
 Open access Proceedings Article DOI:10.1109/ISSPA.2007.4555464

Tracing on heterogeneous grids to improve the concavity performance of snake
algorithms — Source link

Andras Hajdu, Ioannis Pitas

Institutions: Aristotle University of Thessaloniki

Published on: 01 Feb 2007 - Information Sciences, Signal Processing and their Applications

Topics: Tracing, Quadtree, Binary image, Image segmentation and Grayscale

Related papers:

 Hierarchical Ray Tracing for Fast Volumetric Next-Best-View Planning

 Arbitrary-Shape object localization using adaptive image grids

 Contour-Based Shape Representation for Image Compression and Analysis

 Parallel image segmentation with adaptive mesh

 A hybrid approach for computing visual hulls of complex objects

Share this paper:

View more about this paper here: https://typeset.io/papers/tracing-on-heterogeneous-grids-to-improve-the-concavity-
4eszmbzn67

https://typeset.io/
https://www.doi.org/10.1109/ISSPA.2007.4555464
https://typeset.io/papers/tracing-on-heterogeneous-grids-to-improve-the-concavity-4eszmbzn67
https://typeset.io/authors/andras-hajdu-480v2i4n1o
https://typeset.io/authors/ioannis-pitas-3ptc3ld73n
https://typeset.io/institutions/aristotle-university-of-thessaloniki-3hg6qtpq
https://typeset.io/conferences/information-sciences-signal-processing-and-their-37umxahb
https://typeset.io/topics/tracing-c65pah4n
https://typeset.io/topics/quadtree-ifjxb2jk
https://typeset.io/topics/binary-image-31nbsucv
https://typeset.io/topics/image-segmentation-1g1v4n9k
https://typeset.io/topics/grayscale-1lco4b42
https://typeset.io/papers/hierarchical-ray-tracing-for-fast-volumetric-next-best-view-1lzbzrza85
https://typeset.io/papers/arbitrary-shape-object-localization-using-adaptive-image-4xuzc6u752
https://typeset.io/papers/contour-based-shape-representation-for-image-compression-and-rfiwwsi6bo
https://typeset.io/papers/parallel-image-segmentation-with-adaptive-mesh-d8u8hpd0a1
https://typeset.io/papers/a-hybrid-approach-for-computing-visual-hulls-of-complex-2a8dhnh2qh
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/tracing-on-heterogeneous-grids-to-improve-the-concavity-4eszmbzn67
https://twitter.com/intent/tweet?text=Tracing%20on%20heterogeneous%20grids%20to%20improve%20the%20concavity%20performance%20of%20snake%20algorithms&url=https://typeset.io/papers/tracing-on-heterogeneous-grids-to-improve-the-concavity-4eszmbzn67
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/tracing-on-heterogeneous-grids-to-improve-the-concavity-4eszmbzn67
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/tracing-on-heterogeneous-grids-to-improve-the-concavity-4eszmbzn67
https://typeset.io/papers/tracing-on-heterogeneous-grids-to-improve-the-concavity-4eszmbzn67

TRACING ON HETEROGENEOUS GRIDS TO IMPROVE THE CONCAVITY

PERFORMANCE OF SNAKE ALGORITHMS

András Hajdu, Ioannis Pitas

Artificial Intelligence and Information Analysis Laboratory,

Department of Informatics, Aristotle University of Thessaloniki, Greece

pitas@aiia.csd.auth.gr

ABSTRACT

Existing contour tracing algorithms operate on binary im-

ages at pixel level to traverse the boundary of an object.

However, if the original grayscale image has obscure edge

transitions, it can be very challenging to extract binary ob-

jects properly for pixelwise tracing. A more reliable ap-

proach can be to consider a rough approximation of the

objects and perform tracing on that, followed by a final

adjustment. We can use e.g. the quadtree representation

which belongs to the family of heterogeneous grid repre-

sentations. In this paper, we show how a contour trac-

ing algorithm operating at pixel level can be extended to a

heterogeneous grid representation. The robustness of our

method is demonstrated in snake algorithms to improve

their concavity performance.

1. INTRODUCTION

Boundary extraction is an important topic in digital im-

age processing. Thus, several approaches have been de-

veloped in the past to this end. One of them is the snake

(active contour) model introduced in [1]. The basic idea

here is to evolve a curve iteratively so that it approaches

the object boundary.

Considering its traditional formulation, the snake is a

parametric contour that deforms over a series of iterations

influenced by internal and external forces. Internal forces

control the snake stretching and bending, while external

forces push the snake toward image edges. The problem

with the traditional snake model is that it provides poor

convergence to object concavities. Therefore, initial snake

should be close to the desired boundary. Recently, im-

proved snake methods were proposed [2, 3] to overcome

these difficulties. However, these approaches are com-

putationally expensive and many iteration steps might be

needed to occupy concavities. Thus, if the snake contains

many points (like in [4], where the final snake is used as

an input for object recognition), it is highly recommended

to save iteration steps. A fast and simple approach for that

is presented in [5]. In our experiments, we used the Gradi-

ent Vector Flow (GVF) snake [3], which is known to have

large capture range and good concavity performance.

Research was supported by the project SHARE: Mobile Support for

Rescue Forces, Integrating Multiple Modes of Interaction, EU FP6 In-

formation Society Technologies, Contract Number FP6-004218.

The novel approach we present here starts with some

snake iterations. In this way, the snake usually reaches the

object boundary except at the concave regions. We call

a snake point (snaxel) good, if it has already reached the

boundary of the object, and bad, if it has not. We find the

bad segments of the snake, which usually indicate the en-

trances to concave object regions. We locate the good end

points of the bad segments and perform a direct tracing to

connect them to force the snake into the concavity. It is a

natural idea to make any decisions on snaxels based on the

forces directing the snake. For this reason, we consider the

divergence image of the GVF external force field to clas-

sify snaxels as good or bad, and also to find a way to trace

the boundary at the missing (bad) parts. A naive idea for

tracing could be to try to trace the boundary directly on

the divergence field. However, a closer look to Figure 1

suggests that a pixel level tracer would be really risky, as

the object to trace here is rather obscure and ”thick-arc”

like; see [6] for the proper definition of thick-arcs.

(a) (b)

Fig. 1. Thick-arc like object boundary in the GVF diver-

gence image; (a) thermal image for object detection, (b)

its divergence image with a zoomed window to show the

thick-arc like behavior.

Thus we need a more reliable representation of the

boundary on the divergence image, which can be achieved

e.g. by its quadtree representation. For this reason, we

use those quadtree cells which have low mean divergence

values, as they are expected to cover the object bound-

ary. The cells belonging to the quadtree decomposition

generate a heterogeneous grid [7], which let the usage of

squares of any size and generalizes the classic 4- and 8-

neighboring relations, accordingly.

The tracing can be performed on the quadtree cells

by extending known contour tracing algorithms operating

at pixel level. Note that, roughly speaking, the heteroge-

neous grid representation covers the boundary of the ob-

ject, and thus the tracing performed inside the concavity

will direct the new snaxels only very close but not exactly

onto the boundary. However, this small inaccuracy can

be nicely and easily compansated by applying again some

snake iteration steps to complete the procedure.

The paper is organized as follows. Section 2 describes

the basic concepts about heterogeneous grids and shows

how a tracer can be generalized to this representation. In

section 3 we present how the bad snake segments are lo-

cated. Section 4 contains our experimental tracer results

for a quadtree-based object representation. Finally, some

conclusions are drawn in section 5.

2. BOUNDARY TRACING ON

HETEROGENEOUS GRIDS

2.1. Heterogeneous grids

The idea of the 2D heterogeneous grid [7] generalizes the

classic rectangular grid �� equipped by the well-known

4- and 8-neighboring relations. In this representation the

plane is tiled with squares of any side length. Some exam-

ples are shown in Figure 2a. Note that one of the examples

is just the quadtree structure that we will use later on. Two

basic adjacency relations can be defined [7] for touching

squares, see Figure 2b,c.

(a)

(b) (c)

Fig. 2. (a) Heterogeneous grids; (b) �-adjacency, (c) ��-

adjacency.

More precisely, a 2D heterogeneous pixel � (square)

is a triplet ��� � �� � �� � � �
� , where ��� � �� � is the cen-

ter of the square, while �� denotes its side length. The

heterogeneous pixels � and � are:

� ve-adjacent, if ������� � ��� � ��� � ���� �
�����
�

,

� e-adjacent, if ������� � ��� � ��� � ���� �
�����

�
,

and ��� � ��� ��
�����

�
or ��� � ��� ��

�����
�

.

As we will focus on finite subsets of heterogeneous

grids, we will call any finite subset of such a grid a hetero-

geneous object.

2.2. Generalizing a tracer for heterogeneous grids

Many boundary tracers are known from the literature [8].

Any of them could be generalized to heterogeneous grids.

However, we will use a less-known, but rather simple, el-

egant and effective tracer instead. This tracer (which was

built in the Recognita
R� OCR software [9]) considers the

vectors between object and object’s complement bound-

ary points instead of object points. This tracer is based on

a very pure idea. Namely, if we make the tracing clock-

wise (CW), we keep the object always at our right hand

size. According to the relative actual direction at a trac-

ing step (see Figure 3a), we turn ”left”, if � is an object

point, else go ”straight”, if 	 is an object point, or else

turn ”right”. For a counter-clockwise (CCW) tracing, we

have to invert the directions.

Our intention is to generalize this tracer for hetero-

geneous objects. We extract these objects through the

quadtree representation by keeping those cells which meet

a special requirement. It is obvious that a simple approach

could be to use the original tracer idea to traverse the

boundary of the heterogeneous object at pixel level. How-

ever, we can achieve an improvement here by focusing

only on the essential information provided by the hetero-

geneous cell descriptors.

Namely, from the heterogeneous object representation

we extract maximal line segments which are between a

boundary heterogeneous cell and the complement of the

object, as can be seen in Figure 3b,c.

(a) (b) (c)

Fig. 3. Extending a pixelwise tracer to heterogeneous

grids, (a) a pixelwise algorithm tracing in CW direction

(see text); (b) its extension to heterogeneous grids in CW

direction, (c) its extension to heterogeneous grids in CCW

direction.

The line segments can be extracted easily from the

quadtree, by checking the �- and ��-neighbors of each

cell. These segments are represented by �
�� ��� pairs,

where
�, ��, denote the start and end pixel of the line

segment, respectively. Note that we have directed line

segments, since �
�� ��� �� ����
��. Then we organize

them into two groups, based on whether they can be used

in CW or CCW tracing. Note that if �
�� ��� belongs to

the CW group, then ����
�� belongs to the CCW one.

In both these groups, we can apply a simple indexing to

achieve fast access to the next segment during tracing.

Thus, we assign the line segment �
�� ��� to the index en-

try
�. Then, to find the next segment, we take simply

the segment corresponding to the current endpoint entry

of the index table. It can be easily checked that this het-

erogeneous object tracer (just like its pixelwise ancestor)

always returns to the starting vector �
��� ����. This prop-

erty can be used as a stopping criterion to extract closed

object boundaries.

3. LOCATING BAD SNAKE SEGMENTS

The main idea behind GVF snakes [3] is to calculate a

GVF force field based on the diffusion of the gradient val-

ues. The final snake is achieved by an iterative process,

which can be tuned by weight parameters for the shape

and the external field. The GVF snake is known about

its concavity resistance, though it may need many compu-

tationally expensive iteration steps to occupy them. See

Figure 4a,b for the performance of the GVF snake after

some iteration steps.

(a) (b) (c)

Fig. 4. The performance of the GVF snake; (a) input ther-

mal image with initial snake points, (b) the GVF snake af-

ter some iteration steps, (c) locating bad snake parts based

on the divergence image of the GVF external force field.

As we use the GVF field for deforming the snake,

we calculate the divergence of the GVF field to decide

whether snaxels reached the desired boundaries. Let

� ��� �� � ����� ��i � ����� ��j (1)

be the GVF field of the image, where �� and �� are the

coordinate functions of � (that is the horizontal and verti-

cal component of the GVF field), and i, j the correspond-

ing basis unit vectors. The divergence of � , denoted by

��� , is the scalar valued function [10]:

��� �
���

��
�

���

��
(2)

that can be also considered as the divergence image of the

GVF field. The physical significance of the divergence is

the rate at which GVF field ”density” exits a given region

of space. In the divergence image, low values correspond

to the object boundaries, while large values to those areas

which are far from the boundaries. We use divergence

values to check whether a snaxel has already converged to

the boundary or not.

The use of the divergence instead of some simple con-

siderations on the local vector behavior (like in [11]) pro-

vides a more concrete basis for this decision. Namely, we

say that a snaxel reached the boundary, if its divergence

value satisfies:

��� � �� (3)

where � is an appropriately chosen threshold. The magni-

tude of � should be adjusted according to the edge strength

of the image. Snaxels that do not fulfill (3) are considered

belonging to bad segments, and as it can be seen in Figure

4c are removed from the snake. As snaxels are stored in

an ordered sequence, we can easily locate the remaining

good end-points of the bad segments. Based on the dis-

tance of the remaining consecutive snaxels, we can decide

whether to initiate a tracer between them. Accordingly,

we select a start

� and end
�� snaxel to trace between.

4. TRACING QUADTREE BASED

HETEROGENEOUS OBJECTS

In our current approach, we perform a quadtree decom-

position of the GVF divergence field, as shown in Figure

5a. To approximately cover the boundary of the object by

larger cells, we select only those cells from the quadtree,

which contain low divergence values. It is well-known

that the parameters of the quadtree procedures provide

wide flexibility regarding the desired size and intensity

distribution of the cells. In our case, as a natural thresh-

old, we keep only those blocks, which average intensity

is smaller than � � �, with some � � �, where � is the

same threshold as in (3). The role of � is to include all

the boundary points within the blocks preserved. Larger

� makes the preserved blocks larger, by allowing points

a bit more away from edges. A too large � might lead

to cover narrow concavities completely, which makes the

main goal meaningless. The result is shown in Figure 5b.

We shall denote by� the heterogeneous object defined as

the union of the selected quadtree cells. � can be even

disconnected, but has a subset which can be considered as

a rough estimation of the object contour. See Figure 5c for

a closer look of a countersection, where the snake breaks.

As the next step, we extract the necessary indexed data

to trace the boundary of� as it was described in Section 2.

To start the tracer from

� we have to determine a trace-

able edge �
��� ���� of� . To set up a successful stopping

rule, we have to determine a similar edge for
��. The

tracer stops when reaching the end point of the stopping

edge.

We also have to determine whether tracing should be

performed in CW or CCW. We follow the process pre-

sented in [5] here, on how to estimate the direction of the

(a) (b) (c)

(d) (e) (f)

Fig. 5. Steps of tracing on quadtree based heterogeneous

grid, (a) quadtree decomposition of the divergence field,

(b) heterogeneous object � (black) to cover the object

boundary, (c) missing snake part, and the estimation of

boundary direction, (d) tracing the boundary of � , (e) in-

put snake for the closing GVF iterations, (f) final result.

boundary. (In short, we perform a check to detect pix-

els with low divergence around

� not occupied by the

snake. The estimated directions are shown with dotted

line in Figure 5c.) When we have an estimation for the

behavior of the boundary from

� on, we start search-

ing for a boundary edge of � from

� in the direction of

�
� also considering the estimated direction of the bound-

ary. This edge will be considered as the starting edge of

the tracer. According to the CW and CCW selection, the

tracer should start in that direction, which is closer to the

estimated boundary direction. The stopping edge of �

can be found similarly, by changing the role of

� end

�
�. See Figure 5d, where the starting and ending edges

are shown by solid arrows, together with the tracing result.

We insert the new part found by tracing between

�

and �
� into the snake. As the tracing also has sequen-

tial behavior, the ordering of the snaxels can be preserved

without any difficulties. To complete, we perform some

additional GVF iterations to match this rough estimation

accurately to the object boundary. However, few number

of iterations are needed now, as the snake is already close

to its desired final position. See Figure 5e, for the snake

after the tracing step, and the final result in Figure 5f after

some more iteration steps.

5. CONCLUSION

The quadtree representation offers many advantages. On

the one hand, we do not have to mind noise and boundary

linkage problems, as these local inadequacies can be com-

pensated by larger blocks. On the other hand, we can save

computations with working on a sparser grid.

The basic model presented in the paper can be im-

proved and extended in many ways. For example the pre-

sented tracer could operate in any other representations

where the boundary edges can be easily extracted (e.g.

grid of rectangles). Moreover, the method can be used

both for (thick-) arc processing, and object boundary de-

tection. Nevertheless, one point should be kept in mind,

namely that the resulted approximate is just a rough esti-

mation of the pixelwise boundary. For instance, the snake

approach considered here lends a perfect tool to perform

the final adjustment. Our approach can have even higher

importance for snake approaches that are less tolerant to

concavities (e.g. [12]).

6. REFERENCES

[1] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes:

Active contour models,” Int. J. Comp. Vis., vol. 1,

pp. 321-331, 1987.

[2] D. Gil and P. Radeva, “Curvature vector flow to as-

sure convergent deformable models for shape mod-

elling,” LNCS, vol. 2683, pp. 357-372, 2003.

[3] C. Xu, and J.L. Prince, “Snakes, shapes, and gradi-

ent vector flow,” IEEE Trans. IP, vol. 7, pp. 359-369,

1998.

[4] A. Hajdu, A. Roubies and I. Pitas, “Improving the

performance of the GVF snake algorithm,” ISCCSP,

2006.

[5] A. Roubies, A. Hajdu and I. Pitas, “Optimized cham-

fer matching for snake-based image contour repre-

sentations,” ICME, 2006.

[6] F. Alhalabi and L. Tougne, “Toward polygonalisa-

tion of thick discrete arcs,” LNCS, vol. 3691, pp.

197-204, 2005.

[7] D. Coeurjolly and L. Tougne, “Digital straight line

recognition on heterogeneous grids,” Vision Geom-

etry XII, pp. 283-294, 2004.

[8] T. Pavlidis, “Algorithms for graphics and image pro-

cessing,” Computer Science Press, 1982.

[9] http://www.nuance.com/omnipage/

[10] E.C. Young, “Vector and tensor analysis,” Marcel

Dekker, 1993.

[11] C.H. Chuang and W.N. Lie, “A downstream algo-

rithm based on extended gradient vector flow field

for object segmentation,” IEEE Trans. IP, vol. 13, pp.

1379-1392, 2004.

[12] L.D. Cohen and I. Cohen, “Finite-element methods

for active contour models and balloons for 2-D and

3-D images,” IEEE Trans. PAMI, vol. 15, pp. 1131-

1147, 1993.

