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Abstract

The recent release of the Bovine HapMap dataset represents the most detailed survey of bovine genetic diversity to date,
providing an important resource for the design and development of livestock production. We studied this dataset,
comprising more than 30,000 Single Nucleotide Polymorphisms (SNPs) for 19 breeds (13 taurine, three zebu, and three
hybrid breeds), seeking to identify small panels of genetic markers that can be used to trace the breed of unknown cattle
samples. Taking advantage of the power of Principal Components Analysis and algorithms that we have recently described
for the selection of Ancestry Informative Markers from genomewide datasets, we present a decision-tree which can be used
to accurately infer the origin of individual cattle. In doing so, we present a thorough examination of population genetic
structure in modern bovine breeds. Performing extensive cross-validation experiments, we demonstrate that 250-500
carefully selected SNPs suffice in order to achieve close to 100% prediction accuracy of individual ancestry, when this
particular set of 19 breeds is considered. Our methods, coupled with the dense genotypic data that is becoming
increasingly available, have the potential to become a valuable tool and have considerable impact in worldwide livestock
production. They can be used to inform the design of studies of the genetic basis of economically important traits in cattle,
as well as breeding programs and efforts to conserve biodiversity. Furthermore, the SNPs that we have identified can
provide a reliable solution for the traceability of breed-specific branded products.
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Introduction

The domestic cow (Bos taurus) represents one of the most

economically and culturally important species of the planet,

providing a significant source of nutrition for the entire human

population. More than 800 cattle breeds have been selected by

humans for different traits, such as milk yield, meat quality, draft

ability, and tolerance or resistance to disease and pests, as well as

for social and religious reasons. Modern cattle are thought to

have originated from two domestication events of aurochs (B.

primigenius) in southwest Asia and south Asia resulting to the

humpless taurine (B. taurus) and the humped zebu (B. indicus)

groups respectively [1,2,3]. Initial domestication is thought to

have occurred sometime in the Neolithic (8,000-10,000 years ago)

and the subsequent spread of cattle throughout the world is

intertwined with human migrations and trade [4]. Today, more

than 1.5 billion cattle exist, a number which is expected to grow

to 2.6 billion by 2050, according to the Food and Agriculture

Organization (F.A.O.) [5].

The study of the bovine genome and the genetic diversity found

within and across cattle breeds can provide important insights into

mammalian biology and evolution, as well as on the impact of

domestication on the species. Population genetic studies of cattle

can also have significant economic impact, opening novel

opportunities for cattle breeding through genomic selection.

Furthermore, they can provide important resources for the

conservation of valuable intra-species genetic diversity, which is

currently threatened by breed substitution, indiscriminate cross-

breeding, and even the absence of breeding programs. Early

studies of cattle genomic diversity mainly focused on the analysis of

sparse data from microsatellite markers [6,7,8,2,9,10,11]. More

recently, studies that evaluated bovine population structure have

used Single Nucleotide Polymorphisms (SNPs) [12,13,14,15];

however they focused on a small number of markers. The advent

of modern high-throughput technologies is starting to produce

genomewide data for thousands of markers across the bovine

genome [16,17,18,19,20]. Undoubtedly, as was the case for studies

of human population genomic variation, studies of cattle

population genetic structure and variation will be catalyzed by

the recent publication of two draft assemblies of the bovine

genome [21,22].

The recent release of data by the Bovine HapMap Consortium

[19] represents the most detailed survey of bovine genetic diversity

to date. The group reported analyses from the study of 501

animals from 19 worldwide taurine (B. taurus), zebu (B. indicus), and

hybrid breeds (taurine-zebu hybrids), as well as two outgroup

species (Anoa and Water Buffalo). This sample was assayed for

more than 30,000 SNPs covering the entire bovine genome. The
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study supported the fact that cattle have undergone a rapid

decrease in effective population size from a very large ancestral

population, possibly due to domestication and artificial selection

[19]. Based on this data, an analysis of the haplotype block

structure of the bovine genome revealed two major bottlenecks in

bovine history [23]. The first bottleneck is associated with the

initiation of cattle domestication. The second bottleneck is much

more recent and much more severe and is associated with the

intensification of population isolation over the last 700 years. The

data also revealed the fact that genomewide data can be used to

broadly cluster cattle breeds into groups (zebu, taurine, or hybrid

breeds). Thus far, no study has attempted the selection of a small

set of markers that can effectively be used for inference of

population structure and ancestry (Ancestry Informative Markers

– AIMs) from this dataset. Such sets of AIMs could be used to

correctly and cost-effectively assign unknown individuals to

specific breeds.

The Bovine HapMap dataset [19] provides a unique

opportunity to study the genetic structure of diverse cattle

populations, using information from the entire bovine genome.

As the volume of genotypic data for population genetic studies

rapidly increases, a linear dimensionality reduction technique

(Principal Components Analysis – PCA) has emerged as a

powerful tool for extracting the structure in genomewide

datasets [24,25,26,27,28] offering advantages over the use of

computationally intensive model-based algorithms such as

those implemented in STRUCTURE [24]. At the same time,

the identification of AIMs from genomewide datasets is a topic

that has attracted considerable attention due to the value of

such markers in diverse areas, ranging from forensics and to

population genetics to conservation genetics. Different metrics

have been proposed in order to select such markers. Most of

them, such as d (the absolute difference in allele frequency

between two ancestral populations) or Wright’s FST rely on the

maximization of allele frequency differences between pre-

defined populations [29,30,31,32,33,34,35]. A closely corre-

lated measure, Informativeness for assignment (In) as defined

by Rosenberg et al. [36] computes a mutual information based

metric on allele frequencies, again demanding the analysis of

pre-defined populations. Based on PCA, we have previously

described an unsupervised algorithm that can be used to select

small subsets of genetic markers (SNPs) that correlate well with

population structure, as captured by PCA (PCA Informative

Markers – PCAIMs) [26,37]. Our method can be used to

detect SNPs that differentiate individuals from different

populations, without any prior knowledge or hypotheses about

the data, and without the need to artificially assign individuals

to clusters. The efficiency of these PCA-based algorithms has

been demonstrated in genomewide studies of human popula-

tion genetic structure [26,37].

Leveraging the power of PCA, we set out to investigate whether

individual cattle samples can be assigned to specific breeds using

only genotype data. Our first goal was the accurate classification of

individual cattle from the Bovine HapMap dataset [19] to their

ancestral populations using all available genotype data (30,000

SNPs). Our second goal was to further explore the accuracy of

such classification tasks while using only small panels of AIMs.

Towards that end, we chose to split the main task of classifying

samples to breeds into hierarchical levels, splitting the entire cattle

population into nested groups which are organized as a decision

tree. Applying our SNP selection algorithms [26,37], we chose

small subsets of SNPs that almost perfectly reproduce population

structure as identified by PCA and can be used to accurately assign

individuals to one of 19 breeds.

Results

Breaking down the structure of bovine populations
We divided the main task of classifying individuals by breed into

a sequence of hierarchical levels organized into a decision tree (see

Figure 1). The nested groups were chosen by determining clusters

of breeds which can be easily differentiated along the significant

principal components using all available SNPs (and a standard k-

means clustering approach) and then recursively looking at the

principal components of each subgroup in the same manner (see

Figure 2).

Of the 501 individual cattle and 34,884 genotyped SNPs in the

Bovine HapMap dataset [19], 497 cattle and 30,501 SNPs were

used in our analysis. We did not analyze the Anoa and Water

Buffalo populations, comprising four animals in total, which were

used as outgroups in the original study and had more than 50%

missing entries in their genotypes. We also removed from

consideration approximately 4,000 SNPs due to a high percentage

of missing entries (over 10%). A total of 19 worldwide breeds were

included in our study, comprising of three zebu breeds, 13 taurine

breeds, and three hybrid breeds. At the highest level in the

decision tree, individual cattle are broadly classified into one of

three groups: B. taurus, B. indicus, or hybrid breeds. Moving down

the decision tree, individuals are more specifically classified into

sub-groups until they are finally assigned to an individual breed.

The number of nodes in the decision tree depends on the

complexity of the initial group and the successive subgroups. Thus,

at the B. indicus node (see Figure 1), we are differentiating between

three cattle populations, namely the Brahman, Gir, and Nelore

populations. On the other hand, the B. taurus group includes 13

breeds, and as many as four additional levels are needed in order

to fully classify an individual into a specific breed.

For instance, in order to classify an ‘‘unknown’’ Red Angus

individual using the decision tree of Figure 1 (see also Tables 1 and

2), we first determine whether the individual is part of the B. taurus

group. We then decide whether the individual belongs to the

African N’Dama population or to the European taurine breeds.

We then proceed to differentiate between the Holstein, Hereford,

Jersey, Brown Swiss, and Romagnola populations and a group that

we designate as ‘‘seven-taurine-breeds.’’ The seven-taurine-breeds

level of the hierarchy allows us to differentiate further between the

Guernsey, Limousine, Charolais, Norwegian Red, and Piedmon-

tese populations, and the Angus-Red Angus group. Finally, we

distinguish between the Angus and Red Angus breeds.

Breed inference using the full dataset, five-nearest-
neighbors classification, and our decision tree

Our primary goal is the identification of small panels of AIMs

that achieve accurate assignment of individuals to breeds, using

the reported ancestral breeds in the Bovine HapMap dataset [19]

as reference. However, as a first step, we ran a complete leave-one-

out crossvalidation experiment using all approx. 30,000 available

SNPs in order to assess ancestry inference using the full dataset.

Classification was performed by looking at the nearest neighbors of

an individual in the space spanned by the significant principal

components of the genotype data (see Methods for details). We

chose to look at the five nearest neighbors (5-NN classification

algorithm) and we assigned an individual to a particular breed if at

least three of its five nearest neighbors were from that breed. We

defined the classification accuracy to be the percentage of

individuals whose predicted breed of ancestry matched the

reported reference breed. We also defined a metric focusing on

the average number of ‘‘correctly predicted’’ nearest neighbors,

Tracing Cattle Breeds with AIMs
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i.e., the average number of nearest neighbors that coincide with

the reference breed of each individual.

Figure 3 summarizes the results of the complete leave-one-out

cross-validation experiment for each level of the decision tree in

Figure 1. For most nodes in the decision tree the classification

accuracy exceeded 98% using the full 30K SNPs dataset (see the

dark blue bars in Figure 3A). An exception occurs at the node

differentiating between Angus and Red Angus breeds, where the

accuracy dropped at 95%. Figure 3B (dark blue bars) illustrates the

average number of nearest neighbors (out of a maximum five) that

each individual had in the reference breed of origin at each node.

This latter plot underlines the power of the proposed method: not

only the majority (at least three out of five) of the nearest neighbors

of an individual are in the ‘‘correct’’ breed, but in the vast majority

of cases (almost) all five neighbors are found in the ‘‘correct’’

breed. The lowest number (4.69 out of five) is again observed in

the case of Angus and Red Angus populations. Obviously, even

this low number is actually quite close to optimal.

It should be noted that this experiment was also used to

determine the number of significant principal components at each

node of the decision tree. These numbers were subsequently used

for the selection of PCAIMs. See Methods for more details as well

as Table 1 (second column).

Inferring bovine breeds using small panels of AIMs,
five-nearest-neighbors classification, and our decision
tree

We next focused on selecting small panels of AIMs in order to

accurately reproduce the excellent results of breed inference using

Figure 1. Decision tree for bovine classification. The decision tree for individual assignment to a particular breed (or group of breeds). For each
diamond-shaped node we propose (small) panels of AIMs that may be used to assign an individual to one of its children nodes. The rows of square-
shaped nodes indicate breed (or groups of breeds) of origin that we can separate. For example, using the panel that we proposed at the World node,
we can assign a sample to either B. indicus, or B. taurus, or hybrid breeds.
doi:10.1371/journal.pone.0018007.g001

Tracing Cattle Breeds with AIMs
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Figure 2. PCA plots. PCA plots at various levels of the decision tree of Figure 1. (A) Top left: PCA plot at the World node. Top right: PCA plot at the
B. indicus node. Bottom left: PCA plot at the B. taurus node. Bottom right: PCA plot at the Hybrids node. (B) Top left: PCA plot at the European Taurine
node. Top right: PCA plot at the seven-taurine node. Bottom left: PCA plot at the Angus-Red Angus node.
doi:10.1371/journal.pone.0018007.g002
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all 30,000 available SNPs. Towards that end, we evaluated the

performance of the AIM selection methods that we previously

proposed in [26,37]. Once more, we ran a full leave-one-out

crossvalidation experiment, where we successively treated each of

the 497 cattle as a test individual and used the remaining 496

cattle as the training set. AIM panels were selected using only the

individuals in the training set. Then the test set subject was

classified using our 5-NN algorithm and the decision tree of

Figure 1. In that manner, we ensured that the test individual’s own

data do not impact the selection of AIM panels and thus do not

bias the selection of SNPs toward those ideally suited for

differentiating and classifying the test individual. This cross-

validation experiment simulates how our algorithm would be

applied in practice in order to infer the breed of an unknown

individual. As a first step, we selected at each level the top 2,000

PCAIMs, using the number of significant principal components of

Table 1. The light blue bars in Figure 3A indicate the performance

of these 2,000 SNP panels: they are all roughly as accurate as the

full dataset (30K SNPs). Looking at the average number of

correctly predicted nearest neighbors (light blue bars in Figure 3B),

we observe that even the smallest value exceeds 4.5 out of five,

which is a strong indication that our 5-NN approach works well

with the selected PCAIM panels. Again, the lowest average

number of correctly predicted nearest neighbors is observed at the

Angus-Red Angus node (4.56 out of 5).

We have observed in prior work [37] that panels of AIMs

selected using PCA scores in genomewide datasets tend to contain

large amounts of redundant markers, mainly due to linkage

disequilibrium (LD) between densely typed markers. Thus, our

next step was the removal of redundant markers via a method that

we proposed in [37]; see Methods. We experimented with

numerous panel sizes and we chose to report results on three

different panels (P1, P2, and P3) for each node in our decision tree.

The panel sizes were chosen to maximize classification accuracy

with an approximately minimal number of markers and are

connected: the number of markers in P2 is equal to twice the

number of markers in P1, and the number of markers in P3 is

equal to three times the number of markers in P1. The number of

markers at each node for each panel is shown in Table 1. Not

surprisingly, the number of markers necessary for breed inference

is different at the various nodes of the decision tree, reflecting the

fact that certain (groups of) breeds are more or less genetically

homogeneous. By inspecting Figure 3A and Table 1, we

immediately conclude that, within the setting of this experiment,

200 SNPs suffice to classify an individual to one of the three broad

species groups (taurine, zebu and hybrid breeds) at the topmost

node of our decision tree with an accuracy of 98.6%.

A few interesting observations arise from Figure 3. First, even

our smallest panels of AIMs (P1) achieve very high accuracy at

most nodes of our decision tree. Not surprisingly, the worst

performance happens at the Angus-Red Angus node. In this case,

using 25 markers we can achieve 79.4% classification accuracy,

which improves to 97.4% using 50 markers. No other panel is

associated with a classification accuracy of under 90%. We also

observe that, in general, our largest panels (panel P3) perform as

well as the top 2,000 PCAIMs before the redundancy removal

step. This seems to reinforce the the conjecture that redundancy

removal from the top PCAIMs does not significantly affect

classification performance, while considerably reducing the

number of markers. Finally, we should note that the behavior of

our second statistic (average number of correct nearest neighbors)

follows a similar pattern with classification accuracy.

We conducted the same experiment using even smaller panel

sizes P1 = 10, P2 = 25, and P3 = 50 for all nodes in the hierarchy

(Figure S1). The results are, naturally, less accurate at those nodes

for which we had previously used more SNPs. However, it is worth

noting that, at every node, we were able to successfully assign at

least 92% of the studied cattle to the correct breed of origin using

panels of 50 PCAIMs (or even fewer in some cases) with on

Table 2. Classifying Angus samples.

Angus Panel 1 Panel 2 Panel 3

Decision Tree Nodes CACC NNAVG CACC NNAVG CACC NNAVG

World ? Bos taurus 27/27 5.00 27/27 5.00 27/27 5.00

Bos taurus ? European taurine breeds 27/27 5.00 27/27 5.00 27/27 5.00

European taurine breeds ? 7 taurine breeds 27/27 5.00 27/27 5.00 27/27 5.00

7 taurine breeds ? Angus-Red Angus 24/27 4.44 27/27 4.78 26/27 4.85

Angus-Red Angus ? Angus 21/27 3.89 26/27 4.67 25/27 4.3

Predicting the breed of individuals in the Angus (ANG) bovine population using our PCAIM SNP panels P1, P2, and P3. A total of 27 ANG individuals were available in the
Bovine HapMap dataset. The CACC columns correspond to classification accuracy, expressed as the fraction of individuals that were assigned to the correct breed at the
respective node of the decision tree, and NNAVG indicates the average number of correct neighbors at the same node of the decision tree. For example, at the seven-
taurine-breeds node of the decision tree, 24 out of the 27 Angus samples were (correctly) predicted to be of Angus-Red Angus origin using Panel 1; at the same node,
the ANG individuals had – on average – 4.44 neighbors from within the Angus breed.
doi:10.1371/journal.pone.0018007.t002

Table 1. Significant PCs and panel sizes.

Decision Tree node sign. PCs Panel P1 Panel P2 Panel P3

# of SNPs # of SNPs # of SNPs

World 2 100 200 300

Bos taurus 1 10 20 30

Bos indicus 3 50 100 150

Hybrid breeds 3 25 50 75

European taurine breeds 4 100 200 300

7 taurine breeds 4 150 300 450

ANG-RGU 3 25 50 75

Number of significant principal components and AIM panel sizes at each node
of the decision tree depicted in Figure 1. Notice that panel P2 contains twice
the number of AIMs in panel P1 and panel P3 contains three times the number
of SNPs in panel P1.
doi:10.1371/journal.pone.0018007.t001
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average of 4.5 (out of five) nearest neighbors in the correct

population.

In an effort to provide the most comprehensive list of AIMs given

the HapMap Bovine reference dataset, we repeated the PCAIMs

selection procedure using all available individuals (497 cattle from

19 breeds, see Figures S2 and S3). The list of SNPs needed at each

node of our decision tree for accurate (more than 95% classification

accuracy at all nodes for our largest panels P3) assignment of

individual cattle to one of 19 breeds is presented in the detailed

online material that accompanies this paper and is available at

http://www.cs.rpi.edu/,drinep/BOVINEPCAIMS/.

Discussion

The recent release of the Bovine HapMap dataset [19] provides

an unprecedented opportunity to study in detail the genomic

variation and genetic structure of worldwide cattle breeds,

providing an important resource for the design and development

of livestock production and filling a void in the study of

mammalian evolution [38]. Using this dataset as reference, we

have identified small panels of SNPs that can be used to

successfully assign unknown cattle samples to one of 19 worldwide

breeds. In doing so, we present a thorough examination of

population genetic structure in modern bovine breeds. Genotypes

from more than 30,000 SNPs were analyzed for 497 individuals

[19]. A hierarchical decomposition of the worldwide bovine

population was formed, thus enabling the step-wise assignment of

individuals to their population group and, ultimately, breed of

origin, as well as the sequential selection of subsets of genetic

markers that can be used for ancestry and breed inference [26].

Moving through the proposed decision tree investigators have the

opportunity to tailor their needs for marker selection according to

the desired level of resolution and/or prior information on the

origin of the samples under study. The reduction in the number of

markers needed is achieved using a redundancy removal algorithm

which we have also introduced in prior work [37].

Through this scheme we achieve close to 100% prediction

accuracy of individual ancestry when this particular set of 19

breeds is considered, with 250–500 SNPs. To select bovine AIMs

we used a PCA-based method that we have previously described

[26,37] (see Methods), which leverages the power of PCA to

extract the fundamental axes of variation from a genotypic dataset.

Performing a full leave-one-out cross-validation experiment, we

showed that in most cases the number of genetic markers needed

for ancestry inference can be successfully reduced to less than

1.5% of the original 30,000 SNPs while achieving over 92%

accuracy in ancestry prediction. This holds even when closely

related breeds are considered. For example, the Angus and Red

Angus breeds were largely undistinguished from one another for

much of their history, with red animals breeding true amongst the

predominantly black Angus cattle populations in coastal England

and Scotland. It was only 60 years ago that herds of exclusively red

colored Angus cattle were bred separately. Our results confirm the

close genetic relatedness between the recently diverged popula-

tions of Angus cattle, placing them at the very bottom of our

decision tree. However, even for these closely related breeds, a

carefully selected panel of approximately 50 SNPs achieves more

than 92% differentiation accuracy.

The bovine genome has been shaped by the processes of

domestication and artificial selection resulting in dramatic losses of

genetic diversity in modern cattle. Studying the Bovine HapMap

dataset, Villa-Angulo et al. [23] have shown a persistent decline in

effective population size, suggesting two distinctive time points: the

time of initial domestication and a time at 100 generations ago,

which is associated with intensification of population isolation. The

zebu breeds have been shown to be more diverse than the taurine

breeds. In agreement with this finding, only two steps are needed

in our decision tree in order to classify individuals to one of the

three zebu breeds studied, while three to five steps are needed to

discern the European taurine breeds. It is also interesting to note

that, while continental ancestry is easy to differentiate (i.e., it is

easy to differentiate among European, Asian and African breeds),

within Europe, taurine breeds do not seem to cluster according to

geography. Furthermore, in concordance with previous findings

[19,23], they do not cluster based on their use for dairy of beef

products.

The panels that we propose can become important tools in a

variety of different settings ranging from comparative genomics to

the traceability of bovine products. They might be useful towards

studying the evolutionary history, the process of domestication,

and the genetic relatedness among modern cattle breeds. They can

also be used in the search for phenotype to genotype correlations,

Figure 3. Classification accuracy. Classification accuracy of our complete leave-one-out cross-validation experiment at all nodes of our decision
tree. Five different panel sizes are evaluated, with 30K corresponding to all available markers, 2K corresponding to the top 2,000 PCAIMs, and P1, P2,
and P3 corresponding to the panel sizes depicted in Table 1. These smaller panels emerged by removing redundant markers from the top 2,000 AIMs.
Notice that the top 2,000 markers were selected using only the individuals in the training set of the crossvalidation experiment. (A) Classification
accuracy results (out of 100%). (B) Average number of correctly predicted nearest neighbors (out of five).
doi:10.1371/journal.pone.0018007.g003
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especially regarding complex traits, where unidentified population

genetic structure can lead to spurious correlations or mask true

associations. The sets of markers that we have identified also

represent an important resource for the conservation of cattle

genetic variation and the design of breeding programs. With

genetic diversity in cattle rapidly declining in recent years, genetic

tools will undoubtedly prove essential in order to preserve the

ability of cattle to respond to changes in the environment, disease

challenges, or demand patterns. As extinction of indigenous breeds

is accelerated, it will become extremely important to enrich the

Bovine HapMap database with information on genetic variation

from indigenous animals that have not yet been studied. Given

such reference datasets, our approach could be expanded to

include additional breeds from around the world, aiding the design

of programs to conserve the biodiversity of indigenous breeds.

Importantly, our SNP panels can become a valuable resource

for the traceability of bovine products which involves tracking (the

ability to follow a product through the supply chain from the farm

to the consumer) and tracing (the ability to identify the origins of

an item upstream in the supply chain) [15]. Europe has recently

seen a trend to promote local and regional food products, leading

to the PGI (Protected Geographic Indication) and PDO (Protected

Designation of Origin) labels (European Union Regulation (EEU)

2081/92). These labels are meant to support diversity in

agricultural production, protect consumers, and protect product

names against fraud and imitation [39,40,41,42]. In general,

traceability is essential in food safety control, since it facilitates

disease control procedures and contributes to consumer confi-

dence in product safety. In many countries, existing tracking

systems simply rely on the use of animal tags, tattoos, and

computerized barcoded labels. However, over the past ten years,

DNA-based systems for traceability of bovine meat and other

products have become available and applied commercially (see, for

example, http://www.identigen.com/; http://www.pfizeranimal

genetics.com/; http://www.geneseek.com/). The panels of genetic

markers that we present, combined with the proposed algorithms,

can augment and enhance existing methods, providing accurate

and reliable solutions and helping to protect rural communities

and regional development.

In conclusion, we have presented a thorough investigation of the

genetic structure of 19 worldwide cattle breeds, analyzing the most

complete catalogue of bovine genetic diversity to date, the Bovine

HapMap dataset [19]. Using methodologies that enable the

efficient study of genomewide datasets [26,37], we have presented

a thorough investigation of the genetic structure of 19 worldwide

cattle breeds. Our results clearly demonstrate that it is indeed

feasible to accurately assign individual cattle to a breed of origin,

using in most cases less than a few hundred carefully selected

SNPs. Lists of the selected SNPs are available at http://www.cs.

rpi.edu/,drinep/BOVINEPCAIMS/. The method that we have

used requires no modeling or prior assumptions about the data

[26,37] and has the potential to become an important tool for the

study of cattle evolutionary history, as well as studies aiming to

uncover the genetic basis of complex and economically important

traits in cattle, and conserve biodiversity by informing the design

of breeding programs. The sets of SNPs that we propose can also

be used to obtain optimum performance based on known

characteristics of specific breeds and identify animals for breeding

in selection programs. Furthermore, these SNPs can be used to

ensure traceability and allow labeling of breed specific branded

products. As technologic progress enables the rapid increase of

available genotypic data and more breeds encompassing addition-

al aspects of bovine genetic variation are studied in detail, methods

like the ones we are proposing here will undoubtedly play a pivotal

role in the future of livestock production.

Methods

Dataset
We analyzed the Bovine HapMap dataset [19]. Of the 501

individual cattle and 34,884 genotyped SNPs, 497 cattle and

30,501 SNPs were used in our analysis (13 taurine, three zebu, and

three hybrid breeds). We removed from our analysis the cattle

populations Anoa and Water Buffalo (comprising four cattle in

total), as well as all SNPs with more than 10% missing entries

(approximately 4,000 SNPs).

Selecting PCA-Informative Markers (PCAIMs) and
removing redundant markers

In order to select AIMs, we leveraged the methods developed in

[26,37]. The method of [26] returns the so-called PCA-score for

each SNP, which essentially measures the degree of correlation

between a SNP and the significant principal components. The top

2,000 SNPs (those with the highest PCA scores) were subsequently

retained. Since the computation of the above scores does not take

into account the (potentially high) LD between SNPs, it does result

in the selection of many redundant SNPs. In order to remove

redundant SNPs, we employ a simple algorithm (presented in [37])

for the Column Subset Selection Problem, which corresponds to

the theoretical formulation of the redundancy removal problem.

See Methods S1 for additional details on encoding the data and

determining the number of significant principal components.

Five Nearest Neighbors (5-NN) classification algorithm
In order to assign a sample to a population, we used a 5-NN

algorithm. Given a target sample, we identify its five nearest

neighbors using the standard Euclidean distance in the subspace

spanned by the principal components that were deemed significant

at the respective node of the decision tree. If at least three of the

five nearest neighbors (a majority) belong to the same population,

we assign the target sample to that population. We should note

that we experimented with different values for the number of

nearest neighbors, ranging from three to eleven in increments of

two without observing consistent losses or gains in accuracy (data

not shown).

Supporting Information

Methods S1 Supplementary methods, including details
on encoding the data and handling missing entries,
determining the number of significant principal com-
ponents, etc.
(PDF)

Figure S1 Classification accuracy with panels of sizes
10, 25, and 50 SNPs. Classification accuracy of our complete

leave-one-out cross-validation experiment at all nodes of our

decision tree. Five different panel sizes are evaluated, with 30K

corresponding to all available markers, 2K corresponding to the top

2,000 PCAIMs, and P1, P2, and P3 corresponding to panels sizes of

10, 25, and 50 SNPs respectively at all nodes of the decision tree of

Figure 1 in the main text. These smaller panels emerged by

removing redundant markers from the top 2,000 AIMs. Notice that

the top 2,000 markers were selected using only the individuals in the

training set of the crossvalidation experiment. (A) Classification

accuracy results (out of 100%). (B) Average number of correctly

predicted nearest neighbors (out of five).

(PDF)
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Figure S2 Classification accuracy of proposed panels.

Classification accuracy of our proposed panels at all nodes of our

decision tree. Five different panel sizes are evaluated, with 30K

corresponding to all available markers, 2K corresponding to the

top 2,000 PCAIMs, and P1, P2, and P3 corresponding to the

panel sizes depicted in Table 1 of the main text. These smaller

panels emerged by removing redundant markers from the top

2,000 AIMs. Notice that the top 2,000 markers were
selected using all 497 samples, without splitting them in
training and test sets, unlike the crossvalidation experiments of

Figure 3 (main text). (A) Classification accuracy results (out of

100%). (B) Average number of correctly predicted nearest

neighbors (out of five).

(PDF)

Figure S3 Classification accuracy of 10, 25, and 50 SNP
panels. Classification accuracy of our ‘‘small’’ panels. Five

different panel sizes are evaluated, with 30K corresponding to

all available markers, 2K corresponding to the top 2,000 PCAIMs,

and P1, P2, and P3 corresponding to panel sizes of 10, 25, and 50

SNPs respectively at all nodes of the decision tree of Figure 1 in the

main text. These smaller panels emerged by removing redundant

markers from the top 2,000 AIMs. Notice that the top 2,000
markers were selected using all 497 samples, without
splitting them in training and test sets, unlike the

crossvalidation experiment of Figure S1. (A) Classification

accuracy results (out of 100%). (B) Average number of correctly

predicted nearest neighbors (out of five).

(PDF)
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