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ABSTRACT 

 
Software requirement engineering and evolution essential to software development process, which defines 

and elaborates what is to be built in a project. Requirements are mostly written in text and will later evolve 

to fine-grained and actionable artifacts with details about system configurations, technology stacks, etc. 

Tracing the evolution of requirements enables stakeholders to determine the origin of each requirement and 

understand how well the software’s design reflects to its requirements. Reckoning requirements traceability 

is not a trivial task, a machine learning approach is used to classify traceability between various associated 

requirements. In particular, a 2-learner, ontology-based, pseudo-instances-enhanced approach, where two 

classifiers are trained to separately exploit two types of features, lexical features and features derived from 

a hand-built ontology, is investigated for such task. The hand-built ontology is also leveraged to generate 

pseudo training instances to improve machine learning results. In comparison to a supervised baseline 

system that uses only lexical features, our approach yields a relative error reduction of 56.0%. Most  

interestingly, results do not deteriorate when the hand-built ontology is replaced with its automatically 

constructed counterpart. 
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1. INTRODUCTION 
 
Evolution and refinement of requirements guides the software system development process by 

defining and specifying what to be built for a software system. Requirement specifications, mostly 

documented in natural language, are refined with additional design and implementation details as 

a software project move forwards in its development life cycle. An important task in software 

requirements engineering process is requirements traceability, which is concerned with linking 

requirements in which one is a refinement of the other. Being able to establish traceability links 

allows stakeholders to find the source of each requirement and track every change that has been 

made to it, and ensures the continuous understanding of the problem that needs to be solved so 

that the right system is delivered. 

 

In practice, one is given a set of high-level (coarse-grained) requirements and a set of low-level 

(fine-grained) requirements, and requirements traceability aims to find for each high-level 

requirement all the low-level requirements that refine it. Note that the resulting mapping 

between high- and low-level requirements is many-to-many, because a low-level requirement can 

potentially refine more than one high-level requirement. 
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As an example, consider the three high-level requirements and two low-level requirements shown 

in Figure 1 about the well-known Pine email system. In this example, three traceability links 

should be established between the high-level (HR) and low-level requirements (UC): (1) HR01 is 

refined by UC01 (because UC01 specifies the shortcut key for saving an entry in the address 

book);(2) HR02 is refined by UC01 (because UC01 specifies how to store contacts in the address 

book); and (3) HR03 is refined by UC02 (because both of them are concerned with the help 

system). 

 
 

   

 
 

Figure 1. Samples of high- and low-level requirements. 

 
 

From the perspective of the information retrieval and text mining, requirements traceability is a 

very challenging task. First, there could be abundant information irrelevant to the establishment 

of a link in one or both of the requirements. For instance, the information in the Description 

section of UC01 appears to be irrelevant to the establishment of the link between UC01 and 

HR02. Worse still, as the goal is to induce a many-to-many mapping, information irrelevant to the 

establishment of one link could be relevant to the establishment of another link involving the 

same requirement. For instance, while the Description section appears to be irrelevant to linking 

UC01 and UR02, a traceability linking shall exist between UC01 and HR01. Above all, a link can 

exist between a pair of requirements (HR01 and UC01) even if they do not possess any 

overlapping or semantically similar content words. 
 

Virtually all existing approaches to the requirements traceability task were developed in the soft- 

ware engineering (SE) research community. Related work on this task can be classified into two 

categories: manual and automated approaches. As for manual approaches, requirements 

traceability links are manually recovered by developers. Automated approaches, on the other 

hand, have relied on information retrieval (IR) techniques, which recover links based on 

similarity computed between a given pair of requirements. Hence, such similarity-based 

approaches are unable to recover links between those pairs that do not contain overlapping or 

semantically similar words or phrases as mentioned above. 
 



International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.4, July 2018 
 

23 

 

 

In light of this weakness, requirements traceability is recasted as a supervised binary 

classification task, where each pair of high- and low-level requirements is to be classified as 

positive (having a link) or negative (not having a link). Each pair of requirements is represented 

by two types of features. First, word pairs feature is employed, where each of which is composed 

of a word taken from each of the two requirements involved. These features will enable the 

learning algorithm  to identify both semantically similar and dissimilar word pairs that are 

strongly indicative of a refinement relation between the two requirements, thus overcoming the 

aforementioned weakness associated with similarity-based approaches 

 

Next, features are derived from an ontology hand-built by a domain expert. The sample ontology 

built for the Pine dataset is shown in Table 1. The ontology contains only a verb clustering and  a 

noun clustering: the verbs are clustered by the function they perform, whereas a noun cluster 

corresponds to a (domain-specific) semantic type. 

 

There are at least two reasons why the ontology might be useful for identifying traceability 

links. First, since only those verbs and nouns that (1) appear in the training data and (2) are 

deemed relevant by the domain expert for link identification are included in the ontology, it 

provides guidance to the learner as to which words/phrases in the requirements it should focus 

on in the learning process.1 Second, the verb and noun clusters provide a robust generalization 

of the words/phrases in the requirements.  For instance,  a word pair that is relevant for link 

identification may still be ignored by the learner due to its infrequency of occurrence. The 

features that are computed based on these clusters, on the other hand, will be more robust to the 

infrequency problem and therefore potentially provide better generalizations. 

 

Last, considering ontology a set of natural annotator rationales, pseudo training instances are used 

to help learners by providing indication of the importances of different parts of document as well 

as increasing the size of training instances. 

 

Our main contribution in this paper lies in the proposal of a 2-learner, ontology-based, pseudo- 

instances-enhanced approach to the task of traceability link prediction, where, for the sake of 

robustness, two classifiers are trained to separately exploit the word-pair features, the ontology 

based features, and ontology-enhanced pseudo instances. Results on a traceability dataset 

involving the Pine domain reveal that our use of two learners and the ontology-based features are 

both key to the success of our approach: it significantly outperforms not only a supervised 

baseline system that uses only word pairs features, but also a system that trains a single classifier 

over both the word pairs and the ontology-based features. Perhaps most interestingly, results do 

not deteriorate when the hand-built ontology is replaced with an automatically constructed 

ontology. And by feeding the learners with pseudo training instances generated from ontology, 

the performance is improved further significantly. 

 

The rest of the paper is organized as follows. Section 2 describes related work. Section 3 

introduces the Pine dataset and our hand-built ontology is described in Section 4. Then Section 5 

presents our 2-learner, ontology-based, pseudo-instances-enhanced approach to traceability link 

prediction. Finally, Section 6 presents evaluation results and Section 7 draws conclusions. 
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2. RELATED WORK 
 

2.1. MANUAL APPROACHES 
 

Traditional manual requirements tracing is usually accomplished by system analysts with the help 

of requirement management tools, where analysts visually examine each pair of requirements 

documented in the requirement management tools to build the Requirement Traceability Matrix 

(RTM). Most existing requirement management tools (e.g., Rational DOORS, Rational Requisite-

Pro, CASE) support traceability analysis. Manual tracing is often based on observing the 

potential relevance between a pair of requirements belonging to different categories or at different 

levels of details.  The manual process is human-intensive and error-prone given a large set  of 

requirements. Moreover, such domain knowledge could be lost due to requirements changes, 

distributed teams, or system refactoring during the life cycle of system development and evolution 

 
Table 1. Manual ontology for Pine. 

 

(a) Noun clustering 
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(b) Verb clustering 
 
 

 
 

2.2. AUTOMATED APPROACHES 
 
Automated or semi-automated requirements traceability has been exploited by many researchers. 

Pierce [2] designed a tool that maintains a requirements database to aid automated requirements 

tracing. Jackson [3] proposed a keyphrase-based approach for tracing a large number of 

requirements of a large Surface Ship Command System. More advanced approaches relying on 

information retrieval (IR) techniques, such as the tf-idf-based vector space model [4], Latent 

Semantic Indexing [5–7], probabilistic networks [8], and Latent Dirichlet Allocation [9], have 

been investigated, where traceability links were generated by calculating the textual similarity 

between requirements using similarity measures such as Dice, Jaccard, and Cosine coefficients 

[10]. All these methods were developed based on either matching keywords or identifying similar 

words across a pair of requirements. In recent years, Li [11] studied the feasibility of employing 

supervised learning to accomplish this task. Guo [12] applied word embedding and recurrent 

neural network to generate trace links. 
 

3. DATASET 
 

The well known Pine system is used for evaluation. This dataset consists of a set of 49 (high- 

level) requirements and a set of 51 (low-level) use case specifications about Pine, an email system 

developed at the University of Washington. Statistics on the dataset are provided on Table 2. The 

dataset has a skewed class distribution: out of the 2499 pairs of requirement and use case 

specification, only 10% (250) are considered traceability links. 
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Table 2. Statistics on the Pine dataset. 
 

 

 
 

4. HAND-BUILDING THE ONTOLOGY 
 

As mentioned before, our ontology is composed of a verb clustering and a noun clustering. A soft- 

ware engineer who has expertise in both requirements traceability and the Pine software domain is 

employed to hand-build the ontology. Using his domain expertise, the engineer first identified the 

noun categories and verb categories that are relevant for traceability prediction. Then, by inspect- 

ing the training data, he manually populated each noun/verb category with the words and phrases 

collected from the training data. 

 

As will be discussed in Section 6, our approach is evaluated by using 5-fold cross validation. Since 

the nouns/verbs in the ontology were collected only from the training data, the software engineer 

built five ontologies, one for each fold experiment. Hence, nouns/verbs that appear in only the test 

data in each fold experiment will not be in the ontology. In other words, our test data are truly 

held-out w.r.t. the construction of the ontology. Table 1 shows the ontology built for one of the 

fold experiments. Note that the five ontologies employ the same set of noun and verb categories, 

differing only w.r.t. the nouns and verbs that populate each category. As it can be seen from Table 

1, eight groups of nouns and ten groups of verbs are defined. Each noun category represents a 

domain-specific semantic class, and each verb category corresponds to a function performed by 

the action underlying a verb. 
 

5. APPROACH 
 

This section describes our supervised approach alongside with its three extensions. 

 

5.1    CLASSIFIER TRAINING 
 

Each instance corresponds to a high-level requirement and a low-level requirement. Hence, in- 

stances are created by pairing each high-level requirement with each low-level requirement. The 

class value of an instance is positive if the two requirements involved should be linked; otherwise, 

it is negative. To conduct 5-fold cross-validation experiments, instances are randomly partitioned 

into five folds of roughly the same size. A classifier is trained on only four folds and evaluated 

on the remaining fold in each fold experiment. Each instance is represented using seven types of 

features, as follows 
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Same words.  One binary feature is created for each word w appearing in the training data. Its 

value is 1 if w appears in both requirements in the pair under consideration. Hence, this feature 

type contains the subset of the word pair features mentioned earlier where the two words in the 

pair are the same. 

 

Different words. One binary feature is created for each word pair (wi, wj) collected from the 

training instances, where wi and wj are non-identical words appearing in a high-level requirement 

and a low-level requirement respectively. Its value is 1 if wi and wj appear in the high-level and 

 

Verb pairs. One binary feature is created for each verb pair (vi, vj) collected from the training 

instances, where (1) vi and vj appear in a high-level requirement and a low-level requirement 

respectively, and (2) both verbs appear in the ontology. Its value is 1 if vi and vj appear in the 

high-level and low-level pair under consideration, respectively. Using these verb pairs as features 

may allow the learner to focus on verbs that are relevant to traceability prediction. 

 

Verb group pairs. For each verb pair feature described above, one binary feature is created by 

replacing each verb in the pair with its cluster id in the ontology. Its value is 1 if the two verb 

groups in the pair appear in the high-level and low-level pair under consideration, respectively. 

These features may enable the resulting classifier to provide robust generalizations in cases where 

the learner chooses to ignore certain useful verb pairs owing to their infrequency of occurrence. 

 

Noun pairs. One binary feature is created for each noun pair (ni, nj) collected from the training 

instances, where (1) ni and nj appear in a high-level requirement and a low-level requirement 

respectively, and (2) both nouns appear in the ontology. Its value is computed in the same manner 

as the verb pairs. These noun pairs may help the learner to focus on verbs that are relevant to 

traceability prediction. 

 

Noun group pairs. For each noun pair feature described above, one binary feature is created by 

replacing each noun in the pair with its cluster id in the ontology. Its value is computed in the 

same manner as the verb group pairs. These features may enable the classifier to provide robust 

generalizations in cases where the learner chooses to ignore certain useful noun pairs owing to 

their infrequency of occurrence. 

 

Dependency pairs. In some cases, the noun/verb pairs may not provide sufficient information 

for traceability prediction.  For example,  the verb pair feature (delete,  delete) is suggestive of   

a positive instance, but the instance may turn out to be negative if one requirement concerns 

deleting messages and the other concerns deleting folders. As another example, the noun pair 

feature (folder, folder) is suggestive of a positive instance, but the instance may turn out to be 

negative if one requirement concerns creating folders and the other concerns deleting folders. 

 

In other words, useful features are those that encode the verbs and nouns in isolation but the 

relationship between them. To do so, each requirement is parsed by the Stanford dependency 

parser [13], and each noun-verb pair (ni ,vj)  is collected if it’s connected by a dependency 

relation. Binary features are created by pairing each related noun-verb pair found in a high-level 

training requirement with each related noun-verb pair found in a low-level training requirement. 

The feature value is 1 if the two noun-verb pairs appear in the pair of requirements under 

consideration. To enable the learner to focus on learning from relevant verbs and nouns, only 

verbs and nouns that appear in the ontology are used to create these features. 
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LIBSVM [14] is employed as the learning algorithm for training a binary SVM classifier on the 

training set. In particular the linear kernel is chosen to tune the C value (the regularization 

parameter) to maximize F-score on the development (dev) set. All other learning parameters are 

set to their default values. 

 

To improve performance, feature selection (FS) is employed by using the backward elimination 

algorithm [15]. Starting with all seven feature types, the algorithm iteratively removes one feature 

type at a time until only one feature type is left. Specifically, in each iteration, it removes the 

feature type whose removal yields the largest F-score on the dev set. Feature subset that achieve 

the largest F-score on the dev set over all iterations is picked to be applied in test set. 

 

Note that tuning the C value (from LIBSVM) and selecting the feature subset both require the 

use of a dev set. In each fold experiment, one fold is reserved for development and the remaining 

three folds is used for training classifiers. C value is jointly tuned with the selection of feature 

subset that maximizes F-score on the dev set. 

 

5.1. THREE EXTENSIONS 
 

The following presents three extensions to our supervised approach. 

 

5.1.1. EMPLOYING TWO VIEWS 
 

Our first extension involves splitting our feature sets into two views (i.e., disjoint subsets) and 

training one classifier on each view. To motivate this extension, recall that the ontology is com- 

posed of words and phrases that are deemed relevant to traceability prediction according to a SE 

expert. In other words, the (word- and cluster-based) features derived from the ontology (i.e., 

features 3–7 in our feature set) are sufficient for traceability prediction, and the remaining 

features (features 1 and 2) are not needed according to the expert. While some of the word pairs 

that appear in features 1 and 2 also appear in features 3–7, most of them do not. If these expert-

determined irrelevant features are indeed irrelevant, then retaining them could be harmful for 

classification because they significantly outnumber their relevant counterparts. However, if some 

of these features are relevant (because some relevant words are missed by the expert, for 

instance), then  removing them would not be a good idea either. 
 

Our solution to this dilemma is to divide the feature set into two views. Given the above discussion, 

a natural feature split would involve putting the ontology-based features (features 3–7) into one 

view and the remaining ones (features 1–2) into the other view. Then one SVM classifier is trained 

on each view as before. During test time, both classifiers are applied to a test instance, classifying 

it using the prediction associated with the higher confidence value.5 This setup would prevent the 

expert-determined irrelevant features from affecting the relevant ones, and at the same time avoid 

totally discarding them in case they do contain some relevant information. 
 

A natural question is: why not simply use backward elimination to identify the irrelevant features? 

While FS could help, it may not be as powerful as one would think because (1) backward 

elimination is greedy; and (2) the features are selected using a fairly small set of instances (i.e., 

the dev set) and may therefore be biased towards the dev set. 
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In fact, our 2-learner setup and FS are considered as complementary rather than competing 

solutions to our dilemma. In particular, FS is to be used in the 2-learner setup: when training the 

classifiers on the two views, backward elimination is employed in the same way as before by 

removing the feature type (from one of the two classifiers) whose removal yields the highest F-

score on the dev set in each iteration. 
 

5.1.2. LEARNING THE ONTOLOGY 
 

An interesting question is: can the ontology be learned instead of hand-built? Not only is this 

question interesting from a research perspective, it is of practical relevance: even if a domain 

expert is available, hand-constructing the ontology is a time-consuming and error-prone process. 

The following describes the steps for ontology learning, which involves producing a verb 

clustering and a noun clustering. 
 

Step 1: Verb/Noun selection. The nouns, noun phrases (NPs) and verbs in the training set will be 

clustered. Specifically, a verb/noun/NP is selected if (1) it appears more once in the training data; 

(2) it contains at least three characters (thus avoiding verbs such as be); and (3) it appears in the 

high-level but not the low-level requirements and vice versa. 
 

Step 2: Verb/Noun representation. Each noun/NP/verb is represented as a feature vector. Each 

verb v is represented using the set of nouns/NPs collected in Step 1. The value of each feature is 

binary: 1 if the corresponding noun/NP occurs as the direct or indirect object of v in the training 

data (as determined by the Stanford dependency parser), and 0 otherwise. Similarly, each noun  

n is represented using the set of verbs collected in Step 1.  The value of each feature is binary:   

1 if n serves as the direct or indirect object of the corresponding verb in the training data, and 0 

otherwise. 

 

Step 3: Clustering. Verbs and the nouns/NPs are clustered separately to produce a verb clustering 

and a noun clustering. Two clustering algorithms are experimented. The first one, which is referred 

to as Simple, is the classical single-link algorithm. Single-link is an agglomerative algorithm where 

each object to be clustered is initially in its own cluster. In each iteration, it merges the two most 

similar clusters and stops when the desired number of clusters is reached. The second clustering 

algorithm is motivated by the following observation. A better verb clustering could be produced 

if each verb were represented using noun categories rather than nouns/NPs, because there is no 

need to distinguish between the nouns in the same category in order to produce the verb clusters. 

Similarly, a better noun clustering could be produced if each noun were represented using verb 

categories.  

 

In practice, the noun and verb categories do not exist (because they are what the clustering 

algorithm is trying to produce). However, the (partial) verb clusters produced during the verb 

clustering process can be used to improve noun clustering and vice versa. This motivates our 

Interactive clustering algorithm. Like Simple, Interactive is also a single-link clustering 

algorithm. Unlike Simple, which produces the two clusterings separately, Interactive interleaves 

the verb and noun clustering processes, as described below. 

 

Initially, each verb and each noun is in its own cluster. In each iteration, (1) the two most similar 

verb clusters is merged; (2) the noun’s feature representation are updated by merging the two 

verb features that correspond to the newly formed verb cluster; (3) the two most similar noun 
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clusters are merged using this updated feature representation for nouns; (4) the verb’s feature 

representation are updated by merging the two noun features that correspond to the newly 

formed noun cluster. As in Simple, Interactive terminates when the desired number of clusters is 

reached. 

 

For both clustering algorithms, the similarity between two objects are computed by taking the dot 

product of their feature vectors.  Since both clustering algorithms are single-link, the similarity 

between two clusters is the similarity between the two most similar objects in the two clusters. 

 

Considering the number of clusters to be produced is not known a priori, three noun clusterings 

and three verb clusterings (with 10, 15, and 20 clusters each) are generated. Then the combination 

of noun clustering, verb clustering, the C value, and the feature subset that maximizes F-score on 

the dev set is selected, and the resulting combination is applied on the test set. 
 

5.1.3.  EXPLOITING RATIONALES 
 

This section describes another extension to the baseline: exploiting rationales to generate 

additional training instances for the SVM learner. 

 

Background 
 

The idea of using annotator rationales to improve text classification was proposed by Zaidan et al. 

[1] A rationale is a human-annotated text fragment that motivates an annotator to assign a 

particular label to a training document. In their work on classifying the sentiment expressed in 

movie reviews as positive or negative, Zaidan et al. generate additional training instances by 

removing rationales from documents. Since these pseudo-instances lack information that the 

annotators thought as important, an SVM learner should be less confident about the label of 

these weaker instances (by placing the hyperplane closer to the less confidently labeled training 

instances). A learner that successfully learns this difference in confidence assigns a higher 

importance to the pieces of text that are present only in the original instances. Thus the pseudo-

instances help the learner both by providing indication to which parts of the documents are 

important and by increasing the number of training instances. 

 

Application to Traceability Prediction 

 

Unlike in sentiment analysis, where rationales can be identified for both positive and negative 

training reviews, in traceability prediction, rationales can only be identified for the positive training 

instances (i.e., pairs with links).  As noted before,  the reason is that in traceability prediction,  

an instance is labeled as negative because of the absence of evidence that the two requirements 

involved should be linked, rather than the presence of evidence that they should not be linked. 

Hence, only positive pseudo-instances will be created for training a traceability predictor. 

 

Zaidan et al.’s method cannot be applied as is to create positive pseudo-instances. According to 

their method, (1) a pair of linked requirements is chosen, (2) the rationales from both of them are 

removed, (3) a positive pseudo-instance from the remaining text fragments is created, and (4) a 

constraint is added to the SVM learner, forcing the learner to classify that positive pseudo-instance 

less confidently than the original positive instance. Creating positive pseudo-instances in this way 

is problematic for our task. The reason is simple: a negative instance in our task stems from the 
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absence of evidence that the two requirements should be linked. In other words, after removing 

the rationales from a pair of linked requirements, the pseudo-instance created from the 

remaining text fragments should be labeled as negative. 

 

Given this observation, one option is to employ Zaidan et al.’s method to create negative pseudo 

instances. Another option would be to create a positive pseudo-instance from each pair of linked 

requirements by removing any text fragments from the pair that are not part of a rationale. In 

other words, only the rationales are used to create positive pseudo-instances. Both options could 

be viable, but positive rather than negative pseudo-instances are chosen to add to our training set, 

as adding positive pseudo-instances will not aggravate the class imbalance problem. 

 

Unlike Zaidan et al., who force the learner to classify pseudo-instances less confidently than the 

original instances, our learner decide whether it wants to classify these additional training in- 

stances more or less confidently based on the dev data. In other words, this confidence parameter 

(denoted as µ in Zaidan et al.’s paper) is tuned jointly with the C value to maximize F-score on the 

dev set. Note that pseudo-instances are created only for the training set, as rationales are annotated 

only in the training documents. 

 

To better understand our annotator rationale framework, let us define it more formally. Recall that 

in a standard soft-margin SVM, the goal is to find w and ξ to minimize 
 

 

 

 

subject to 

 

where xi is a training example; ci ∈ {−1, 1} is the class label of xi; ξi is a slack variable that 

allows xi to be misclassified if necessary; and C > 0 is the misclassification penalty (a.k.a. the 

regularization parameter). 

 

The following constraints are added to enable this standard soft-margin SVM to also learn from 

the positive pseudo-instances: 
 

 

 

where vi is the positive pseudo-instance created from positive example xi, ξi ≥ 0 is the slack 

variable associated with vi, and µ is the margin size (which controls how confident the classifier 

is in classifying the pseudo-instances). 

 

Similarly, the following constraints are added to learn from the negative pseudo-instances: 
 

 
 

where uij is the jth negative pseudo-instance created from positive example xi, ξij ≥ 0 is the slack 

variable associated with uij, and µ is the margin size. 
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Our learner decide how confidently it wants to classify these additional training instances based 

on the dev data. Specifically, this confidence parameter µ is tuned jointly with the C value to 

maximize F-score on the dev set. 

 

6. EVALUATION 
 

6.1. EXPERIMENTAL SETUP 
 

F-score, which is the unweighted harmonic mean of recall and precision, is employed as the 

evaluation measure. Recall is the percentage of links in the gold standard that are recovered by 

our system. Precision is the percentage of links recovered by our system that are correct. Each 

document is preprocessed by removing stopwords and stemming the remaining words. All 

results are obtained via 5-fold cross validation. 
 

6.2. RESULTS AND DISCUSSION 
 

6.2.1. BASELINE SYSTEMS 
 

There are two unsupervised and two supervised baselines. 
 

Baseline 1: Tf.Idf. Motivated by previous work, tf.idf  is employed as our first unsupervised 

baseline. Each document is represented as a vector of unigrams. The value of each feature is its 

tf.idf value. Cosine is used to compute the similarity between two documents. Any pair of 

requirements whose similarity exceeds a given threshold is labeled as positive. Thresholds from 

0.1 to 0.9 with an increment of 0.1 are tested and results are reported using the best threshold, 

essentially giving an advantage to it in the performance comparison. From row 1 of Table 3, it 

achieves an F-score of 54.5%. 

 

Baseline 2: LDA. Also motivated by previous work, LDA is employed as our second unsuper- 

vised baseline. An LDA is trained on our data to produce n topics (where n=10, 20, . . ., 60). Then 

the n topics are used as features for representing each document, where the value of a feature is the 

probability the document belongs to the corresponding topic. Cosine is used as the similarity 

measure. Any pair of requirements whose similarity exceeds a given threshold is labeled as 

positive. Thresholds from 0.1 to 0.9 with an increment of 0.1 are tested and results are reported 

using the best threshold, essentially giving an advantage to it in the performance comparison. 

From row 2 of Table 3, it achieves an F-score of 34.2%. 
 

Baseline 3: Features 1 and 2. As the first supervised baseline, a SVM classifier is trained using 

only features 1 and 2 (all the word pairs). From row 3 of Table 3, it achieves F-scores of 57.1% 

(without FS) and 67.7% (with FS). These results suggest that FS is indeed useful. 

 
Baseline 4: Features 1, 2, and LDA. As the second supervised baseline, feature set used in 

Baseline 3 is augmented with the LDA features used in Baseline 2 and then a SVM classifier is 

trained. The best n (number of topics) is selected using the dev set. Clearly from row 4 of Table 3, 

this is the best of the four baselines: it significantly outperforms Baseline 3 regardless of whether 

feature selection is performed, suggesting the usefulness of the LDA features. 
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6.2.2.  OUR APPROACH 
 

Next, our 2-learner, ontology-based approach is evaluated, without using pseudo instances created 

from rationales. In the single-learner experiments, a classifier is trained on the seven features 

described in Section 4.1, whereas in the 2-learner experiments, these seven features are split as 

described in Section 4.2. 

 
Setting 1: Single learner, manual clusters. From row 5 of Table 3 under “No pseudo” column, 

this classifier significantly outperforms the best baseline (Baseline 4): F-scores increase by 4.6% 

(without FS) and 3.5% (with FS). Since the only difference between this and Baseline 4 lies in 

whether the LDA features or the ontology-based features are used, these results seem to suggest 

that features formed from the clusters in our hand-built ontology are more useful than the LDA 

feature. 
 

Setting 2: Single learner, induced clusters. From row 6 of Table 3 under “No pseudo” column, 

this classifier performs statistically indistinguishably from the one in Setting 1. This is an 

encouraging result: it shows that even when features are created from induced rather than 

manual clusters, performance does not significantly drop regardless of whether FS is performed. 

 

Setting 3: Two learners, manual clusters. From row 7 of Table 3 under “No pseudo” column, 

this classifier performs significantly better than the one in Setting 1: F-scores increase by 9.2% 

(without FS) and 3.0% (with FS). As the two settings differ only  w.r.t. whether one or two 

learners are used, the improvements suggest the effectiveness of our 2-learner framework. 
 

Setting 4: Two learners, induced clusters. From row 8 of Table 3 under “No pseudo” column, 

this classifier performs significantly better than the one in Setting 2: F-scores increase by 9.3% 

(without FS) and 5.8% (with FS). It also performs indistinguishably from the one in Setting 3. 

Taken together, these results suggest that (1) our 2-learner framework is effective in improving 

performance, and (2) features derived from induced clusters are as effective as those from manual  

clusters. 
Table 3. Five-fold cross-validation results. 

 

 
Notes: R, P, and F are denoted as Recall, Precision, and F-score respectively 



International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.4, July 2018 
 

34 

 

Overall, these results show that (1) our 2-learner, pseudo-instances-enhanced, ontology-based 

approach is effective, and (2) feature selection consistently improves performance. 

 

To gain insights into which features and which clustering algorithms output are being selected, the 

best-performing system (row 8 in Table 3) has selected (as determined on the dev set) the feature 

subsets of features 1 (same words), 3 (verb pairs), 4 (verb group pairs), and 5 (noun pairs), as well 

as the Interactive (with 20 clusters) clustering output. 

 

6.2.3. FURTHER INVESTIGATION 

 

This section discusses usage of pseudo instances during model training to boost the learning 

performance. 

 

Using Positive Pseudo-instances 

 

The “Pseudo pos only” column of Table 3 shows the results when each of the systems is trained 

with additional positive pseudo-instances. 

 

Comparing row-wise with “No pseudo” column, it shows that employing positive pseudo-instances 

increases performance on Pine. F-scores rise by 1.1–3.9% without FS and 1.8–3.8% with FS. The 

corresponding F-scores in all cases are statistically distinguishable. These results seem to suggest 

that the addition of positive pseudo-instances is useful for traceability link prediction. 
 

Using Positive and Negative Pseudo-instances 
 

The “Pseudo pos+neg” column of Table 3 shows the results when each of the systems is trained 

with additional positive and negative pseudo-instances. 
 

 

Comparing these results with the corresponding “Pseudo pos only” results, it shows that 

additionally employing negative pseudo-instances almost consistently improves performance: F-

scores rise by 0.8–2.0% without FS and up to 2.4% with FS, with one exception case (1 learner 

with manual clusters and FS, which drops by 0.7%). Nevertheless, the corresponding F-scores in 

two of four 1-learner cases (manual/with FS, induced/no FS) are statistically indistinguishable. 

But interestingly, the improvements in F-score in all four 2-learner cases are statistically 

significant. These results suggest that the additional negative pseudo-instances provide useful 

supplementary information for traceability link prediction. 

 

In addition, the use of features derived from manual/induced clusters to the supervised baseline 

consistently improves its performance: F-scores rise significantly by 1.3–14.5%. 

 

Finally, the best results in our experiments are achieved when both positive and negative pseudo 

instances are used in combination with manual/induced clusters and feature selection: F-scores 

reach 81.1–81.3%. These results translate to significant improvements in F-score over the 

supervised  baseline (with no pseduo instances) by 13.4–13.6%, or relative error reductions of 

41.5– 42.1%. 
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Pseudo-instances from Residuals 
 

Recall that Zaidan et al. [1] created pseudo-instances from the text fragments that remain after 

the rationales are removed. In Section 5.2.3, an argument has arisen that their method of creating 

positive pseudo-instances for our requirements traceability task is problematic. In this subsection, 

the correctness of this claim is verified empirically. 

 

Specifically, the “Pseudo residual” column of Table 3 shows the results when each of the “No 

pseudo” systems is additionally trained on the positive pseudo-instances created using Zaidan et 

al.’s method. Comparing these results with the corresponding “Pseudo pos+neg” results, it shows 

that replacing our method of creating positive pseudo-instances with Zaidan et al.’s method causes 

the F-scores to drop significantly by 21.0–30.3% in all cases. In fact, comparing these results with 

the corresponding “No pseudo” results, it shows that employing positive pseudo-instances created 

from Zaidan et al.’s method yields significantly worse results than not employing pseudo-instances 

at all. These results provide suggestive evidence for our claim. 

 

7. CONCLUSIONS 
 

A 2-learner, ontology-based, pseudo-instances-enhanced approach to supervised traceability pre- 

diction has been investigated. Results showed that (1) our approach is effective: in comparison to 

the best baseline, relative error reduces by 56.0%; (2) the pseudo instances extension is effective, 

which is able to mitigate the situation when human labelled links are insufficient; and (3) also 

interestingly, results obtained via induced clusters were as competitive as those obtained via 

manual clusters, which indicates potential to automate building of ontology rationales for 

traceability prediction and reduce human effort. 
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