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Tracing Evolutionary Links between Species

Mike Steel

Abstract. The idea that all life on earth traces back to a common beginning dates back at

least to Charles Darwin’s Origin of Species. Ever since, biologists have tried to piece together

parts of this ‘tree of life’ based on what we can observe today: fossils and the evolutionary

signal that is present in the genomes and phenotypes of different organisms. Mathematics has

played a key role in helping transform genetic data into phylogenetic (evolutionary) trees and

networks. Here, I will explain some of the central concepts and basic results in phylogenetics,

which benefit from several branches of mathematics, including combinatorics, probability, and

algebra.

1. WHAT IS PHYLOGENETICS? All living organisms on earth harbor within

their DNA a signature of their evolutionary heritage. By studying patterns and differ-

ences between the genetic makeup of different species, molecular biologists are able

to piece together parts of the story of how life today traces back to a common origin. In

this way, many basic questions can be answered. When did animals and plants diverge?

Are fungi more closely related to plants or animals? How and when did photosynthesis

arise? What is the closest living animal to the whales? Does speciation occur in bursts

or at a steady rate? Other topics are proving more difficult to resolve — for example,

deciphering the earliest history of life on earth.

Similar questions arise for evolutionary processes in other fields such as epidemiol-

ogy (e.g., the relationship between different strains of influenza or human immunode-

ficiency virus—HIV) and linguistics (e.g., how languages diverged from one another

over time). In all these fields, the analysis relies on an underlying mathematical theory,

grounded in combinatorics, algebra, and stochastic processes, with the concept of an

evolutionary tree as a unifying object.

In this article, I describe a cross section of some of the key concepts in phyloge-

netics, which is the theory of reconstructing and analyzing trees, or more complex

networks, from data observed at the present. I describe some combinatorial features

of phylogenetic trees, namely their encoding by set systems, their enumeration, their

generation under random models of evolution, and the way in which they can perfectly

display discrete data. I then focus on tree reconstruction from data (discrete or distance

based), which may not perfectly fit a tree. Such imperfect data can occur when data

evolve along the branches of the tree under a random Markov model. I end by outlining

how tree reconstruction is possible from this evolved data, but the choice of method

requires care to avoid falling into a ‘zone’ of statistical inconsistency.

2. HIERARCHIES AND PHYLOGENETIC TREES. The 18th century Swedish

taxonomist Carl Linneaus noticed that much of the living world can be nicely orga-

nized into a hierarchy in which groups of living organisms are either disjoint or nested

[30]. For example, cats and dogs comprise disjoint classes of organisms, but both are

subsets of the class of mammals. Formally, a hierarchy H on a finite set X is a collec-

tion of nonempty subsets of X with the property that any two elements of H are either

nested (one is contained in the other) or disjoint. It will also be convenient here to
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require that any hierarchy on X contains the set X and all its singleton subsets. Thus,

H forms a hierarchy if it satisfies the two properties:

H1: for any two sets A, B ∈ H we have A ∩ B ∈ {A, B, ∅}; and

H2: H contains the entire set X and each singleton set {x} for all x ∈ X .

The second condition is harmless: If H is any collection of sets that satisfies H1, we

can always add the extra elements mentioned by H2 without violating H1.

To connect hierarchies with trees, recall first that a tree T is a connected graph

(V, E) with no cycles. Often we will deal with rooted trees for which the edges are

all directed away from some root vertex, and so each vertex has an in-degree and out-

degree. We first define a rooted phylogenetic X-tree to be a tree T in which:

• X is the set of leaves (vertices of out-degree 0);
• all the arcs (directed edges) are directed away from some root vertex ρ;
• every nonleaf vertex has out-degree at least 2.

Figure 1(a) shows a simple biological example of a phylogenetic X -tree for a set

X of five species; it reveals one relationship that is perhaps surprising to most non-

biologists: Genetic data indicate that fungi are more closely related genealogically to

animals than to plants. The interior vertices of a phylogenetic tree represent hypothet-

ical ancestral species, with the root ρ being the “most recent common ancestor” of the

species at the leaves.

Figure 1. (a) A rooted phylogenetic X -tree, with root ρ. (b) The associated unrooted tree obtained by sup-

pressing the root vertex.

We will think of two rooted X -trees as equivalent if they are isomorphic as rooted

trees by an isomorphism that is the identity on X (i.e., trees are equivalent up to rela-

beling of the nonleaf vertices). Given a vertex v of T , the cluster associated with v is

the subset of X that becomes separated from the root upon deletion of v. For the tree

in Figure 1(a), the sets {cat, mushroom}, {daisy, rice} and {cat, mushroom, daisy, rice}

are clusters.

Any collection C of subsets of X forms a directed graph, sometimes called the cover

digraph of C. The vertices of this graph are the elements of C, and we place an arc from

B ∈ C to A ∈ C precisely if B covers A (i.e., A ⊂ B and there is no set C ∈ C with

A ⊂ C ⊂ B). Now, the clusters of any phylogenetic X -tree T form a hierarchy on X ,

and the cover digraph of this hierarchy is isomorphic to T under the map that sends

each vertex of T to the cluster associated with that vertex. Moreover, every hierarchy

can be realized in this way, and nonequivalent phylogenetic trees give rise to different

hiearchies. In other words, we have the following fundamental bijective correspon-

dence between hierarchies and rooted phylogenetic X -trees (up to equivalence) [16].
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Lemma 1. A collection C of nonempty subsets of X is a hierarchy if and only if C is

the set of clusters of some rooted phylogenetic X-tree T . Moreover, T is unique up to

equivalence.

The maximal hierarchies correspond to rooted phylogenetic X -trees in which ev-

ery nonleaf vertex of T has out-degree 2, which are called binary trees (the tree in

Figure 1(a) is an example). We will see shortly that such trees have exactly 2n − 1

vertices where n = |X |, and so (by Lemma 1) this is the size of the largest hierarchy

on a set of size n. Biologists often prefer trees to be binary since they show just one

new lineage splitting off at a time; by contrast, a vertex of out-degree three or more

represents what biologists call a polytomy (usually interpreted as uncertainty about the

order of speciation events, rather than certainty about a sudden speciation event into

multiple lineages).

The utility of viewing a rooted phylogenetic tree as a set system (a hierarchy) is

illustrated by two questions biologists often face. Suppose we have a collection of

different trees that estimate the evolutionary history of the same set of taxa. These

trees might have been constructed by comparing genetic data across these species,

but different choices of which genetic data to use (e.g., different genes) could have

resulted in different tree estimates. In other words, while there might be one underlying

and unknown true species tree that we wish to infer, the phylogenetic trees constructed

from data will typically be merely imperfect estimates of this tree since the data evolve

randomly, a topic we will discuss later. So two problems arise.

• How can we compare different phylogenetic X -trees?
• Can we combine different phylogenetic X -trees into some consensus tree?

The hierarchy link provides a very simple solution to both questions. First, observe

that we can define a distance d between any two rooted phylogenetic X -trees T and

T ′ by taking d(T, T ′) to be the number of clusters that are present in one but not both

of the trees T and T ′. This distance d is called the Robinson–Foulds metric; it satisfies

the triangle inequality and it can be computed quickly.

Turning to the consensus question, given a sequence of rooted phylogenetic X -trees

T1, T2, . . . , Tk , let H>1/2 be the set of clusters that are present in more than half of the

corresponding hierarchies. In other words, if Hi is the hierarchy on X corresponding to

Ti then H>1/2 = {C ∈
⋃k

i=1 Hi : |{ j : C ∈ H j }| > k/2}. The following lemma shows

that H>1/2 forms the set of clusters of a tree, the so-called majority rule consensus tree.

Lemma 2. H>1/2 forms a hierarchy and so corresponds to a rooted phylogenetic

X-tree.

Proof. Suppose C, C ′ ∈ H>1/2. By the pigeonhole principle, there must be some hi-

erarchy H j that contains both C and C ′. Consequently, C and C ′ are either disjoint

or one is nested in the other. As this holds for all C, C ′ ∈ H>1/2, condition H1 holds.

Moreover, H2 holds also since {x} and X are elements of H j for every j and every

x ∈ X . Thus, H>1/2 forms a hierarchy and so (by Lemma 1), corresponds to a rooted

phylogenetic X -tree that is unique up to equivalence.

The majority rule consensus tree has the nice combinatorial property that it comes

as “close as possible,” on average, to the input trees T1, T2, . . . , Tk under the Robinson–

Foulds metric; more precisely, it is a median tree T that minimizes
∑k

i=1 d(T, Ti) [10].

So, we can compare and combine phylogenetic trees. And once a biologist has a

tree, it can help answer questions of interest, like “how long ago did two given species
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have a common ancestor?” or “how did some given characteristic that varies between

species (e.g., brain size) evolve?” But first we need a tree. A fundamental problem in

phylogenetics is how to reconstruct— or infer—a tree from data present in the species

today. Biologists also want to know how accurate such a reconstructed tree is likely to

be. Before delving into tree reconstruction, it helps to understand the combinatorics of

trees better. We start by considering the connection between rooted and unrooted trees,

followed by their enumeration, and shape.

3. BASIC PROPERTIES OF PHYLOGENETIC TREES. Rooted trees appeal to

biologists since they show evolution happening in time, from the past to the present.

But it is often more convenient to consider unrooted trees. One reason is that most

methods for building trees from data are generally able to do so only up to the place-

ment of the root and so produce unrooted trees (figuring out where the root goes re-

quires further work). Also, from a mathematical perspective, unrooted trees are often

the more natural object to consider. The choice to work with either rooted or unrooted

trees is somewhat analogous to the distinction in classical geometry between the affine

and projective settings (respectively), where also one viewpoint may have advantages

over the other, depending on the questions at hand.

Definition: An (unrooted) phylogenetic X-tree is a tree T with leaf set X and with

every interior (i.e., nonleaf) vertex of degree at least three. If the degree of every non-

leaf vertex is exactly three, we say that T is a binary phylogenetic X-tree.

Here is a first property of such trees, which will be useful in the next section.

Lemma 3. Any unrooted binary phylogenetic tree T with n leaves has 2n − 3 edges.

Proof. A standard result in elementary graph theory states that a connected graph is a

tree if and only if the number N of vertices exceeds the number E of edges by 1. So if

our tree T has i interior vertices, we have N = i + n, and so

E = i + n − 1. (1)

Also, for any graph, the handshake lemma tells us that the sum of the degrees of the

vertices of any finite graph equals 2E since each edge is counted twice in this sum.

Now, for our tree T , the sum of the degrees is [1 + 1 + · · · + 1(n times)] + [3 + 3

+ · · · + 3(i times)], and so

2E = n + 3i. (2)

Combining Equations (1) and (2), we see that i = n − 2, and so N = i + n = 2n − 2,

which implies that E = N − 1 = 2n − 3. This completes the proof of Lemma 3.

Notation: We will let R(X) and U (X) be the sets of rooted and unrooted phy-

logenetic X -trees (up to equivalence), and RB(X) and UB(X) will denote the sets of

rooted and unrooted binary phylogenetic X -trees. Thus, when X has just four elements,

UB(X) consists of the three quartet trees, while U (X) has one additional star tree that

has a single nonleaf vertex of degree four. When X = [n] = {1, . . . , n}, we will write

R(n), U (n), RB(n), and UB(n) for R(X), U (X), RB(X), and UB(X), respectively.
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Unrooting and counting trees. Counting trees has a long tradition in mathematics,

with Cayley’s nn−2 formula from 1889 for the total number of trees on n labelled ver-

tices the most famous example. Counting binary phylogenetic trees turns out to be

easier, and it has a history that dates back to even earlier mathematical work, contem-

porary with Darwin [42]. To explain this, we first describe a close connection between

rooted and unrooted phylogenetic trees. There are two natural ways to associate an

unrooted phylogenetic X -tree with a rooted tree.

Adding an outgroup: Take a rooted phylogenetic tree on X − {x} and attach x to

the root of T by a new edge. Species x is called an outgroup species.

Suppressing the root: Simply ignore the root vertex ρ; if it has degree 2 then delete

it and identify its two incident edges; while if the root has degree at least three, then

just treat this vertex as an interior vertex with no special root status. An example is

shown in Figure 1.

Notice that the operation adding an outgroup provides a bijection

o : R(X − {x}) → U (X)

that restricts to a bijection from RB(X − {x}) to UB(X). On the other hand, suppress-

ing the root results in a surjective map

s : R(X) → U (X)

that restricts to a surjective map from RB(X) to UB(X). Moreover, the number of

elements of RB(X) that map to the same tree in T ∈ UB(X) is the number of edges

in T , which Lemma 3 tells us is 2n − 3 (where n = |X |). These observations show us

that

|RB(X)| = (2n − 3)|UB(X)| = (2n − 3)|RB(X − {x}|.

In particular, if r(n) is the number of rooted binary phylogenetic trees on a leaf set of

size n, then r(n) = (2n − 3)r(n − 1), which, together with r(2) = 1, gives

r(n) = 1 × 3 × 5 × · · · × (2n − 3).

This product of the odd numbers is often written as a double factorial (in this case,

(2n − 3)!!). Notice that it can be expressed in terms of ordinary factorials and powers

of 2 as follows:

r(n) =
(2n − 2)!

(n − 1)!2n−1
. (3)

Graph theorists may recognize this quantity: It is the number of perfect matchings of

a complete graph on 2n − 2 vertices. In other words, if there are 2n − 2 people in

a room, (3) counts the number of handshake scenarios in which each person shakes

hands with precisely one other person. The bijection between this set of scenarios and

set RB(n) is an interesting but nontrivial exercise [17].

Applying Stirling’s approximation n! ∼
√

2π · nn+ 1
2 e−n to (3), reveals that r(n)

grows very rapidly. For example, r(10) is around 34 million, while r(30) is more than

1038. Biologists often want to build trees for hundreds (or even thousands) of species;

so it’s no surprise that mathematics has an important role to play in this task, as it

would be impossible to check each tree to see how well it might “fit the data.”
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There is another way to arrive at (3) by using generating functions. If we consider

the formal power series ϕ(x) = x +
∑

n≥2 r(n) xn

n!
then

ϕ(x) =
1

2
ϕ(x)2 + x

since deleting the root of a tree T ∈ RB(n) for n ≥ 2 results in an unordered pair

of rooted binary trees (one or both of which might be an isolated leaf) with leaf

sets that partition [n] into two parts. Solving this quadratic equation gives ϕ(x) =

1 −
√

1 − 2x , from which r(n) pops out as n! times the coefficient of xn in the Taylor

expansion of
√

1 − 2x . While this is a more complicated derivation, generating func-

tions turn out to be very useful in other applications—for example, in deriving exact

explicit formulae for the number of forests of rooted binary trees on a given leaf set.

For the number u(n) of unrooted binary trees on a leaf set of size n, the bijection

o described above gives u(n) = r(n − 1) = (2n − 5)!! Nonbinary phylogenetic trees

(rooted and unrooted) can also be counted using recursions, but a closed-form expres-

sion like that for binary trees has proved elusive.

Tree shapes. If we ignore the labeling of the leaves of a rooted or unrooted phylo-

genetic tree, we obtain a tree shape. For example, when n = 4, there are two rooted

binary tree shapes: the fork tree shape and the pectinate tree shape, shown in Fig-

ure 2(a, b). Biologists are interested in the shapes of trees since they shed light on the

process of speciation and extinction in evolution.

Figure 2. The two tree shapes for rooted binary trees on four leaves: (a) the fork and (b) the pectinate tree

shape. The stabilizer subgroup of a phylogenetic tree having the fork shape (c) corresponds to the dihedral

group of symmetries of a square (d). The two symmetries shown (α and β in (c)) correspond to reflections. In

(e), an unrooted tree shape with a symmetry of order 3! about the central vertex is shown.

Elementary group theory provides a nice trick to count the number of phylogenetic

X -trees of a given shape using the orbit-stabilizer theorem. Given a finite group G that

acts on a set S, and an element s ∈ S, let O(s) = {g · s : g ∈ G} ⊆ S denote the orbit
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of s under the action of G, and let Stab(s) = {g ∈ G : g · s = s} ⊆ G be the stabilizer

subgroup of G. Then the orbit-stabilizer theorem provides a bijection between the orbit

of s and the cosets of Stab(s) in G, and so, in particular:

|O(s)| = |G|
|Stab(s)| . (4)

There is a natural action of the symmetric group &n of permutations on [n] on the

set R(n): Given σ ∈ &n , simply permute the leaves of each tree T by replacing leaf x

by leaf σ(x). This action restricts to an action on the set RB(n) of rooted binary trees,

and so, by (4), the number of trees in RB(n) that have the same shape as some tree T

is n!/|Stab(T )|. Now Stab(T ) is a group of order 2s(T ) where s(T ) is the number of

symmetry vertices of T —these are interior vertices for which the two subtrees of T that

the vertex separates from the root have the same shape. For example, for a phylogenetic

tree having the fork tree shape in Figure 2(a), T has three symmetry vertices and so

Stab(T ) is a group of order eight. This group is isomorphic to the dihedral group of

rotational and reflectional symmetries of a square, as illustrated in Figure 2(c,d). In

particular, for any set X of size four, there are precisely 4!/23 = 3 rooted binary X -

trees that have the shape of the fork tree; by contrast, the pectinate tree (Figure 2(b))

has only one symmetry vertex, and so there are 12 rooted binary phylogenetic X -trees

of this shape.

For unrooted binary trees and nonbinary trees, similar formulae apply, though more

complex symmetries arise; for example, an unrooted binary tree can have a two-fold

symmetry about a central edge and, in the case of the tree shape shown in Figure 2(e),

a symmetry of order 3! about a central vertex.

The shape of evolving trees: many roads lead to one distribution. As well as

speciation, extinction has also played a major role in the history of life; after all,

most species are extinct. Suppose we sample some subset X of species present to-

day (species a − e in Figure 3(i)) and then consider the minimal tree linking these

species. This results in the so-called reconstructed tree illustrated in Figure 3(ii). Let’s

think of this as a rooted phylogenetic X -tree (ignoring the length of the edges). It

turns out that, under very general assumptions concerning the speciation–extinction

process, many models predict an identical and simple discrete probability distribution

on RB(X) [29].

Figure 3. (i) A birth-death tree showing speciation and extinction. (ii) The associated “reconstructed tree,”

(iii) Growing a tree by the YH process.

This distribution is called the Yule–Harding (YH) distribution, and it is easily

described as follows: To obtain a binary tree shape, we start with a tree shape on
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two leaves and sequentially attach leaves—at each step attaching a new leaf to one

of the leaf edges chosen uniformly at random from the tree constructed so far. For

example, the probabilities of generating the fork and pectinate tree shapes are 1/3 and

2/3, respectively, since from the (unique) tree shape on three leaves, we can attach a

new leaf to exactly one of the three leaf edges to obtain a fork tree shape or to either

of two of these leaf edges to obtain a pectinate tree shape (see Figure 3(iii)).

Once we have built up a tree with n leaves in this way, we obtain a random tree

shape on n leaves, and we can now label the leaves of this tree shape according to a

permutation on {1, 2, . . . , n} chosen uniformly at random. This is the Yule–Harding

probability distribution on RB(n). Curiously, a quite different process that arises in

population genetics and which proceeds backward in time (rather than forward, like

Figure 3(iii)), also leads to the YH distribution when we ignore the length of the edges.

This is the celebrated coalescent process of Sir John Kingman from the early 1970s.

We now explain how to compute the probability of a YH tree shape and of any

rooted phylogenetic tree with this shape. First, let’s grow a tree under the YH process

until it has n leaves and then randomly select one of the two subtrees incident with

the root (say the left-hand one since the orientation in the plane plays no role) and

let Zn denote the number of leaves in this tree. Remarkably, Zn has a completely flat

distribution.

Lemma 4. Zn has a uniform distribution between 1 and n − 1, so

P(Zn = i) = 1

n − 1
, for i = 1, . . . , n − 1.

Proof. The random process Z2, Z3, . . . can be exactly described as a special case of a

classical process in probability called Polya’s Urn. This consists of an urn that initially

has a blue balls and b red balls. At each step, a ball is sampled uniformly at random

and it is returned to the urn along with another ball of that same color. In our setting,

a = b = 1 and blue corresponds to the left-hand subtree and red the right-hand subtree

in the Yule–Harding tree. At each step, the uniform process of leaf attachment ensures

that Zn has exactly the same probability distribution as the number of blue balls in the

urn after n − 2 steps. It is well known, and easily shown by induction, that in Polya’s

Urn with a = b = 1, the proportion of blue balls has a uniform distribution.

This lemma provides the key to computing the YH probability of a tree exactly, as

follows.

Proposition 1. For any particular tree T ∈ RB(n), the probability PY H (T ) of gener-

ating T under the YH model is given by

PY H (T ) = 2n−1

n!
∏

v∈I (T ) λv

where I (T ) is the set of interior vertices of T and where λv is −1 plus the number of

leaves of T that are descendants of v.

For example, for the tree in Figure 1(a), PY H (T ) = 24

5!×4×3×12 = 1

90
, while for Fig-

ure 3(ii), PY H (T ) = 1

60
.
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Proof. Suppose that the two maximal subtrees T1 and T2 of T are of size k and n − k,

where we may assume that 2k ≤ n. By Lemma 4, the probability of such a size dis-

tribution is 2/(n − 1) if 2k < n and 1/(n − 1) if 2k = n. Conditional on this division,

the number of ways to select leaf sets for T1 and T2 that partition [n] is
(

n

k

)

when

2k < n, and 1

2

(

n

k

)

when 2k = n (the factor of 1

2
recognizes that the order of T1 and T2 is

interchangeable in T when they have the same number of leaves). By the Markovian

nature of the YH process, each of these two subtrees also follows the YH distribution

(in the special case k = 1 where T1 is a single leaf, formally set PY H (T1) = 1). This

leads to the recursion

PY H (T ) = 2

n − 1

(

n

k

)−1

PY H (T1)PY H (T2),

from which Proposition 1 now follows by induction.

Notice that the YH process leads to a different probability distribution on RB(n)

from that obtained by simply selecting a tree uniformly at random from RB(n), which

would assign each T ∈ RB(n) the probability 1/(2n − 3)!! For example, the probabil-

ity of obtaining a tree with the fork in Figure 2(a) has probability 1

5
under a uniform

distribution on RB(4) (since only three of the 15 trees in RB(4) have that shape) and
1

3
under YH. Larger trees lead to more pronounced differences between the two distri-

butions. For instance, in YH trees on n leaves, the expected number of edges between

the root and a randomly selected leaf grows at the rate log(n), while for uniform bi-

nary trees, it grows at the rate
√

n. YH trees also tend to be more balanced than uni-

form trees, where balance refers to the average difference between the sizes of the two

daughter subtrees in the tree, as one ranges over the interior vertices of the tree. For

example, Proposition 1 shows that the probability that a tree with n leaves generated

under the YH distribution has a single leaf adjacent to the root is 2

n−1
, while for the uni-

form distribution the corresponding probability is
(

n

1

)

r(n−1)

r(n)
= n

2n−3
, which converges

to 1

2
as n grows. It turns out that many real phylogenetic trees tend to have a degree

of balance somewhere between that predicted by the YH and uniform distributions;

explaining why has required some novel mathematical and statistical insights [1, 29].

4. TREES, SPLITS, AND CHARACTER DATA. In Section 3 we described a one-

to-one correspondence between unrooted phylogenetic X -trees and rooted phyloge-

netic X -trees on X − {x} (for any x ∈ X ) and, thereby, to hierarchies on X − {x}.
However, the choice of a particular element x ∈ X is completely arbitrary, so we seek

a more satisfactory way to describe an unrooted phylogenetic X -tree. This is based on

the notion of an X-split, which is a bipartition of X into two nonempty parts (A and B,

say), and written as A|B. Such a notion has clear biological meaning—for example,

we can divide all life into the vertebrates and the invertebrates. Given any phylogenetic

X -tree T , if we delete any particular edge e of T and consider the leaf sets of the two

connected components of the resulting disconnected graph, we obtain a corresponding

X -split, which we will refer to as a split of T that corresponds to e. For example, for

each x ∈ X , every phylogenetic X -tree has the trivial split {x}|X − {x}, corresponding

to the edge incident with leaf x .

Notice that any two splits A|A′ and B|B ′ of the same phylogenetic X -tree have the

property that one of the four intersections A ∩ B, A ∩ B ′, A′ ∩ B, A′ ∩ B ′ is empty.

For example, the tree in Figure 1(b) has the splits A|B = {cat, mushroom}|{daisy,

rice, bacteria} and A′|B ′ = {cat, mushroom, bacteria}|{daisy, rice} so in this case,
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A ∩ B ′ = ∅. If a collection & of X -splits has this property, we say that & is pairwise

compatible. This is the unrooted analogue of the hierarchy property H1, so it is not

surprising that Lemma 1 has an equivalent formulation for unrooted trees.

A collection & of X -splits is the set of splits of some unrooted phylogenetic X -tree

T if and only if & is pairwise compatible and contains the trivial splits. Moreover,

T is uniquely determined up to equivalence by &.

We can extend the notion of splits further. Instead of deleting a single edge, we may

delete any nonempty set E ′ of edges from a tree, and consider the resulting |E ′| + 1

components of the disconnected graph T − E ′. This gives an equivalence relation ∼ on

X where x ∼ y precisely if x and y are connected in T − E ′. The equivalence classes

of ∼ comprise a partition of X into at most |E ′| + 1 parts. Any such partition of X that

can be obtained in this way is said to be convex on T , a concept that is relevant to the

next part of the story.

Characters, homoplasy, and a perfect phylogeny. A function from the set of species

X into some set S of r states is referred to by biologists as an r -state character on X .

For example, f (x) might be a morphological character that describes the number of

legs that species x has or a genetic character the describes the nucleotide at a particular

position in a genetic sequence for species x . That is, f (x) describes some character-

istic of x that we compare across other species in X . A hypothetical example of four

characters across a set of eight well-known species is provided in the table below and

will serve to illustrate several ideas that follow. If we regard each of the possible states

as (say) letters of the alphabet, then we can associate a four-letter word to each species.

Table 1.

Species Character 1 2 3 4

Kangaroo T R U E

Chimpanzee B R E T

Human B R O E

Gorilla C O E E

Hippopotamus C A P O

Whale C A U P

Lion D R A O

Tiger D R U G

If a phylogenetic X -tree describes the evolution of a set of species, a character tells

us the states of the species at the leaves but not of the hypothetical ancestral species

that correspond to the interior vertices of the tree. There are myriad ways to explain

how the character could have evolved in the tree from some ancestral state at the root.

It is possible that in a path from the root to a leaf a reversal occurs, where a state s1

changes to state s2 and later back to s1; for example, in birds, wings first evolved and

then in some species (e.g., kiwi) disappeared again. It is also possible for convergent

evolution to occur, where state s1 at some vertex changes to s2 down two edge-disjoint

paths that start from that vertex. Again, wings provide an example: From an ances-

tor of birds and mammals, wings evolved both in birds and in mammalian bats. A

character whose evolution on a given tree can be explained without postulating any re-

versal or convergent events is said to be “homoplasy-free.” Homoplasy-free evolution

might be expected to hold when the number of potential states is very large, so each

change is likely to be to a new state (for example, the order of genes on a chromosome

under random rearrangement operations) or for certain genomic insertion data, such as
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“Short Interspersed Nuclear Elements” (SINEs) in mammalian genetics (which helped

establish that hippopotamus is the closest living species to whale [34]).

The notion of homoplasy-free can be defined more easily if we suppress the rooting

of the tree and so consider unrooted trees. Formally, we will say that a character f

on X is homoplasy-free on an unrooted phylogenetic X -tree T if f : X → S has an

extension F : V → S to the set V of all vertices of T so that F is constant on the path

between any two vertices with the same F-value. This is equivalent to requiring that

for each α ∈ f (X), the subgraph of T induced by the set of vertices v with F(v) = α

is connected. There are two other ways to characterize when a character f : X → S is

homoplasy-free on a phylogenetic X -tree T :

• f has an an extension F to all the vertices of T for which F assigns different states

to the endpoints of | f (X)| − 1 edges (equivalently, at most | f (X)| − 1 edges);

• the partition of X induced by the equivalence relation “x ≈ x ′ if and only if f (x) =
f (x ′)” is convex on T (as defined just prior to Section 4).

Notice that homoplasy-free is considerably weaker than requiring that the actual evo-

lution of the character on some rooting of the tree involved no reversals or convergent

evolution—it merely requires that the character could have evolved in this way.

A sequence ( f1, f2, . . . , fk) of characters on X is said to have a perfect phylogeny

if and only if there exists a phylogenetic X -tree on which each character is homoplasy-

free (the tree is said to be a perfect phylogeny for those characters). We will see shortly

that our eight-species example above forms a perfect phylogeny.

The computational problem of determining whether or not a collection of characters

has a perfect phylogeny is NP-complete in general, but a polynomial-time algorithm

exists when a bound is placed on either the number of characters or the number of

states per character (r ). In the special cases where r = 2 and r = 3, a collection of

r -state characters has a perfect phylogeny if and only if every subset of size r of the

characters has one. However, the if direction fails for larger values of r , as there is a

set of 0 r

2
1 · 2 r

2
3 + 1 characters on r ≥ 4 states that do not have a perfect phylogeny

even though every proper subset does [45]. The existence of a perfect phylogeny for

a sequence of characters on X also has an attractive graph theoretic characterization

involving chordal intersection graphs (for details, see [44]; more recent graph-based

analysis of related approaches appears in [6]).

When a sequence of characters has a perfect phylogeny T , we can also ask when it

is unique. A necessary condition for this is that T is binary; otherwise, we could arbi-

trarily resolve any vertex of T of degree greater than three and obtain a different tree

on which all the characters were homoplasy-free. An interesting question now arises:

What is the smallest number h(n) so that for each T ∈ UB(n) there is a sequence of

h(n) characters on [n] that has T as a unique perfect phylogeny? If we restrict our-

selves to binary characters, then

h(n) = n − 3

since for any T ∈ UB(n), the characters that are homoplasy-free on T correspond

precisely to the splits of T , and T is the unique perfect phylogeny for a sequence of

such characters provided that all n − 3 nontrivial splits of T are represented (if one was

missing we could contract the corresponding edge and still obtain a tree on which the

characters were homoplasy-free). But what if we do not insist on restricting ourselves

to two-state characters or r -state characters for any fixed r . Is it possible that h(n)

might grow more slowly than linearly with n; perhaps
√

n or even log(n) characters

might suffice? Surprisingly, it turns out that h(n) is never more than four.
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Theorem 1 (Four characters suffice). For any binary phylogenetic X-tree T , there

is a set ST of at most four characters for which T is the only perfect phylogeny.

An example of the set ST from Theorem 1 is provided by the four hypothetical char-

acters described for the eight species in Table 1. It is easily seen that the tree T shown

in Figure 4 is a perfect phylogeny for this data set (this tree, incidentally, is the one

biologists generally accept, rooted somewhere on the bottom edge). What is less ob-

vious is that T is the only such perfect phylogeny for these four characters; moreover,

the states at the interior vertices (shown in brackets) are uniquely determined by the

homoplasy-free condition.

Figure 4. The unique perfect phylogeny T for the four characters described in Table 1. The assignment of

ancestral character states is shown in brackets.

A recipe to generate a set ST is indicated by the letters l, r, l ′, r ′ on the edges of

the tree. These correspond to alternating left (l, l ′) and right (r, r ′) orientations as one

moves up the tree under an arbitrary planar embedding. Now, suppose any edge on

which l is placed causes a state change for the first character, any edge on which r

is placed causes a state change for the second character, and similarly any edge on

which l ′ (respectively, r ′) is placed causes a state change for the third (respectively,

fourth) character. State changes are always to a new state for that character (to ensure

the homoplasy-free condition; a state present in one character is free to reappear in a

different one). For example, the bottom-most l causes TRUE to change to CRUE. By

following this procedure for any binary tree on any number of leaves, it can be shown

that ST satisfies Theorem 1 (for further details, see [25]).

When the data are not perfect. The homoplasy-free condition is very strong. A nat-

ural relaxation of it, given a character f and a phylogenetic tree T , is to score T by

the smallest number of edges of T that need to have differently assigned states at their

endpoints in order to extend f to all the vertices of T . This score is called the parsi-

mony score of the character on T , denoted, ps( f, T ). By the equivalent description of

the homoplasy-free condition above, we have ps( f, T ) ≥ | f (X)| − 1, with equality if

and only if f is homoplasy-free.

Since there are exponentially many extensions F of f to T , it might be suspected

that computing ps( f, T ) is hard. However, in 1971, biologist Walter Fitch proposed a
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fast algorithm, which was formally verified by mathematician John Hartigan in 1973.

This “Fitch–Hartigan algorithm” proceeds via a dynamical programming approach,

and it also provides an explicit extension F that minimizes the number of state changes

in the tree. For two-state characters, there is also an elegant characterization of the

parsimony score using Menger’s min-max theorem in graph theory.

Given a sequence of characters on X , a maximum parsimony tree for this data is a

phylogenetic tree T that minimizes the sum of the parsimony scores of the characters.

Finding such a tree can be phrased as a Steiner tree problem in a sequence space, and

it turns out to be NP-hard, though branch and bound algorithms exist.

We saw that no sequence of two-state characters shorter than linear in n can give

a unique perfect phylogeny. But can we do better if we just want a unique most-

parsimonious tree? That is, for each tree T ∈ UB(n), is there a sequence η(T ) of

two-state characters of length k = k(n) that is sublinear in n and for which T is the

unique most-parsimonious tree? A simple counting argument sets an absolute lower

bound on k. Let S(n, k) be the set of sequences of two-state characters on [n] of length

k. Then k must be at least large enough for the function T 4→ η(T ) from UB(n) to

S(n, k) to be one-to-one. Since S(n, k) = 2nk , this requires that |UB(n)| ≤ 2nk , which

can be rewritten as k ≥ 1

n
log2 |UB(n)|. If we now invoke (3) and Stirling’s approxi-

mation for n! to calculate |UB(n)|, we see that k must grow at least at the rate log(n).

Remarkably, it was recently shown [8] that this primitive logarithmic growth rate can

be achieved, and by a function η that can be constructively implemented. Moreover,

the parsimony score per character of the resulting sequences η(T ) on T necessarily

tends to infinity as n grows, so this encoding is very far from supporting a perfect

phylogeny.

We will return to maximum parsimony in Section 6.

5. METRIC PROPERTIES OF TREES. So far, we have regarded the edges

of our trees as being unweighted; however, it is useful—both in biology and in

mathematics—to assign weights or lengths to the edges (often called branch lengths

in biology). For instance, the length of an edge could correspond to evolutionary time

or some measure of the amount of genetic change along that edge. Assigning lengths

to edges brings in a further tool to help study and reconstruct trees. It is pivotal to

approaches for inferring trees from data that try to estimate an evolutionary distance

between pairs of species, as well as for the statistical methods that we will discuss in

Section 6.

First, notice that if we have a phylogenetic X -tree T and some function w that

assigns strictly positive weights to each edge of the tree, then we can define a metric

d = d(T,w) on X by letting d(x, y) be the sum of the weights of the edges on the path

in T connecting x and y. When d can be represented by a tree in this way, we say it

has a tree representation (on T ). This leads to two natural questions.

• Does every metric on X have a tree representation?

• Is the choice of T and w in a tree representation unique?

The answers to these questions are no and yes, respectively. Let’s consider the first

question.

When |X | = 3, it is an easy exercise to show that every metric d on X can be

represented as a tree metric. But this result is particular to |X | = 3 and already runs

into problems when |X | = 4. It is instructive to see why. Consider the three pairwise

sums:

d(x, y) + d(w, z), d(x, z) + d(y, w), d(x, w) + d(y, z).
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If d has a tree representation (d = d(T,w)), then two of these pairwise sums must be

equal and larger than or equal to the third, regardless of the choice of T . This is illus-

trated in Figure 5(i). This four-point condition is not usually satisfied by an arbitrary

metric d on a set of size four, but when it is, it turns out that d can be represented on a

tree. What is much more remarkable is that, for any X , the four point condition holds

for all subsets of X of size 4 if and only if d has a tree representation. This result, in

various forms, dates back to the 1960s.

Figure 5. (i): Here d(x, y) + d(w, z) is smaller than d(x, w) + d(y, z) (which, in turn, equals d(x, z) +

d(y, w)); (ii) a tour of the tree that covers every edge exactly twice.

Consider now the second question: the uniqueness of a tree representation. As

before, this question was resolved many decades ago, and uniqueness of both the

unrooted tree and the strictly positive edge weights holds; in other words, for trees

T, T ′ ∈ U (X) and strictly positive edge weightings w and w′, we have

d(T,w) = d(T ′,w′) =⇒ T = T ′ and w = w′. (5)

Moreover, to reconstruct a phylogenetic tree with n leaves, we do not usually need all

the
(

n

2

)

possible d-values; for a binary tree T , a subset of 2n − 3 carefully chosen pairs

of elements from [n] suffice to uniquely determine both T and w from the value of

d(T,w) for those pairs.

A variety of fast (polynomial-time) methods have been devised for building a phy-

logenetic X -tree from an arbitrary distance function d on X . The most popular, by far,

is neighbor joining, and the paper [40] that described this heuristic algorithm has now

been cited more than 36,000 times. A desirable property of such methods is that when

a distance function has a tree representation, then the method will return the underly-

ing tree and edge weights. Moreover, when a distance function δ is sufficiently close

to a tree metric d = d(T,w) where T is any binary tree on any number of leaves, many

methods also come with a guarantee that they will return T when applied to δ. How

close δ needs to be to d depends crucially on wmin, the smallest interior edge weight

of T ; a distance-based tree reconstruction method is said to have safety radius r if the

method is guaranteed to return the binary tree T when δ differs from d = d(T,w) by less

than r · wmin on each pair of leaves. For neighbor-joining, this safety radius is r = 1

2
.

It is not hard to show that 1

2
is the largest possible safety radius for any distance-based

tree reconstruction method.

Diversity measures. Given a phylogenetic X -tree T with an edge weighting w, con-

sider L =
∑

e w(e), which is the total sum of the edge weights over the tree. Notice

that for the tree in Figure 5(ii) we can write
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L = 1

2
[d(a, b) + d(b, c) + d(c, e) + d(e, f ) + d( f, g) + d(g, h) + d(h, a)]

since the cyclic permutation (abce f gh) traverses the tree in a clockwise order and so

covers every edge exactly twice. However, there are other ways to embed the tree in

the plane and do this —for example, the cyclic permutation (ae f cbhg) also traverses a

different planar embedding of this tree in a clockwise order. It is easily shown that for

any phylogenetic X -tree, the number NT of cyclic permutations that traverse the tree in

a clockwise order is given by NT =
∏

v∈I (T )(deg(v) − 1)!, where deg(v) is the degree

of vertex v, and I (T ) is the set of interior vertices of T [43]. For example, for the tree

Figure 5(ii)), NT = 3! × 3! × 2! = 72. For each cyclic permutation (x1, x2, . . . , xn),

we have L = 1

2
[d(x1, x2) + d(x2, x3) + · · · + d(xn−1, xn) + d(xn, x1)]. If we average

these expressions for L over all the NT cyclic permutations that traverse T in clockwise

order, then it is clear that we can write

L =
∑

{x,y}

λT (x, y)d(x, y) (6)

for some non-negative coefficients λT (x, y). These coefficients can be easily described

in terms of the number and degrees of the vertices in T on the path between x and y.

If T is a binary tree, then λT (x, y) = ( 1

2
)|I (x,y)|, where I (x, y) is the set of interior

vertices in the path between x and y in T . For instance, in the case of the quartet tree

in Figure 5(i), this gives

L =
1

2
d(x, y) +

1

2
d(w, z) +

1

4
(d(x, w) + d(x, z) + d(y, w) + d(y, z)).

More generally, for any phylogenetic tree T , it can be shown that

λT (x, y) =
∏

v∈I (x,y)

(deg(v) − 1)−1.

The identity (6) suggests a new way to build phylogenetic trees from distances, which

is called Balanced Minimum Evolution (BME) [36]. Given an arbitrary distance func-

tion (not necessarily a tree metric) δ on X , this method scores each phylogenetic X -

tree T by the value Lδ(T ) =
∑

{x,y} λT (x, y)δ(x, y) and searches for a tree T that

has the smallest Lδ(T ) score. If δ has a tree representation on some tree T , then this

tree has the smallest Lδ score; moreover, like neighbor-joining, BME has the largest

possible safety radius of 1

2
. BME can be viewed algebraically as a type of “weighted

least squares” method [14]. BME is also closely connected with the neighbor-joining

method, both algorithmically [21], and via polyhedra geometry [23].

As well as considering the total diversity of the tree L , we can also consider how

much diversity is spanned by different subsets of leaves. This measure is called phy-

logenetic diversity (PD) and is relevant to biodiversity conservation [37]. Formally,

given a phylogenetic X -tree T and a positive edge weighting w, we can associate to

each subset Y of X a non-negative value, denoted P D(Y ), equal to the sum of the

weights of the edges of the minimal subtree of T that connect the leaves in Y . For ex-

ample, L = P D(X), and d(T,w)(x, y) = P D({x, y}). Just as the PD scores of subsets

of size k = 2 (i.e., distances) can be used to reconstruct a tree so can the PD scores of

subsets of size k for any k up to (but not exceeding) 2n/23 [35].

The function P D is clearly monotone—the PD of a set is always greater than the

PD of any strict subset; moreover, PD enjoys a strong exchange property: For any
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subset Y1 of X of size at least two and any subset Y2 of X that is larger in size than Y1,

there always exists an element y ∈ Y2 − Y1 for which

P D(Y1 ∪ {y}) + P D(Y2 − {y}) ≥ P D(Y1) + P D(Y2).

This property formally justifies a simple and fast strategy for finding a subset Y of X

of any given size k having maximal PD for sets of that size. The strategy is simply

the greedy one: First select two leaves x, y that are furthest apart in the tree (i.e.,

maximize d(T,w)(x, y)) and then sequentially add a leaf that increases the PD score

by the maximum amount to the tree so-far constructed until k leaves are present. The

collection of subsets of X that have maximal PD score for their cardinality form what

is known in combinatorics as a greedoid.

A more sophisticated mathematical approach to the study of distances is T-theory

(tight-span), pioneered by Andreas Dress and colleagues [12], and extended recently

to the diversity setting [7].

Distances and diversities can also be generalised to allow the edge weights to take

nonzero values in an arbitrary Abelian group G (e.g., the special case G = (R, +)

allows negative edge weights). Several of the main results above extend with minor

modification. There is one fly in the ointment, however—for distances, problems arise

if G has elements of order 2 (for instance, uniqueness of the tree representation fails;

this is apparent from the 15 phylogenetic trees having the shape shown in Figure 2(e)

with edges assigned the element 1 of G = ({0, 1}, +) that induce exactly the same

distance function). But uniqueness can be restored by moving from distances to diver-

sities, where not just pairs but also triples of leaves are considered [13].

6. MARKOV MODELS AND THE FELSENSTEIN ZONE. A major advance in

phylogenetics has been the development of stochastic models to describe the evolution

of genetic sequences and genomes on a tree. For genetic sequences, these models typ-

ically describe point substitutions that occur at sites in the DNA sequence that codes

for some particular gene. Such models allow biologists to convert the sequences we

observe today at the leaves of the tree into an estimate of the tree itself (and perhaps

its branch lengths, or ancestral states within the tree). By combining these gene trees

one can in turn estimate the species tree.

The rise of statistical phylogenetics was pioneered in the 1960s and 1970s by An-

thony Edwards, Joseph Felsenstein, and others (including David Sankoff, with a vi-

sionary paper in this journal [41]). Today’s methods of choice are based on maximum

likelihood and Bayesian approaches. Stochastic models assume that characters evolve

independently on a tree, and the evolution of each character is described by some

Markovian process; this may be the same across the characters or vary (for instance,

some characters may evolve more rapidly than others).

One of the catalysts that ushered in this stochastic approach was a landmark 1978

paper by Joseph Felsenstein [20]. He showed that if characters evolve independently

under a simple stochastic process, then existing methods like maximum parsimony

(discussed above) can be seriously misled. So, as the number of characters increases,

it would be increasingly certain that the maximum parsimony tree will be a differ-

ent tree from the true tree (i.e., the one on which the characters evolved). By con-

trast, other methods (like maximum likelihood) are, under certain conditions, provably

statistically consistent and so converge on the true tree as the number of characters

grows.

Felsenstein considered a simple process involving just two states—let’s call them α

and β—which can flip between states with equal probability. This process is familiar
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in coding theory as the binary symmetric channel. In phylogenetics, we apply this

process to the edges of a tree—each edge e of the tree has a certain probability pe of

a change of state between its endpoints, and, as in coding theory, it is assumed that pe

lies strictly between 0 and 0.5. The model also assumes that the (marginal) state at any

given leaf is uniform (i.e., no state is preferred) and that changes of states on different

edges are independent events.

Felsenstein’s tree is shown in Figure 6(b)—we can imagine it as a tree in which

there has been an accelerated rate of evolution (resulting in higher probabilities of

change) in two nonadjacent lineages. It can also be realized on a rooted tree as in

Figure 6(a), with a single rate increase in one short branch (the branch leading to 1)

and a distant out-group species (4). Denote the probabilities of change on the edges of

the tree in Figure 6(b) by the values p1, . . . , p5, as shown.

Figure 6. (a) A high rate of evolution on the lineage leading to species 1 and a distant out-group species (4)

can be modelled by a Markov process on the associated unrooted tree (obtained by suppressing the root) in (b);

for this tree T , if p1 and p4 are large enough relative to the other pi values, the maximum parsimony tree for

a large number of characters generated on T is likely to be the tree T ′ shown in (c).

Now, there are 2n different ways to assign the two states to a set X of size n, but

if we identify complementary assignments, obtained by interchanging α and β (these

two assignments have equal probability under the model) we get just 2n−1 distinct

patterns. For a subset A of [n − 1], let pA be the probability of generating a pattern at

the leaves of the tree in which A is precisely the leaves that are in different state to leaf

n. For example, p∅ is the probability that all leaves are in the same state (i.e., all α or

all β). For the tree in Figure 6(b), a check of the four possible pairs of states at the two

interior vertices gives

p∅ = (1 − p1)(1 − p2)(1 − p3)(1 − p4)(1 − p5) + p1 p2 p3 p4(1 − p5)

+ p1 p2 p5(1 − p3)(1 − p4) + p3 p4 p5(1 − p1)(1 − p2).

There are various ways to compute the pA values, but one particularly ele-

gant way that holds for any phylogenetic tree with n leaves is by the following

identity:

pA =
1

2n−1

∑

B⊆[n]
|B|≡0 mod 2

(−1)|A∩B|
∏

e∈P(T,B)

(1 − 2pe), (7)
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where P(T, B) is the unique set of edges of T that lie on any set of edge-disjoint

paths in T that connect pairs of leaves in the even cardinality set B. For the tree in

Figure 6(b), if we let xi = (1 − 2pi ) and take A = ∅ (so that (−1)|A∩B| = 1 for all B

in Eqn. (7)), then we obtain

p∅ = 1

8
(1 + x1x2 + x3x4 + x1x3x5 + x2x3x5 + x1x4x5 + x2x4x5 + x1x2x3x4). (8)

All other pA values are obtained from the right-hand side of (8) by replacing + by −
for exactly half the terms. The somewhat mysterious representation in (7) follows from

a combinatorial study of this model (in which [(−1)|A∩B|] turns out to be a Hadamard

matrix) due to Mike Hendy [24] and generalized to other models using discrete Fourier

analysis by Evans and Speed [18], and Székely et al. [48].

With this in hand, we can now establish the main ingredient in Felsenstein’s classic

result for maximum parsimony.

Theorem 2. For a character generated on tree T in Figure 6(b) under the two-state

symmetric model with p1 = p4 = P and p2 = p3 = p5 = Q, the expected parsimony

score of T is larger than for the tree T ′ in Figure 6(c) precisely when P2 > Q(1 − Q).

Proof. The only two-state characters that have different parsimony scores on T and

T ′ are those that correspond to patterns that we will denote by f12 and f23, where

f12(1) = f12(2) 8= f12(3) = f12(4) and f23(2) = f23(3) 8= f23(1) = f23(4). Notice

that a character of type f12 has a parsimony score of 1 on T and 2 on T ′, while a

character of type f23 has a parsimony score of 1 on T ′ and 2 on T . Moreover, under

the two-state symmetric model on T , the probabilities of generating the patterns f12

and f23 are p12 and p23, respectively. Now, for a character generated by this model

on T , consider the random variable + that is the parsimony score of that character on

T minus the parsimony score of that character on T ′. Then the expected value of +,

denoted E[+], satisfies

E[+] = p23 − p12. (9)

Applying (7) for n = 4, letting xi = (1 − 2pi ), and with A = {1, 2} and {2, 3}:

p12 =
1

8
(1 + x1x2 + x3x4 − x1x3x5 − x2x3x5 − x1x4x5 − x2x4x5 + x1x2x3x4),

and

p23 =
1

8
(1 − x1x2 − x3x4 − x1x3x5 + x2x3x5 + x1x4x5 − x2x4x5 + x1x2x3x4).

Substituting these identities into (9) gives E[+] = 1

4
(−x1x2 − x3x4 + x2x3x5 +

x1x4x5). Now, setting x1 = x4 = u = (1 − 2P) and x2 = x3 = x5 = v = (1 − 2Q)

we obtain

E[+] =
v

4
[u2 + v2 − 2u] = v(P2 − Q(1 − Q)),

and so E[+] > 0 precisely if P2 > Q(1 − Q). This completes the proof.
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Theorem 2, together with the law of large numbers (or the central limit theorem),

ensures that for k characters generated by the T (with these pi values), a different tree,

namely T ′, will have a lower parsimony score than T , with probability converging

to 1 as k grows. Intuitively, parallel changes on the two long branches of T become

more probable than a single change on the short edges. So, through the eyes of parsi-

mony, it is more optimal to join these two edges together in the reconstruction. This

phenomenon of “long branch attraction” has been observed in biological data [26].

While parsimony can fail to recover the true tree, there are statistically consistent

methods for inferring it. A particularly simple one for the two-state symmetric model

relies on the following distance function on X . For x, y ∈ X , let

µ̂(x, y) = −1

2
log(1 − 2 p̂(x, y)),

where p̂(x, y) is the proportion of characters that assign different states to x and y.

Then provided we apply a distance-based tree reconstruction method with a posi-

tive safety radius (c.f. Section 5)—we are guaranteed to recover the underlying (un-

rooted) tree from k independently evolved characters, as k grows. The reason is that,

as k → ∞, the law of large numbers ensures that p̂(x, y) will converge to the proba-

bility p(x, y) that leaves x and y are in different states, and so µ̂(x, y) converges to

µ(x, y) = − 1

2
log(1 − 2p(x, y)). It is then an easy exercise to show that µ has a tree

representation on the true tree T with the edge weighting w(e) = − 1

2
log(1 − 2pe).

That is, µ = d(T,w). The uniqueness result (i.e., the implication in (5)) then ensures the

reconstruction of both the unrooted tree and the edge weights from µ (and thereby µ̂

for k sufficiently large).

Biologists deal with much more complex models of character evolution than the

two-state symmetric model, often on 4, 20, or 64 states (corresponding to DNA, amino

acid, and codon sequences, respectively). For a general Markov model involving any

state space, there are ways to construct a metric that has a tree representation on T ,

based on the logarithm of the determinant of the matrix of the joint probabilities of

states for each pair of species. In this way, the tree is identifiable from the probability

distribution of characters. This identifiability result is enough to ensure that methods

like maximum likelihood are statistically consistent. However, for mixtures of such

processes, the identifiability of the tree can easily be lost (mixtures of Markov pro-

cesses are generally no longer Markovian). This can be important for biologists—if

there are too many parameters to estimate from the data, then one may lose the ability

to infer the one(s) we are interested in (such as the tree). A striking example of this loss

was provided for the two-state symmetric model [31]: If 50% of DNA sites evolve on

a four-species tree T with one carefully chosen set of branch lengths and 50% evolve

on the same tree under a different chosen collection of branch lengths, then the ex-

pected proportion of site patterns is exactly identical to that in which all sites evolve

on a different tree with appropriately chosen edge lengths. More recent results appear

in [4, 39].

To obtain a deeper understanding of Markov processes on trees, techniques from

commutative algebra and Lie algebra theory have proved invaluable [2, 46, 47]. In

particular, these techniques can be applied to determine the extent to which trees and

other parameters of the model can be reconstructed from data (the identifiability issue

mentioned above) [3], a topic that is part of a broader emerging area called algebraic

statistics [15]. The combinatorial topology and geometry of two different notions of

tree space are also of interest [5, 33], as is the question of how much data we need to

reconstruct a tree accurately [9].
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7. CURRENT CHALLENGES. We have provided a brief overview of some of the

central ideas in phylogenetics, but much has been omitted and the reader interested in

this area may wish to consult [19, 44] for further details.

Two areas that are currently very active and where mathematical and computational

approaches play a key role include the following.

• Using probability theory and combinatorics to study how the genealogy of each

gene (the gene tree) for a set of species relates to the species’ phylogenetic tree (the

species tree). Biologists typically now have very large numbers (thousands) of gene

trees by which to compare species, but these trees can differ from the species tree

by a process called “incomplete lineage sorting.” By considering how genes trace

back in time and coalesce, it is possible to explain gene tree discordance and predict

species trees from these conflicting gene trees (see, e.g., [3, 11, 28, 32]).
• Extending phylogenetic tree theory to phylogenetic networks, which are graphs that

either display uncertainty in the data as to the likely species tree (implicit networks)

or which provide an explicit representation of evolution where there has been retic-

ulation (such as the formation of hybrid species (see, for example, [27]). The patchy

distribution of genes across taxa and lateral gene transfer also lead to further com-

binatorial and computational challenges [38].

Finally, we have seen how any phylogenetic X -tree can be encoded by its associ-

ated set of splits and also by the leaf-to-leaf distances the tree induces under an edge

weighting. However, there is a third encoding, obtained by considering the quartet

trees that are induced by the tree on subsets of X of size four. This association has led

to some of the deepest results in phylogenetics (see, e.g., [22]) and the exploration of

the links between these three equivalent ways of encoding phylogenetic trees forms the

basis of the emerging area of phylogenetic combinatorics (see [12] for more details).
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