.9)
0

In turn, estimate (3.9) is obtained as follows. Let H1 =1_; ) and, for j > 2, set H; = HoxHo*---*H
(j times). By a straightforward induction on j, the distributional derivative HE.J s bounded, and
H;(t) =0 when ¢ = 0 or when ¢ < —j. This leads to the inequality

H; (- <t/ vj=1, Vi=0. (3.10)

On the other hand, again by a straightforward induction on /, we have

!
AN G0) =GV« Hy(0)= / GOWH (-t)dt. (3.11)

0
We obtain (3.9) by combining (3.10) and (3.11). O

11



3.5 Remark. For further use, let us note that if f € C2°(R") then the identity (3.11) applied to the
function

t— G(t)=f(x+tew),

with w € " ! and x in a compact K c R”, leads to

li

. |Alwf<x>| ’ . . nel e
II(l) =|D'f(x)(w,:-,w)| uniformly inwe$ andinx e K. 3.12)
£— 5

4 Inverse trace theorem: proof of Theorem 1.4

Proof of Theorem 1.4. We consider a radial mollifier
p(x) = g(|x]) € Z(R™), with suppp < B(0,1) and p = 1 in B(0,1/2).* 4.1)

Given f € C°(R"), we let U(x,¢€) = f * p.(x). We will prove that U satisfies (1.6) whenever a € &.

Step 1. Reduction to the case where y > 0.
This reduction is based on the next lemma.

4.1 Lemma. Let W € C*°(Q) satisfy

Wi(x,e) = —/ %W(x,t)dt, V(x,e) € Q. (4.2)

Leta>-1,1<p<ocoand 1<q <oo. Then

0

W . < a+q
/0 e IWC, O] pgn, de /0 € P

Lemma 4.1 is a straightforward consequence of Hardy’s inequality at co, and its proof is post-
poned.

Assume that we have proved (1.6) for every a = (8,y) € N**! such that y > 0. Let a = (8,y) € &
be such that y = 0 (and thus || > s). Since U satisfies (2.1), we may apply the above lemma to

olf

W = —U and with
oxPB

— W, 6) de.

LP(R™)

a=q(fl-s)—1>-1.

Since (1.6) holds for (3,1), Lemma 4.1 implies that (1.6) holds for a =(,0).
In conclusion, it suffices to prove (1.6) when y > 0.

Step 2. Proof of (1.6) when y > 0.
This is the heart of the proof, and will be obtained as a consequence of the estimate (4.8) below.

Y
We start by noting that the partial Fourier transform .%, in x of % satisfies
o'u )
Ty ( )(f)— —(P(ef)f(f))— UGG E —U(Ef)f(f) 4.3)

4Unlike the other assumptions listed in (4.1), the fact that p is radial is not crucial for the arguments (but just
leads to shorter formulas). In particular, p needs not be even. This contrasts to several tricks in [26] and [11], where
it is essential to have even mollifiers.
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Here,
@ € S, n=1n(y) e S ®" satisfy p(&) = p(I¢]) and 7E) = 1" 9P (I€D). (4.4)
By (4.3) and the assumption on p, we have

o'U
supp Z» (W) < B(0,1/e)\ B(0,1/(2¢)). (4.5)

By combining (4.3), (4.4) and (4.5) with the fact that

sup f; < B(0,2/*1)\ B(0,2'™h),

we find that
oru 1 1
W(x,f) =S Mexf0)=— Y nexfi). (4.6)
€ € 1/(4€)<2/ <2/
Using (4.6), we obtain that
6|a|U( y= 2 oPfi(x), Vy>0, VBeN" (4.7)
Wx’g__y Z ne*x 0" fi(x), Yy>0, VBeN". .

€ 1(4e)<2i <2/

Finally, by combining (4.7) with the fact that n € L' (by (4.4)) and with the Nikolskii’s estimates
(2.4), we obtain

ovu
0eY0xP

1
< . . n
L@y ~ glal > ~ Ifiller@n, ¥y >0, YPEN®.  (4.8)
1/(de)<2i <2/e

1
S > Haﬁf J
LP(R™) 1/4e<2/ <2/¢

Estimate (1.6) with y > 0 is an easy consequence of (4.8). Indeed, noting that for every ¢ there
are at most three j’s such that 1/4e < 2/ < 2/e, we find that

(e.0] o0 !
/ e N U N ny dE S / s‘s"‘l( 2 ||fjlle<Rn>) de
0 0

1/(4€)<2/ <2/
o0
S / e Y il de
0 1/(4€)<27 <2/
21~/
= Z ||fj||Zp(Rn)/ A e de ~ Z 2qu||fj||zp(Rn) =|fl%, .
jez 2772 jez P
Granted Lemma 4.1, the proof of Theorem 1.4 is complete. O
Proof of Lemma 4.1. In view of (4.2), we have
>0 | o
IW(,e)llLr = / —W(,0dt| < / H—W(',t) dt. 4.9
€ at Lp £ 6t Lp

It then suffices to combine (4.9) with Hardy’s inequality at oo

oo oo q oo
/ e? (/ f(t)dt) d8§/ e\ f(e)?de. m
0 € 0
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5 Further results

In this section, we prove Proposition 1.8 (and its cousin Proposition 5.1), Theorem 1.9 and its
complement Proposition 1.10, item 2 in Theorem 1.11 and its negative counterparts Propositions
1.13 and 1.14 (that we establish in more general forms). We also prove Theorem 1.15; the proof
of Theorem 1.17 is very similar to the one of Theorem 1.15 and is left to the reader. In a related
direction, we establish Proposition 5.8. Finally, we explain why the non homogeneous (i.e., for the
full norms) counterparts of Theorems 1.3 and 1.4 are trivial consequences of Theorems 1.3 and
1.4.

Proof of Proposition 1.8. Let a ¢ &;. Thus a =(8,0), with || <s. We argue by contradiction and
assume that

e

By (5.1) and the fact that a < -1, we find that there exists a sequence £; — 0 such that

P F 7

—(,¢)

de <oo, where a =q(|f|—s)—1<-1. (5.1)
0xP

LP(R™)

OB
lim (,&5) =0.
Jj—oo H 0xP LP(R?)
0!8
This implies that =0, which contradicts the assumption f # 0. O

0xB

In the same spirit, we have the following elementary result.

5.1 Proposition. Let [ > 0 be an integer and let s=/. Let 1<p<ocoand 1<qg <oo. Let f €
ZOC(IR” C) be such that

dh
I
VS ey <o 62

Then f is a polynomial of degree </ —1.

Proof. In spherical coordinates, (5.2) reads

A "
/ / (ll ga)f”LP(R ) do ) de <oo, witha=—-1—q(s—1) < —1. (5.3)
gn-1

In view of (5.3) and of the fact that a < -1, there exists a sequence £; — 0 such that

1AL L F ey
lim — L ——dw=0. (5.4)
J—00 Jgn-1 gj

Using (5.4), we will obtain the desired conclusion assuming temporarily in addition that f is
smooth. In view of (3.12), for every compact K < R" we have

1AL of lLra) l
lim B — de/ ID"f(Nw,...,0)lLrx) do. (5.5)
J—0 Jgn-1 £j gn-1
By combining (5.4) and (5.5), we find that le(-)(a),...,a)) =0, Vw € S" 1, and thus le =05

Therefore, f is a polynomial of degree <[ — 1.

5SIfTisa symmetric /-linear form in R” and T(w,...,w)=0,Vwe $"~1 then T =0.
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We now consider an arbitrary f. Let ¢ € C°(R"), and set g = f * ¢. Since

il =414

< |ahr

LP(R™) LP(R) LP(R")’

we find that the smooth function g satisfies (5.2). In view of the above, we have 0% g = 0 whenever
la| =1. If we now let ¢ = p,, with p a standard mollifier and € — 0, we find that 0“f = 0 whenever
|a| =1, and thus f is a polynomial of degree <[ —1. O

Proof of Theorem 1.9. Let f € C°(R"), and let U(x,€) = f * p(x), with p as in the proof of Theorem
1.4. Let P be the Poisson kernel, and let V(x,e) = f * P.(x) be “the” harmonic extension of f.
Theorem 1.9 is a consequence of the general estimate

o0

o0
/ e NV (N, gn de S / e NRUC, N p gy de, (5.6)
0 0

valid for everya > -1, feN*, 1< p <oo,and 1 < g < oo.
In turn, (5.6) follows from the next lemma, widely used in the theory of (real) Hardy spaces
and the proof of which is postponed.

5.2 Lemma. Let p be as in (4.1). Let M > 0. Then there exists a sequence (1) ez € LY(R™) such
that

and P =Y 1/ % py. (5.7)

| -
oM ifj<0 i

- {2—1‘ , ifj=0
L~

Taking Lemma 5.2 for granted, we proceed to the proof of (5.6), and explain why (5.6) implies
Theorem 1.9.

Step 1. Estimate (5.6) implies Theorem 1.9.

This step relies on a trick of Uspenskii. Assume that (5.6) is known to hold. We will then establish
the estimate (1.8) for every a = (B,y) such that |a|] > s. When y = 0, the conclusion of (1.8) is
obtained by combining (1.6) with (5.6). So let us assume that y > 0. Arguing as in Step 1 in the
proof of Theorem 1.4, if (1.8) holds for (8,7 + 1), then it also holds for (8,7).6 Therefore, possibly
after replacing y by y+1, we may always assume that y is even, say y = 2k, with £ = 1. Now comes
Uspenskii’s trick. Since V is harmonic, we have (by a straightforward induction on k) the identity

0"V = ;Ei;afv = (-DHA)EV.
Thus
ays _ k 9 0% B
0%V =(-1) 15j1§jk5n§§1m@axv'
Consequently, we have
V=Y cu50V (5.8)

161=lal

for some suitable coefficients c, 5. Since by (5.6) and (1.6), (1.8) holds for 62 when |6] = |a|, we
obtain from (5.8) that (1.8) holds for every a.

6 This relies on Lemma 4.1 combined with the fact that g(la|—s)—1>-1, as well as (2.1).
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Step 2. Proof of (5.6).
Set G, = ||0£U(',8)||Lp(qun) and b; = ”T]‘j”Ll(Rn). By (5.7), we have the identity

Ve = Y (1) * oo+ f,
JjeZ
and thus

||05V(',£)||LP(IR") <2
Jjez

),

In view of (5.9), in order to prove (5.6) it suffices to establish the estimate

/ e (Z bjG(2j£)
0

JjeZ

)Ilaf(f * poillLr@n = Y b;G2e). (5.9)

1
LY®" Jjez

q 00
de < / e’[G(e)l de. (5.10)
0

Let N denote the right-hand side of (5.10). Then

00 ) l/q )
( / e2[G(27 £)]? de) =g Jla+Digprlig (5.11)
0

Minkowski’s inequality (applied to the measure £ de) combined with (5.11) implies that
oo q q
/ £ (Z b jG(2J£)) de < (Z b ,-2—1<a+1>/q) N<N.
0 jez jez

The last inequality follows from the fact that }_ b J-2_j (@+1/g < 5o, by the first part of (5.7).
Granted Lemma 5.2, the proof of Theorem 1.9 is complete. O

Proof of Lemma 5.2. We rely on two decompositions that can be found in Stein [17]. First decom-
position: given a function ¢ € . (R"), we may write

Q= Z/lj"p*ij, (5.12)
720

Here (A/%) i < (R") is a sequence that decays rapidly as j — oo, in the following sense: if ¢
belongs to a bounded subset # < . (R"), then for every M > 0 there exists a constant C such that
||/1]’¢||L1(R”)SW’ Vj=0, Vpe %, (5.13)

see [17, Lemma 2, p. 93].
Second decomposition: the Poisson kernel P can be decomposed as

where ((pk)k c.(R") is a bounded sequence; see [17, eq (18), p. 98].
By combining (5.12) with (5.14), we obtain the decomposition

1 . 1 )
g T R
> j= ok k= j= (5.15)
1 R
= Ly , with - - /V’(p] oo
lezzn P! 7 jzmaéo,—l} 27+ ( )2”1

By (5.15), we thus have P =Y ;e * Por, With

N
Il s Y oI e, (5.16)
J=max{0,—1}
We obtain the first part of (5.7) by combining (5.13) with (5.16). O
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5.3 Remark. For further use, we note that the decomposition (5.12) holds not only for a mollifier
p as in the proof of Theorem 1.4, but also for any p € /(R") such that [, p = 1. In addition, the
estimate (5.13) can be improved to

C
— Vj=0,V1l<p<oo, VB,0eN", Ve, (5.17)

636 97,9
Hx V@), = 517

see [17, Lemma 2, p. 98].

Now let us pause and compare Theorem 1.4 to Theorem 1.9. In view of their respective conclu-
sions, it is natural to examine the properties of

W(,¢e):=f * @(x), where ¢ € L (R"). (5.18)
We have the following

5.4 Theorem. Let seR, 1<p<ooand 1=<q <oo. Let f € C°(R") and let W be as in (5.18). Then

(o.°]
/ e NG W (N}, ny de SIF 1%, YaeN"! such that al > s. (5.19)
0 P

Proof. Let a =(B,y) e N” xN be such that || =1 >s. We will establish (5.19) for such a.

Step 1. Reduction to the case where a = (,0).
Assume for the moment that (5.4) holds under the additional assumption that y = 0. Starting from
the identity

FW(,e)&) = F(©)P(ed),
we find that, with appropriate A#, 9" € Z(R"), we have

T (0°W(,0) () = (&) Y. &*AR(Ed)

neN”
lul=l
and
W(,e)= ) oL [f*(ph).]= X 0WH(,e), (5.20)
peN"™ peN”
lul=l lul=l
where

W.u(.,g) = f * ((p”)g .
In view of our assumption that (5.19) holds (for ¢* and u), we obtain from (5.20) that (5.19) holds
for ¢ and a.

Step 2. Proof of (5.19) when a = (8,0).
This is an easy consequence of (5.12). Indeed, (5.12) implies that (with p as in (4.1) and U(-,¢) :=
f * pe) we have

LW (,e) =0/ (Z (7). pz—je) = Y (V) «oluc.27e).
Jj=0 j=0

Using (5.13), for every M > 0 we have

afW(-,e)HLp(Rn) < J;) Hitj"”

Prr(..o-J H <V 9-Mj
2 2
U (-,27e) LP(W)NJ;)

buc., 277
Li@n vz, . 2D
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By (5.21) and Theorem 1.4, for every N < M we have

o0
/ gq(l—s)—l
0

B q o0 _
axW(,é‘)H de 5/ £q(l—s)—1 Z 2—M]
0 j=0

LP(R™)
* (I-s)-1 Nj
< [enay
0

720
o0
— / E‘I(l—s)—l
0

provided we choose M > N > g(I —s). O

e

q

05U(-,2‘j£) LP(R")

q .
U € H de Y 2/ WN-gl-s) < p1a
ACE] I > SIflgy,

j=0

We next continue with the

Proof of Proposition 1.10. Let a =(B,y) € N"*! be such that |a| < s. Assume, by contradiction, that
the integral in (1.9) is finite. Arguing as in the proof of Proposition 1.8, there exists a sequence
€; — 0 such that

lim 0°U(-,&;) = 0 in LP(R").

Jj—oo
This implies that 0*°U(-,0) = 0. By taking the partial Fourier transform in x, we obtain that
0= .7, (0°U) (£,0) = GOV (-IENTF(©),

and thus f =0, which is a contradiction. O

Proof of Theorem 1.15. Assume that f € L1(R") ﬂB(l) ;- Let U be as in Theorem 1.4. Then, by
Theorem 1.4, we have

/ 710U (x,e)ldxde <|flgo , Va#0. (5.22)
R” x(0,00) L1

On the other hand, (5.6) implies in particular that

2
—V(x,e)

/ 0
&
R"x(0,00) |0 F

2

0
dxde < / £| -~ Ux,e)
R x(0,00) |OX

J
Using successively Hardy’s inequality at oo, Uspenskii’s trick, (5.22) with |a| = 2 and (5.23), we
find that

dxde, Vje[1,n]. (5.23)
x

0 0 n 0
—Vi(x,e)| dxde < e|—=V(x,e)| dxde < Z e|l—=Vi(x,¢e)| dxde
R" x(0,00) | O€ R7x(0,00) | 0€ j=1JRrx(0,00) |0
. 52 (5.24)
< e|—=U(x,¢)| dxde S |f] J
j_;/R”x(O,oo) Osz f Bg,l
Since we also clearly have
IVILi@e <0, = I 1@y (5.25)

estimates (5.22)-(5.25), as well as (5.6), imply “<” in (1.16).

"In our case, f is not assumed to be smooth, but (5.23) and (5.24) are obtained from the corresponding estimates
for smooth f by a standard smoothing argument.
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Conversely, assume that

1
/ |V(x,£)|dxd£+/ IVV(x,e)|dxde < oco.
0 JR® R” x(0,00)
Then, by standard trace theory, we have f € LY(R") and

1
”f”Ll(Rn)S/ |V(x,£)|dxd8+/ IVV (x,¢)ldxde.
0 JR? R

" x(0,00)

Thus the heart of the proof consists in proving the estimate
Iflgo S / [VV(x,¢e)|dxde. (5.26)
L1 R x(0,00)
In turn, (5.26) will follow by combining
Iflgo < / VU (x,€)|dxde (5.27)
L1 R x(0,00)
with
/ IVU(x,¢)|dxde < / IVV (x,¢€)|dxde. (5.28)
R” x(0,00) R” x(0,00)

Estimates (5.27) and (5.28) will be obtained below. For the time being, let us note that (5.27)
can be seen as variant of Theorem 1.11 with s =0 and [ = 1, and that (5.28) is a reverse of (1.11).

Step 1. Proof of (5.27).
More generally, we will prove the following cousin of Theorem 1.3.

5.5 Lemma. Let se R, 1< p <ooand 1<q <oo. Let f € .¥'(R") and set U(x,¢) = f * p.(x), with p
as in the proof of Theorem 1.4. Then

o0
1-s)-1
I£19, 5/ 1179
p,q 0

Clearly, (5.29) with p = q =1 and s = 0 implies (5.27).

q
iU(-,E)

de. 5.29
oe ¢ ( )

LP(R™)

Proof of Lemma 5.5. Since the choice of the mollifier ¢ leading to the Littlewood-Paley decompo-
sition is irrelevant (Lemma 2.5), we consider the Littlewood-Paley decomposition associated to p,
that is, we let

fi=U27)-U(,2'), Vjez.

Holder’s inequality leads to

q

217

. , . . 9

|f|qs = Z 2SJq||U('72_J) - U(',21_J)I|gp(Rn) = Z 28_](] / ) _U('>£)d8
p,q ]EZ 2-J 65

jez LP(R®)
o 2" 5 q o0 9 q
<y osag-/la-D) / —U(,e) de ~ / 21971 —T(e) de. O
jez 9-i |l 0€ LP(RM) 0 O¢ LP(RM)
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5.6 Remark. When s <1, Lemma 5.5 combined with Theorem 1.4 leads to the equivalence

(eo]
flgs ~ / gl
p.q 0

This is similar to results of Triebel [22] and Bui [7], who obtained this equivalence when U is

replaced by the harmonic extension V. [22] and [7] also contain analog equivalences involving
l

higher order derivatives FV.
€

q
iU(-,f)

de. 5.30
oe € ( )

LP(R™)

Step 2 (in the proof of Theorem 1.15). Proof of (5.28).

Estimates of the type (5.28) are standard in the theory of Hardy spaces, and we will explain how
(5.28) can be obtained using the techniques detailed in Stein’s monograph [17, Chapter III, p. 92—
94, p. 991.8 To start with, there exists a rapidly decreasing function 7 :[1,00) — C such that the
function ® € LY(R") defined by

CD(x):/ n(t)Py(x)dt, Vx e R,
1
belongs to . (R") and has integral 1 [17, Section II1.1.7, p. 99]. Let

W(x,e)=f D (x) = / N f * Pi(x)dt = / nt)V(x,te)dt, e >0, x e R”.
1 1

Then
‘EW( €) </Oot| (t)l'(iV)( te)| dt
o€ © N 1 n o€ o ’
and thus
0 *° 0
/ —Wi(x,e)| dxde < / tln(t)l'(—V)(x,te) dxdedt
R" x(0,00) | O€ R7 x(0,00) 1 oe
P (56.31)
:C/ —Vi(x,¢)| dxde,
R™ x(0,00) 68
with
o0
C:/ [n(®)dt < oo.
1
Similarly, we have
< n@)l
IV, W(x,e)l dxde < —dt IV, V(x,e)| dxde. (5.32)
R” x(0,00) 1 R” x(0,00)

Thus VV controls VW (via (5.31) and (5.32)). It remains to prove that VW controls VU. This is
obtained with the help of Remark 5.3. We write

p=) A® % @y, and thus p, = Y (}Lk) * Dyi,VE>0, (5.33)
k=0 k=0 €

where the functions A* satisfy (5.17).

8The same technique was used by Stein [16, Section VI.3] and by Adams, Aronszajn and Smith [2] in order to
construct universal extension operators for Sobolev spaces of functions in domains. See also the reference Stein [10]
in [16].
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We note that (5.33) implies that

Ux,e)= Y (A*) +W(,27 o)), (5.34)
k=0 £

In turn, (5.34) combined with (5.17) leads to the following estimate:

/ V. U(x,e)ldxde < Y 1A% L1 gn / IV W(x,2 %) dxde
R x(0,00) k=0 R x(0,00)

1
SY o V. W(x,27 ") dxde (5.35)
(=0 2 R™ x(0,00)

S / IV W(x,e)l dxde.
Rnx(o,oo)

In order to estimate 0U/0¢e, we start from the identity

%(/15) = —div, [(Ax)] = - 3 (i)t ) %J) for all A €. (R™), (5.36)

jo10xj et te

which implies that

%[(Ak)E*W(.,z—kg)(x)] ot (Ak)g*(a%w)(x’g—kg)_é(;thj)g*(%W)(_,z_kg)(x)_ 537

By combining the identities (5.34) and (5.37), we find that

0 0
/ —U(x,¢e)| dxde < Z 2_k||/1k||L1(Rn)/ '(—W) (x,Z_kE) dxde
Rn x(0,00) | 0€ £=0 R"x(0,00) | \ O€
0
+ 3 Nl — A2l 11 gy / '(—W) (x,27%¢)| dxde.
k=0 R x(0,00) |\ OXj
We now use the estimate (5.17) and obtain
0 0
/ —Ul(x,e)| dxde < Z 2_2k/ ’(—W) (x,2_k£) dxde
R7x(0,00) | O€ £20 R x(0,00) |\ 0E
0
+y 2‘2k/ ‘(—W) (x,27%¢)| dxde (5.38)
(>0 R x(0,00) | \ 0
,S/ VW (x,€)| dxde.
R” x(0,00)
Estimate (5.28) follows from (5.31), (5.32), (5.35) and (5.38).
The proof of Theorem 1.15 is complete. O

Proof of Theorem 1.11, item 2. Let [ > s, with s <0, and let E = E; be the “energy” defined by
formula (1.10). The estimate

EWV)SIfI VfeCPRY), (5.39)

q
Bba’

follows from Theorem 1.9.
On the other hand, we claim that

0o
|f|qs 5/ gQ(Z—S)—l
p.q 0

o 7

Py, U(,e)

de<E;(U),VIeN, Vs<1, (5.40)
LP(R™)
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where U is as in the proof of Theorem 1.4. Indeed, when [ = 1 estimate (5.40) was established in
Lemma 5.5. The case where [ = 2 follows by induction from the case where [ = 1, using Hardy’s
inequality at 0 (2.2).° Finally, the direct Nikolskii’s inequality (2.4) implies that

E{(U)= / gd(1-9)-1 U( g)
0

O0e

de < / e UGN, g, de = EolU),
LP(R?) 0
and thus (5.40) holds also when [ = 0.
We complete the proof of the theorem by combining (5.39) and (5.40) with the next lemma. [J

In the next statement, we consider some f € C°(R"). We let U be as in the proof of Theorem
1.4, and we let V be the harmonic extension of f.

5.7 Lemma. Let seR, 1<p<o00,1<q <00, and [/ €N. Then

E,(U)<E (V). (5.41)

Proof. We argue as in Step 2 in the proof of Theorem 1.15, which leads to the estimate (5.28). As
in formula (5.33), we write

pe=Y (M”)E % ( /1 n(t)Pz_ktgdt), (5.42)

k=0

where 7 :[1,00) — C is a rapidly decreasing function and where the 1*’s are rapidly decreasing in
the sense of (5.17). We note that (5.42) implies that

Ux,e)=Y [ n®(A) +V(,2 te)wde. (5.43)
k=071 £

If we combine (5.43) with the identity (5.36) and with the Leibniz’s rule, we obtain, for every
a=(B,y)e N"*1 an estimate of the form

Y o 65
10°UCO @ S, D 2 In(#)|£°27% (nk’%@) « 05V (27 te) dt
5=0 |é|=Ipl+y—-6 &=0 € 0Oe LP®?)
Y 0o )
S )Y In(t)|t52‘5k i I (5.44)
6=0 [¢|=|Bl+y-6 k=0 L1(R™)
a°
x || =5V (., 27*te) dt.
6 LP(R?)
In addition, we have (using Remark 5.3 and the identity (5.33)) the estimates
ky,6,6
Hn ‘len) o VM, VY, VO, Ve (5.45)

By combining (5.44) with (5.45) we derive, for every every M > 0, for every integer [ and for every
a € N1 such that |a| =, the estimate

(5.46)

109U, 0| Lo S Z Z In(t)ltl MV (-,27%te)
®™) 2Mk

LP(R")

91t is only at this stage that we use the assumption s < 1.
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Applying Holder’s inequality with exponents ¢ and g/(q — 1) to (5.46), we find (using the fact
that 1 is rapidly decreasing) that

- (5.47)

-k
16°UC, )| Lpgny < Z Z ST / e v, 2 Fee)| !
Using (5.47) we find (using the change of variables 27 %¢¢ = 1) that

E =Y [ N UCoN], g de / / .
Iul ! k>0 oMk

la|=1Y 0
<ol |oveetol! dedt <E(V) S / @] #-10-9 g G4

« oIM- q(z o)k
SE(V),
provided we take M sufficiently large. O

We next justify Remark 1.16, asserting that homogeneous norms are not always suited to the
Besov spaces with non positive exponent s. This is explained by the next example.

5.8 Proposition. Let s <0 and 1< g <co. Let f € #(R") be such that [, f #0. Then |f|p; =o00."’

Proof. We consider the homogeneous Littlewood-Paley decomposition (2.10) associated to the se-
quence given by (2.8). Let ¢ be such that (&) — p(2¢) # 0. Then, as j — —oo, we have

£i(278) = FIENPE) - P(26)) — (&) — PRENF(0) = (@) - p(28) [ f #0,
Rn
so that
liminf || f;li 1 = liminf||fj||
J——00 J——00

- 11m1nf‘ fJ(zfe)‘ > 0.

We find that ¥ ;< llfjll}, = oo, and thus IlB;,, = oo i

The above proposition and the comparison between the statements of Theorems 1.15 and 1.17
suggest that it is natural two strengthen the conclusions of Propositions 1.13 and 1.14 as follows.

5.9 Proposition. Let f € CP(R").

1. Let s<0,1<p<ocoand1=<gq <oo. Then there exists a sequence (F;) c C2°(R" x[0,1)) of
extensions of f such that

1
lim [ e 0" F (-, 0)||F pgny dE=0, Ya e N**, (5.49)

Jj—oo Jo
2. Let 1< p <ooand 1< g <oo. Then we may choose F; such that

1
lim [ e 0%F;(,6)| 7 ey de =0, Va e N" T\ {(0,0)). (5.50)

J—0 )0

5.10 Proposition. Let 1 < p <oco and let /[ > 0 be an integer. Then:

10Though, of course, f belongs to the space B3 q
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1. Every f € C2°(R") has an extension F' € C*°(R" x [0,1)) such that

1
/ e FC e)lLr@nyde S If lLemey, ¥ a €N such that |a| =1. (5.51)
0

2. There exists a sequence (f*) c C(R") such that || f*||Ls@e) = 1 and ||fk||Bo |~ oo
p,

Proof of Proposition 5.9.
Step 1. The case where s <0.
Let g € C(R) be such that g(0) = 1. We let

Fi(x,e)=f(x)g(je), Vj=1, VxeR", Ve =0.

Clearly, F € C(€2) is an extension of f.
If a =(B,y), then

oo (0.¢]
/ 10O F i, O ny di = 7 / 1P L1 g,
0 0

q
g"Ge)|" de
e q
:J-q(s—lﬁl)”aﬁf”gp(Rn)/ gdlal=s)-1 ‘g(}f)(g)‘ de — 0 as j — oo.
0

Step 2. The case where s =0, ¢ > 1 and a # {(0,0)}.
1, ift<-2
Fix a function ¢ € C*°(R;[0, 1]) such that w(¢) = {0 Tft R For j =2, let
, ift=-—

, w(lne/lny), ife>0
J(e) = )
&' {1, ife<0

Then clearly g/ € C®(R). We set Fijx,e)=f (x)g’(¢), which is a smooth extension of f. Let
a=(B,y) e N"*1\{(0,0)}. Then we have

® glal-1 ® ga-1|( NP |
/ 110 F () gy dE = 10PF 112 / el (/) @) de,
0 0
and thus, setting a = |a|, we have to prove that
o0
/ gget ( ) (&) ds—»O as j — oo, provided eithera =y >0ora >y =0. (5.52)
0

We establish (5.52) only when a =y > 0; the case where a >y = 0 is similar and is left to the reader.
By a straightforward induction on y = 1, we have

(Y) 1 Y 1 (k) ln£
]( d <g>g—yg—J] (_.).

(5.53)
Inj

1
Inserting (5.53) into the integral in (5.52) and performing the change of variables ¢ = g, we are
nj
led to
Ine\|?
y® (1_)
nj
Y 1

o0
/ 99~ 1
0
_1 Y
_ qla—t |, B (| 74 <
= ey P des
Yo/, 2

=11n"77"

)"0

q 1 oo
de < Z / g1l
0

1ln

de 1 (e q
—=Y — ./Jq(a Y)t‘w(k)(t)‘ dt
€ p=1In"T7j R

— —0as j—oo. ]
J
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Proof of Proposition 5.10.
Step 1. Proof of item 1.
We simplify Gagliardo’s idea in proving “tr Wh1 > L1”. We fix a function v € C®°(R) such that

oo [ sz e O, wo let
= . for ever , wWe le
v 0, ift=1 yIete

Flx,e) = f(x)w(g), VxeR" Ve=0,

with § > 0 a constant to be fixed later. Clearly, F' is an extension of f.
If @ = (B,7) e N*"1\ {(0,0)}, then we have

/ e O FC, Ol emde S = 10/ e / " de S 8PP FllLrn.
0

We find that (5.51) holds for small §.

Step 2. Proof of item 2 when p = 1.
Leta €(1,2) and

1/[1x|™ In® if 1/2
Foy = ¢ VIt bl < 1722
0, if x| = 1/2

It is easy to see that
f e L'RM), I £ll1@®ny = 1 (for an appropriate C > 0) and f ¢ L log L(B(0,6)),V 6 €(0,1/2). (5.54)

The non embedding (5.54) implies that, whenever h € L7 (R"), we cannot have f —h € JCLRY)
(where #71(R") is the Hardy space). Indeed, argue by contradiction and assume that we do have
f —h e 71 ®R"). Then, for sufficiently small §, we have f —k > 0 in B(0,26)) and thus we have
f—heLlog L(B(0,6)) [17, II1.5.3, p. 128]; see also [27], [15]. This contradicts (5.54).

We are now ready to construct our “bad” sequence (f%). Let (f*) c CX(R™) be such that
I frlLiwny =1 and fk — fin L!. We claim that ||f ||Bo — 0o as k — oo. Indeed, argue by con-
tradiction and assume that, possibly up to a subsequence the inhomogeneous Littlewood-Paley
decompositions f* =Y i=olf ky. ; of the f kg satisfy

|,

7=0
Here, the Littlewood-Paley decomposition relies on a sequence (¢”) >0 as in (2.6).
Since f* — f in L, we find (by Young’s inequality) that (f k)j — f;in L! as k — oo, and thus
(5.55) leads to

ZO 1771l 1 geny < 005 (5.56)
j=

<C<oo, YEk. (5.55)
L1(R")

where f =3} ;- f; is the Littlewood-Paley decomposition of f.

We complete the proof by proving that (5.56) cannot hold. Indeed, we have fy € C*°, and
f—fo=X;>1fjin L'. We obtain a contradiction by proving that ¥ j=1fi € L(R™). This conclusion
will be obtained by combining (5.56) with

1£il ey SNl Liny (5.57)

and with the fact that s#(R") is a Banach space [17, II1.5.1, p. 127]. In turn, (5.57) is obtained
as follows. Let R; be the /' Riesz transform in R”, i.e.,

FRIfNE) = é—llf(f), Vi<ls<n, VfeL'®R"), VieR".
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Fix any ' € .(R") is such that

ffnl e CP(R") and Fn UGE g:tll in B(0,4)\ B(0,1/4). (5.58)

For such 7%, (2.6) and (5.58) lead to
lej:(nl)Q,j*fj’ Vi<l<n,VjeZ,

and thus we have (using the characterization of J#1(R") via the Riesz transforms [17, II1.4.3, p.
123-124])
n
l
nl_ .
("),

n
||fj ||jfl(u@n) ~ ||fj ”Ll(Rﬂ) + lzi ||Rl(fj)||L1(|Rn) = ||fj||L1([Rgn)( Ll([R”)) ,S ||fj||L1([Reﬂ),

i.e., (5.57) holds.

Step 3. Proof of item 2 when p = oo.
We take f = 1p(,1) and we let (f¥) € C°(R™) be such that ||f*|zo@y =1 and f* — f in L. We
prove that || f*| B 00 as k — oco. For otherwise, arguing by contradiction as in Step 2, we have

171 5o o, < oo, and thus f =X j=0f; in L. But this cannot happen, since each f; is smooth, while f

is essentlally discontinuous.

Step 4. Proof of item 2 when 1 < p < oco.
Let us introduce, only in this proof, the following notation:

(Y=Y _IIfjliLewn), where f =) f; is the Littlewood-Paley decomposition of f.
j=1 7=0

Let v € Z(R") be such that

lyllLrrry =1 and supp¥ < B(0,2)\ B(0,1). (5.59)
We note that

we(x)—0ase—0, VxeR"\ {0}, (5.60)
and that Lemma 2.6 combined with (5.59) implies that

(Wey ~ lWellLown) = e nA=1p) g sufficiently small £ > 0. (5.61)

We claim that there exist sequences ¢/ — 0 and (b%) such that

— L€ (0,00) as k— o0 (5.62)
LP(R™)

and

k
<Z blw€l> — 00 as k — co. (5.63)
=1

Assuming (5.62) and (5.63) proved for the moment, we complete Step 4 as follows.

We may assume that L = 1. By suitably approximating (with & fixed) every blu/gz ,withl<[<k,
we may find (using (5.62), (5.63) and a straightforward Fatou type argument) functions n’;, with
k=1and 1</ <k, such that

ko
Z"l

=1

kece®m,

k
=1 and <Z17]f> — 00 as k — oo.
LP(R") =1
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This completes Step 4. It thus remains to prove the next step.

Step 5. Proof of (5.62) and of (5.63).
Our construction of b’ and ¢ is based on two observations. Consider a fixed sum

k
=1

we do not make any size assumption on b‘, and we assume the ¢"’s sufficiently small in order to
be in position to apply (5.61).

The first observation is that, when f is as in (5.64) and ¢ is sufficiently small (smallness de-
pending on f), the functions f;(f) and f;(y,) (appearing in the Littlewood-Paley decomposition
(2.7) associated to ¢ as in (2.6)) satisfy either f;(f) =0 or f;(y,) =0, Vj € Z, and thus we have

(f +bye) =(f)+|bl{y,), ¥Ve>O0 sufficiently small ,V b. (5.65)
Let now € >0 and C > 0 be arbitrary, and define b = b(C, €) through the equality
I6yell? pny = C, that s, b(C,e) = CVPe”—1P), (5.66)
The second observation is that, with b given by (5.66), we have

: p — p

This follows from the Brezis-Lieb lemma [5] used in conjunction with the first equality in (5.66)
and with the fact that (by (5.60) and the second equality in (5.66)) we have by, — 0 a.e. as € — 0.

Let (C;) be a sequence of positive numbers to be fixed later. By combining the two above
observations with (5.61) and with the second equality in (5.66), we easily construct by induction
on [ sequences b’ and ¢; such that

k p k
Y by, ~Y Crask— oo (5.68)
=1 LpRn) (=1
and
k LY
<Z blwgl> ~Y €7 ask—oco. (5.69)
=1 =1

We obtain (5.62) and (5.63) if we take e.g. C; =17%, where a is a constant such that 1 <a<p. 0O
We next turn to the non homogeneous counterparts of Theorems 1.3 and 1.4.

5.11 Theorem. Let s >0, 1<p <ooand 1 <q <oo, and let [/ be an integer such that [ > s. Let
F € C®°(R" x[0,00)). Set f(x)=F(x,0), x € R". Then

o0
171G SIFN pgnaount X [ €77 OFC N7 gy de. (5.70)
’ ’ acM; /0

Proof. Let M denote the right-hand side of (5.70). In view of Theorem 1.3, it suffices to establish
the estimate

A7 p gny S M. (5.71)

We start by noting that Hardy’s inequality at 0 (2.2) applied with
al
—F(,¢)

r=gqs, (e) =1
qs, g el

>

LP(R™)
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leads to

!
a—F(-,t)

o) €
/ g—qs—l (/ tl—l
0 0 aé‘l

Using (5.72) and a straightforward mean value argument, we obtain the existence of some ¢ €
(0,1/1) such that

q
dt) de <M. (5.72)

LP(R")

l le l q
IFC, e gy + / t | = F(,t) dt| <M. (5.73)
J; LP(R™) o 9el Lo®n)
We next note the inequality
l
IF@ISIAL,  Fx,001+ Y |F(x, je)l,
j=1
which combined with the proof of (3.8) leads to
! le Py
If@I S ) IF(a, je)l +/ £ —ZF(x,t)‘ dt. (5.74)
j=1 0 o¢
Integrating (5.74), we find that
l le Py
IFlze@n S Y IIF(-,jg)IILp([Rn)+/ t! —F(,t) dt. (5.75)
j=1 0 O¢ LP(R")
We obtain (5.71) by combining (5.73) with (5.75). O

The non homogeneous counterpart of Theorem 1.4 simply asserts that, when s > 0, the exten-
sion U satisfies in addition

IUllr@nx0,00 S I1F 183, -

This is clear, and the proof will be omitted.
6 From weighted spaces to functional calculus

In this section, we recall some standard results related to Besov algebras or to the continuity
properties of superposition operators in Besov spaces, and explain how these results can be ob-
tained as straightforward consequences of Theorems 1.3 and 1.4. Since our main purpose is to
illustrate the effectiveness of Theorems 1.3 and 1.4, we will always assume that g < co. However,
most of the results we prove below still hold for g = co.

We start with some algebra and embedding properties (Propositions 6.1 to 6.3).

Os

6.1 Proposition. Let s>0,1<p<ocoand 1<qg <oo, and let 0 <60 <1. Then B}, ,NL*™ ch/e a0

Proof. Let f € CP(R") and U(x,¢) := f * p(x). Here, p is as in (4.1), and thus (1.6) holds. Then,
clearly,

1
10U C,0)|| ooy S == 1 Iy, Yo e N, (6.1)

~ glal
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so that

”6aU("€)”LP/9([R") = lo*U¢., E)”LP(R") lo*ut., £)||L°°([R”)

. (6.2)
5 (l—ﬂw ”f”Loo(Rn) ||a U(a E)”LP([R”)'
Let [ > s and let a € 4. By (6.2), one has
(e.0] (e.0]
/0 g d=09)-1 ||a“U(-,e>||Z§g(Rn) ||f||Lm(Rn) / 10U )| ey dE- (6.3)
By (6.3), Theorem 1.3 and (1.6), we therefore have
1% SIFIG, IIfII (6.4)
Bgs s Loo(Rn) ’ .
pl0,q/0
and thus
|f|B9S < |f|Bs ”f”L‘X’(IR" (65)
p/0,q/0
On the other hand, we clearly have
”f”Lp/@([Rn) = ”f”LP(IRn) ”f”LOO([Rn) (6.6)
We complete the proof by combining (6.5) and (6.6) with (2.20). O

An easy consequence of Proposition 6.1 is

6.2 Proposition. Let s>0,1<p <ocoand 1<q <oo. Then B;q N L™ is an algebra.

Proof. Let f, g € CP(R"). We will only estimate |f g| B, since the estimate of || f gllz»gn) is trivial
and fg clearly belongs to L°°(R"). By combining (6 4) with Theorem 1.4, f has an extension
U € C*°(R" x [0,00)) such that

/ e7¢0971 12T (., £)|| 79 dg<|f|qs ||f||Lm(Rn), V0 €(0,1), VI>0s, Va € Py,. (6.7)
0

p/H(Rn)

Similarly, g has an extension V satisfying the corresponding analog of (6.7). Let [ > s. In view of
Theorem 1.3, in order to estimate |f g| B, it suffices to control

(e 9]
/ 0 UV, 0|3 oy dEs Yae .
0
In turn, by Leibniz’s rule, it suffices to control

/ g2l=9-1 ”aﬁU(.,s)aYV(-,g)“;(Rn)de, VBe. My, Yy € M, for all 11,15 € [0,1] with I1+12 =1.
0

The cases where I1 =0 or I3 = 0 are clear (by using (6.1) with a = 0), so that we may assume that
0<l1,ly<1. Let 8 €(0,1) be such that I; >68s and Iy > (1 —0)s.!! By (6.7), we have

de
4(11-0s) || A8 <1
/0 ¢ O] ||f||Loo(Rn) (6.8)
and
® L (Uy-(1-0)s) /(1-0) q72
—(1— q q -
/(; g1-0 2 s ||6YV('78)||Lp/(1 9)(Rn) € |g| s ”g”Lgo(eRn) (69)

11Such a 6 exists since I1 +lg =1 > s.
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By combining (6.8), (6.9) and Hélder inequality, we find that

de de
ql-s) || 58 14 ql-s) [[ 50 Y b
/0 19 b, eV (- &) == /0 e1=) |ofuc,e)|” o 197V O ey —
S(/ Ee(ll 0s) aﬁU( 8) B dg) X
0 LPE®™) € (6.10)
§ oogquB(lz_(l_G)S) ||6YV( E)Hq/(l—g) E 1-6
0 ’ Lp/(lfﬂ)(Rn) €
0q q(1-0) | (1- 9)q
SIFG 1P 8l 2 18
We complete the proof of the proposition using (6.10) and Theorem 1.3. O

6.3 Proposition. Let s1,59>0,1<pi,pe<ocoand 1<qgi,q2 <oo. Let 0 <0 <1 and define s, p
and q by

1 6 1-
§=0s1+(1-0)sg, —= —+——,
b

S1 S2 S
Then By, 4, N By, 45 cBj,

Proof. Let f € Bp1 a1 ﬁBlf,z2 g2~ 1t is clear that f € L?. Moreover, let U = p. * f, with p as in (4.1).

Recall that U satisfies

/ eV 199U (-, e )||L,,1(Rn) SIfI1%,  foralll>s; and forall a € &,
0 £

Pl q1

and a similar estimate involving so,p9 and go. Let [ > max(si,s2) and a € .#;. By Hoélder’s in-
equality, we have

* (I-s) || A q de 0(-s1) || A (1-6)(I-s9) || Aa 1-0)q de
o e ||0 U("g)||LP([Rz”)?S o Eq ' ”6 Uu( E)HLPl([Rn)gq 2 ||6 U("E)”LP2(R")?

X

0q9/q1
S(/ glh(l s1) ”6(XU( )”Lpl([Rn) Ci&')
0

(s de (1-6)q/q2
x( / £ | 00U (-, 0)|| 22, ) )
0 €
SIFEE 1AL,
p1q1 pzqz
which entails that
Flgs, SIF%: 1FID 0

Pl q1 P2 q2

We now turn to mapping properties of superposition operators (Proposition 6.4 to Theorem
6.7).

6.4 Proposition. Let 0 <s <1 and let ®:R — R such that ®’ is bounded on R and ®(0) = 0. Then
f— ®of maps Bj, , into B}, ,
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Proof. Let f € B}, . It is plain to see that ®(f) € LP(R"), and we therefore have to estimate
| D) BS - Let U be an extension of f such that

(0]
d
/ £41-9) ||6“U(-,€)||Z,,(Rn) ?E < Iflq;q for all a such that |a| =1.
0 k)

When |a| = 1, the chain rule and the boundedness of @' yield at once

© g(1-s) aa dolU q d8< 00 qg(1-s) aa’U q d8< q
o & ” [Do ](',£)||Lp(|Rn)?N o 3 ” (',E)”Lp([Rn)?lel S’

and Theorem 1.3 provides the conclusion. O
The next result is required in the proof of Corollary 6.6.

6.5 Proposition. Let s > 1. Let ® : R — R have I(s) + 1 bounded derivatives'? and satisfy ®(0) = 0.
Let 0 be a number such that

s
0 inq1 .
<o<minf, -

Then f — ®of maps B}, , mng/a,sq/U into By, ;.

Proof. Let f € B;,q mng Jo.sqlo” As in the proof to the previous proposition, it suffices to estimate

| D) B, Let U be an extension of f such that

(e e]
d
/ 10U, 0|y f SIflg, foralll>s and for all € 2, with |al=1.
0 3

Fix [ :=1(s)+ 1 and consider some a in .#;. By Theorem 1.3, we have to estimate

de

/ £2U-9) ||aa[q>oU](.,g)||gp(Rn)7. (6.11)
0

In turn, the chain rule and the fact that ® is bounded for all j € [0,1] reduce the control of the
quantity in (6.11) to the control of the integrals

(0]
/ gq(l—S)
0

where & € [1,1], Zleli =1 and a; € 4. For all i € [1,k], pick up s; € (0,s] such that s; </; and
Zkzlsi = 5.13 We define 0; € (0,1) by s; = 0;s + (1 —0;)0. Define also p;,q; by

14

q
de
)

k
[To%UC,e)

=1

LP(R™)

1 Hi (1—91')0'
_ —t —

Di p pSs
and

1 6; (1-06))o
— =

qi q qs
We next note that

k o k
Y 6;+=) (1-6;)=1,
i=1 S i=1

12Here, I(s) denotes the integer part of s.
13We note that such s;’s do exist, since by assumption on ¢ we have ok <ol <s.
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and therefore we have

Z—:—and Z—:—

i=1Pi P i=19: 4

Therefore, by Holder’s inequality, we obtain

(o.0]
/ Eq(l—S)
0

7 de de

o k
S [ Ul
£ i=1 ¢

LP(R™) 0

k " de\?9i
SH(/ g9illi=si) |l aaigyy. Oy — . :
i=1

k
[10%UC,e)

1=1

By Theorem 1.4 and Proposition 6.3,

l 12 1 9 12
<If1%, Ifl gi Ifl( i

/ ng ;—s; )”aat
0 E pz a3

which ends the proof. O

0'

An immediate consequence of Proposition 6.5 is
6.6 Corollary. Let s>0,1<p <ooand 1<q <oo. Let ® be as in Proposition 6.5. Then
1. The application f — ®o f maps B}, , N L into itself.

2. Assume in addition that that sp = n. Then f — ®o f maps Bj, , into itself.

Proof. When s < 1, the conclusions are given by Proposition 6.4.

Assume next that s =1 and let / := I(s) + 1. We prove item 2, the proof of item 1 being simpler.

If sp > n, then B, , — L™ [23, Section 2.7.1, Remark 2, pp. 130-131], and since B}, , N L*> —
BZ% /6 for all 6 € (0,1) by Proposition 6.1, the conclusion is given by Proposition 6.5.14

If sp = n, then, by [14, Theorem 1, p. 82] and the fact that Besov spaces are increasing in
g, we have the embedding B}, , BZ% a0 whenever 0 < § < 1. We conclude again by applying

Proposition 6.5.1 O
We end this section by discussing a more difficult result.

6.7 Theorem. Let 0 <s<2,1<p<ocoand 1<gq<oo. Let ®e C? satisfy ®(0) = 0. If f is a non

negative function in B}, , then ®o f belongs to B}, ,

The above result (for a more general ®) was obtained by Bourdaud and Meyer [4, Corollaire, p.
359] using a remarkable inequality due to Maz’ya (and presented in [1, Theorem 3]'6) combined
with a nonlinear interpolation result (due to Peetre [12]). As we will see below, the theory of
weighted Sobolev spaces can serve as a substitute for the interpolation theory.

Proof. By standard arguments, it suffices to estimate [|®o f|| B, when f € C2°(R") is non negative.
The estimate of | ® o f|L»®») being obvious, we proceed to estimating |®o f|gs . For this purpose,
we extend f by setting W(-,¢) := f * ¢, where ¢ € C2°(R") has the following properties:

/ p=1, ¢=0, suppp c(0,1)". (6.12)

1411 order to be in position to apply Proposition 6.5, we have to choose 6 such that 16 < 1.
150nce again, we take 6 such that 16 < 1.
16See also references [11] and [12] in [1].
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In view of Theorem 5.4, we have
(e.0]
/ eI W, N gy dE SIF 1%, . ¥ae N such that |a] = 2. (6.13)
0 DP9

Note that ®o W is an extension of ®o f. By Theorem 1.3, it suffices to establish, for all 1 <
J,k <n, the estimates

92=9)-1152 [P <|f1 14
/0 e |eowice)), . de<iFig, (6.14)
and
e o Wi o i, de S 1715, (6.15)
0 5

Let us first check (6.14). A simple computation yields

/ CI(Z -s)-1 HGZk[CDOW]( 8)
0

< q(2 -s)-1 2
= /0 |omaz,we,e’

LP(R™)

+ / 1@~ @"(W)o; W (-, )0, W(-,6)|| L gny A := A +B.
0
In view of (6.13), it is plain that

A< £92- s)1”62W g” de <|f|%,
AJ/C 2W(,€) Lo SIfI 5

In order to estimate B, we first recall that for a given W € C.(R"), the following estimate holds for
all nonnegative function g € W22(R") [3, p. 438]:

/ 1P ()P |9, g|p</ ‘a ‘ (6.16)

The functions f and ¢ being non negative, we may apply (6.16) to W(-,¢). Using successively
Cauchy-Schwarz, (6.16) and (6.13), we find that

oy |2 DIWC P, d

S [Certeweo| 1 WCo D, de
0 R™)

(2-9)-1 V2
<[ [Teeot | weol), . e

o 1/2
y (/ £12-9)-1 ”6%kW("€)”(II,P(IR€”)d8) 5 |f|q;q .

0

Bs/ £12=71 | @"(W) |0 W )| H
0

Let us now turn to (6.15). Arguing as before,
(o.0) o0
/ 1902 1@ WIC, )| p gy d S / 19O WOZ W (&) 1 an) de
0 0
o0
+ / gq(Z—s)—l ”q)”(W) |68W(’ 8)|2 ”Zp(@n) de:=C+D.
0

The term C is estimated as A above. As far as D is concerned, observe first that, since W(-,¢) =
f * e, we have

0cW () = —f *divy (9x)) = = Y O,[f * (px)el:i= = Y. 8;V;(-,e).

Jj=1 J=1
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We next invoke (6.12) and obtain that

0<p)xj<@lx), VxeR", Vje[l,n]. (6.17)
Next, by (6.17) and the non negativity of f, we have

0<sV;=W. (6.18)
Consider now a function W € C.(R) such that

1®"(#)| <|¥(7)l, V¢, T€R such that 07 <. (6.19)

For such ¥ we have (using (6.18) and (6.19))
D" (W) < ¥ (V))l, je[1,n].

By combining (6.16) and (6.18) with Theorem 5.4, we obtain the estimate

(0.0)
< g(2-5)-1 (. v o2’
DN;/O € ‘“\I](‘/J( ’8))||6JVJ( ’8)| LI(R™)
) (6.20)
S Z/ 1270,V anyde SIf 1, -
j 0 p,q
6.8 Remark. As observed in [4], it is possible to weaken the assumption ® € C2 to
® e C4R) and |V (1) <tV for t>0, j=0,1,2; (6.21)

see also [14, Section 5.4.2, Proposition, p. 361]. The main reason is that (6.16) still holds when the
condition W € C, is weakened to

¥ e C(R) and |¥(2)] < ¢ for t > 0. (6.22)

Our proof extends to ®@’s satisfying (6.21). Indeed, the last assumption in (6.12) implies that
(6.18) can be strengthened to

CW<=V;<W for some C > 0. (6.23)
Therefore, the first line in estimate (6.20) holds with
¥(¢) =max{|®"(1);Ct<t<¢}, Vt=0.

Clearly, if ® satisfies (6.21), then V¥ satisfies (6.22), and thus estimate (6.20) holds. This justifies
our remark.
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