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Abstract

Background: PolyA– RNAs have not been widely analyzed in human pre-implantation embryos due to the scarcity
of materials. In particular, circular RNA (circRNA), a novel type of polyA– RNA, has not been characterized during
human pre-implantation development.

Results: We systematically analyze polyA+ messenger RNAs (mRNAs) and polyA– RNAs in individual human
oocytes and pre-implantation embryos using SUPeR-seq. We de novo identify 10,032 circRNAs from 2974 hosting
genes. Most of these circRNAs are developmentally stage-specific and dynamically regulated. Many of them are
maternally expressed, implying their potentially important regulatory functions in oogenesis and the formation of
totipotent zygotes. Comparison between human and mouse embryos reveals both high conservation and clear
distinction between these two species. Human pre-implantation embryos generate more types of circRNA
compared with mouse embryos and this is associated with a striking increase of the length of the circRNA flanking
introns in humans. We also perform RNA de novo assembly and identify novel transcript units, many of which are
potentially novel long non-coding RNAs.

Conclusions: This study reports the first analysis of the whole transcriptome comprising both polyA+ mRNAs and
polyA– RNAs including circRNAs during human pre-implantation development. It provides an invaluable resource
for analyzing the unique function and complex regulatory mechanisms of circRNAs during this process.
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Background
The analysis of gene expression dynamics is important

to elucidate the molecular mechanisms regulating the

developmental processes of human early embryos. We

recently analyzed the transcriptome profiles of human

pre-implantation embryos at the single-cell level [1].

However, the oligo-d(T) primers used in our previous

work only allowed us to detect the polyA+ messenger

RNAs (mRNAs), leaving the polyA– RNAs largely

unknown.

A specific type of polyA– RNA, circular RNA (cir-

cRNA), has recently emerged as a large class of non-

coding RNAs in eukaryotic cells [2–4]. The circular

transcripts can consist of back-spliced exons [5], introns

as ciRNAs [6], or both exons and introns as EIciRNAs

[7]. CircRNAs may play important roles—for example,

acting as microRNA sponges [8, 9], competing with lin-

ear splicing [10], or interacting with the U1 snRNP to

regulate gene expression [7]—during several biological

processes. The genomic features that promote circRNA

biogenesis, such as inverted repeats in the flanking in-

trons [11], longer flanking introns [12], and canonical

splicing sites [10], have been investigated in vitro and in

vivo. CircRNAs have been identified in many tissues

across different species. A recent study of circRNAs in

the mammalian brain shows that they are significantly

conserved in expression patterns and sequences [13, 14].

To fully reveal a more complete landscape of individual

embryo transcriptome, including the newly discovered
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circRNAs, during human pre-implantation development,

a method that can detect both polyA+ mRNAs and

polyA– RNAs in a single embryo is needed. However,

conventional RNA-sequencing (RNA-seq) methods for

polyA– RNAs requires a large amount of starting material

and is unsuitable for such scarce and precious samples,

and the current single-cell RNA-seq methods are incap-

able of capturing polyA– RNA species due to the usage of

oligo dT as the reverse transcription primers [15–18].

Recently, we have developed a novel single-cell RNA-

seq technique, SUPeR-seq [19], which can detect both

polyA+ mRNAs and polyA– RNAs from a single mam-

malian cell. This novel method has been successfully ap-

plied for investigating polyA– RNAs including circRNAs

during mouse pre-implantation development [19]. Here,

we apply SUPeR-seq to systematically analyze the tran-

scriptomes of individual human pre-implantation embryos.

We have identified a total of 10,032 exonic circRNAs

from 2974 hosting genes in human pre-implantation

embryos, including a large proportion of circRNA host-

ing genes of mouse pre-implantation embryos. In

addition, based on spike-ins, we quantitatively calculated

the total copy number of mRNAs in each oocyte or em-

bryo and analyzed the differential expressed genes

(DEG) during human pre-implantation development

with RPKM normalized by the mRNA content. A total

of 5573 maternal genes and 7427 zygotically activated

genes during the major wave of the maternal zygotic

transition were identified. Based on the DEG analysis,

among 2974 circRNA hosting genes, over half of them

(1554) were maternal genes and 851 were zygotic genes.

This is the first analysis of the whole transcriptome com-

prised of both polyA+ mRNAs and polyA– RNAs includ-

ing circRNAs in human pre-implantation embryos.

Results and discussion

Global expression dynamics of RefSeq genes during

human pre-implantation development

To determine the expression dynamics of the complete

transcriptome, including polyA+ mRNAs and polyA–

RNAs, during human pre-implantation development, we

sequenced individual cells and embryos at seven con-

secutive stages (mature oocytes, zygotes, 2-cell, 4-cell,

and 8-cell embryos, morulae, and blastocysts) using

SUPeR-seq, a single-cell RNA-seq technique we devel-

oped recently [19]. Specifically, we profiled the blasto-

cysts at the early blastocyst, blastocyst, and hatched

blastocyst stages and analyzed a total of 29 oocytes and

embryos (Fig. 1a; Additional file 1: Table S1). Principal

component analysis (PCA) showed that the embryos at

the same developmental stage clustered together prop-

erly and the embryos at different stages separated from

each other as expected (Fig. 1b). The analysis of global

Pearson correlation coefficients showed a similar pattern

(Fig. 1c). In addition, the correlation coefficients between

replicates at the same stage are high (Additional file 2:

Figure S1A, in the red box). To further verify the stability

of the SUPeR-seq method, we also compared the External

RNA Controls Consortium (ERCC) RNAs spiked in these

samples. The average Pearson correlation coefficients of

ERCC between different samples was 0.94, verifying that

the SUPeR-seq method is reproducible for measuring gene

expression of individual human pre-implantation embryos

(Additional file 2: Figure S1B). The proportion of du-

plicated pair-end reads in our SUPeR-seq data is low

(Additional file 2: Figure S1C).

Next, we estimated the total transcript number and

their dynamic changes by using external spike-ins. Con-

sidering that the commonly used ERCC spike-ins have

low capture efficiency (Additional file 2: Figure S2A),

which may be due to their shorter polyA tails (≈20 nt)

[20, 21], we added an additional set of RGC-A80 spike-

ins for normalization which have 80 nt polyA tails closed

to the polyA tail length of the endogenous mRNA mole-

cules (see “Methods”). The accuracy of this algorithm of

mRNA quantification was validated by droplet digital

polymerase chain reaction (ddPCR) [22, 23] (Additional

file 2: Figure S2B). We estimated that a human oocyte

expressed an average of 66 million copies of mRNA,

which decreased to 29 million after fertilization (Fig. 2a,

Additional file 2: Figure S2C–E and Table 1). The lowest

total copy number of the mRNAs in each embryo was

achieved at the 8-cell stage (average 15.7 million). After this

stage, the mRNAs gradually increased in number due to glo-

bal zygotic activation [24]. In the hatched blastocyst stage,

each embryo contained 150million copies ofmRNAs.

After normalizing the total mRNA content in each

sample during human pre-implantation development,

we identified the differential expressed genes between

each two stages (upregulated genes: fold-change >2, false

positive rate (FDR) <0.05; downregulated genes: fold-

change <0.5, FDR <0.05, Additional file 2: Figure S2F).

With normalized RPKM, we identified a total of 5573

maternally expressed genes whose expression levels are

highest in oocytes and decrease sharply after the 4-cell

stage, and a total of 7427 zygotically activated genes

whose expression levels elevate prominently during the

major wave of MZT (maternal zygotic transition) after

the 4-cell stage (Fig. 2b) [1, 24–26]. The maternally

expressed genes include the ZP (zona pellucida) family

genes and the zygotically activated genes include

POU5f1 and TETs genes [1, 25, 27] (Additional file 3:

Table S2). Because the embryos from the 4-cell stage

and later were developed from cryopreserved embryos,

while the embryos of earlier stages were developed from

freshly isolated oocytes, it is possible that some changes

of the gene expression resulted from the cryopreserva-

tion treatment instead.
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Analysis of the circRNAs in human pre-implantation

embryos by SUPeR-seq

The circRNA is a new class of polyA– RNAs that has

potentially important functions in a variety of biological

processes. Using CIRCexplorer, a recently developed

software [12], we extracted back-spliced ordering reads

from the reads unmapped to the hg19 reference genome.

These candidate back-spliced junction reads were then

used to annotate exonic circRNAs with precise splice

sites linked downstream of the donor exon and up-

stream of the acceptor exon with at least two back-

spliced reads in an individual embryo (see “Methods”).

A

B

C

Fig. 1 Morphology of human early embryos and global expression pattern of RefSeq genes during human pre-implantation development. a
Microscopy images of human mature oocyte and pre-implantation embryos at zygote (2PN), 2-cell, 4-cell, 8-cell, morula, early blastocyst, blastocyst,
and hatched blastocyst stages. Scale bar, 50um. b PCA of the transcriptome of single embryos during human pre-implantation development. c
Pearson correlation coefficient heat map of single embryo transcriptomes during human pre-implantation development
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Fig. 2 mRNA quantification and analysis of differential expressed genes. a mRNA copy numbers in each individual embryo during human
pre-implantation development were estimated by the algorithm of ERCC/RGC-A80 normalization. The calculation process is described in the
section of “Methods.” b Clusters of differential expressed genes by normalized RPKM accounting the total mRNA content in each sample during
pre-implantation development. The first cluster includes 5573 maternal genes, such as ZP family genes, TET3, and GDF9. These 7427 genes from
the 2–5 clusters which are activated from the 4-cell stage during the subsequent developmental stages are defined as zygotic genes. The
representative GO terms of each cluster and corresponding P value are shown at the right panel

Table 1 mRNA and circRNA quantification by ERCC/RGC-A80 normalization algorithm

Stage Oocyte Zygote 2-cell 4-cell 8-cell Morula Early blastocyst Blastocyst Hatched blastocyst

Average mRNA copy number (106) 66.4 29.0 24.6 17.0 15.7 38.1 45.9 104.5 150.7

Average circRNA copy number 56,059 48,983 80,410 190,008 148,656 149,508 93,745 40,194 28,774

circRNA/hosting gene (median) 9 % 7 % 9 % 12 % 14 % 25 % 22 % 17 % 20 %

No. of circRNA genes per embryo 149 299 358 727 602 376 519 252 80

No. of circRNA transcript types per embryo 179 392 488 1,115 869 509 630 278 85

No. of circRNA reads per embryo 585 1529 2248 8059 8024 2702 2911 838 225
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We identified a total of 10,032 exonic circRNAs derived

from 2974 hosting genes in human pre-implantation

embryos. To validate the strategy for identifying the cir-

cRNA, we verified the back-spliced sites from five cir-

cRNAs identified in human embryonic stem cells

(hESCs) by Sanger sequencing (Additional file 2: Figure

S3A and Additional file 4: Table S3). These five circRNA

candidates were also resistant to RNase R treatment,

which validated their circularized characteristics (Add-

itional file 2: Figure S3B and Additional file 4: Table S3).

The abundance of circRNAs dynamically changes be-

tween 28,774 and 190,008 copies per embryo during hu-

man pre-implantation development (see “Methods” and

Table 1). More than half (56 %) of the hosting genes pro-

duce multiple circRNA isoforms as “hot-spot” genes

(Fig. 3a) [14] and the average expression level for each

type of circRNA in each embryo is 92 copies. CSPP1

(centrosome and spindle pole associated protein 1),

which has been reported to host a high expression level

of circRNAs in porcine embryonic brain tissues [14],

produces the highest number of different types of cir-

cRNA transcripts during human pre-implantation devel-

opment (n = 46). Previous studies have shown that

circRNAs are usually excluded from the first and last

exons of their hosting genes [12] and our results showed

that this is also true in human pre-implantation em-

bryos: 10,026 (99.9 %) of 10,032 circRNAs have no asso-

ciation with the first or last exons of their hosting genes

(Fig. 3b). We then manually examined the six (0.1 %) ex-

ceptional circRNAs that appeared to include the first

exon and determined that at least five of them had sev-

eral reads that mapped upstream of the first exon, im-

plying that those originally annotated first exons may

not be real first exons. For example, FAT3, which has

also been identified as a circRNA hosting gene in an-

other cell line [28] that modulates the extracellular space

surrounding axons during embryonic development,

seems to produce circRNA containing its first exon.

Nevertheless, we detected tens of reads spanning the re-

gion upstream of the annotated first exon boundary of

FAT3 (Fig. 3c). This confirms the importance of flanking

introns for circularization [12, 29, 30]. The majority of

circRNAs are composed of multiple exons and the max-

imum number of exons in a circRNA is 56 (Fig. 3d).

The median length of exons of circRNAs is in the

range of 124–227 bp and the longest exons are present

in single-exon circRNAs. This observation indicates that

a minimum length, approximately 200 bp of hosting

RNA, is needed to form a circRNA [12] (Fig. 3e). We

observed that the length of introns flanking the cir-

cRNAs is prominently longer than control introns (up-

stream flanking intron: median 8.7 kb; downstream

flanking intron: median 7.5 kb, all introns: median 1.6

kb, which is consistent with previous studies [10, 12, 31]

(Additional file 2: Figure S3C). While the density of the

Alu repeat elements in the flanking introns of circRNAs

is similar to control introns (Additional file 2: Figure

S3D), the number of Alu elements in the flanking in-

trons is significantly higher than that in control introns

(median 4 and 5 versus 1, Fig. 3f ), which is consistent

with previous findings that Alu element probably pro-

mote exon circularization via RNA pairing across flank-

ing introns [12, 29, 32].

Expression patterns of circRNAs during human pre-

implantation development

Next, we evaluated the ratio of circular transcripts to all

transcripts of a given hosting gene by calculating the ra-

tio of back-spliced reads to the total reads mapping to

each junction site. In human mature oocytes, circRNAs

accounted for on average about 9 % of all transcripts

from a hosting gene. This ratio is relatively stable before

the 4-cell stage. From the 8-cell stage, the proportion of

circRNAs gradually increases, reaching 25 % at the mor-

ula stage (Fig. 4a). Thus, circRNAs constitute a signifi-

cant proportion of hosting gene expression. While the

circRNA/hosting gene transcripts ratio is on average ap-

proximately 10 %, some circRNAs are expressed at levels

even higher than their linear counterparts during pre-

implantation development. Five representative genes

(PRDM2, SETD2 [5], MLLT3, MLLT4, KIT) are shown

in Additional file 2: Figure S4A. These genes participate

in different important processes, such as histone methy-

lation and transcriptional regulation.

We also compared the expression levels of circRNA

hosting genes with other genes which do not have de-

tectable circular transcripts. Before the 8-cell stage, the

averaged expression levels of circRNA hosting genes are

significantly higher than those genes that do not have

detectable circular transcripts. However, after 8-cell

stage, the pattern is reversed (Fig. 4b). In addition, ac-

cording to their expression patterns during pre-

implantation development (Fig. 2b), 2974 circRNA host-

ing genes can be divided into three clusters: 1554 are

maternal genes; 851 are zygotic genes; the remaining

569 genes are undetermined due to our stringent cut-

off for the first two clusters. We introduced a param-

eter, circular to linear ratio (CLR) [13], to compare

the relative abundance of a given circRNA to its lin-

ear transcripts. During pre-implantation development,

the CLR value of the circRNA hosting genes from the

maternal gene cluster increases gradually, especially

after the 8-cell stage. On the contrary, the CLR value

of the circRNA hosting genes from the zygotic gene

cluster decreases gradually (Fig. 4c). We also calcu-

lated the percentage of circRNA transcripts for the

950 maternal hosting genes who have detectable cir-

cular transcripts before the 4-cell stage (Fig. 4d).
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Fig. 3 (See legend on next page.)
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Comparing the percentage of circRNA transcripts for

all hosting genes (Fig. 4a), the increase is sharper and

the percentage after the 8-cell stage is higher. These

results reflect that circRNAs are more resistant to the

global degradation of maternal RNA compared with

the linear transcripts during the MZT process [1, 24].

In addition, we made a comparison between the cir-

cRNA relative abundance and their hosting gene ex-

pression levels. Irrespective of the type of hosting

gene, a negative relationship between the logarithm of

the CLR value and the hosting gene expression was

observed at all time points during human pre-

implantation development (Additional file 2: Figure

S4B), consistently with the previous finding in neur-

onal development [13].

Furthermore, we separated all 2974 circRNA hosting

genes during human pre-implantation development to

ten clusters according to their expression pattern (Add-

itional file 2: Figure S4C and Additional file 5: Table S4).

The circRNAs with high CLR values at early stages were

mainly enriched for Gene Ontology (GO) terms such as

“chromosome organization” and “transcription.” Cir-

cRNAs with specifically high CLRs in morula stage

embryos are mainly enriched for GO terms including

“cell cycle” and “nuclear division.” The corresponding

expression levels of these hosting genes are shown in

Additional file 2: Figure S4D, with the same clustering

manner. In summary, these results showed that more

than half of the circRNA hosting genes in human

pre-implantation embryos are maternal genes (Fig. 4b, c)

and these circRNAs are more resistant to the maternal

linear RNA decay machineries than the corresponding

linear transcripts (Fig. 4a, 4d and Additional file 2:

Figures S4C, D).

Comparative analysis of human and mouse circRNAs

To gain insight into the evolution of circRNAs, we com-

pared the circRNAs of human pre-implantation embryos

with those identified in our previous mouse study [19].

Of all the 1316 circRNAs hosting genes identified in

mouse pre-implantation embryos, 835 (63 % of 1316)

also generate circRNAs in human embryos, indicating

that the circRNA production is in general conserved be-

tween human and mouse (Fig. 5a). Of the 2926 circRNA

hosting genes identified in human H9 embryonic stem

cells (ESCs) in a previous study using a different method

(Additional file 6: Table S5) [12], 1388 (47 % of 2926)

were found to generate circRNAs in human early em-

bryos (Additional file 2: Figure S5A). GO analysis against

the background linear RNA expression showed that the

circRNAs hosting genes in human embryos are enriched

for "genes of organelle organization", "chromosome

organization", "cell cycle process", and "regulation of meta-

bolic process", which is similar to those in mouse embryos

and H9 cells (Fig. 5b, and Additional file 2: Figure S5B, C).

These results indicate that circRNAs are generated by a

highly conserved set of genes in both human and mouse.

An interesting finding is that human-specific circRNAs

hosting genes prominently outnumber the mouse-

specific ones (human versus mouse: 2139 versus 481,

Fig. 5a, Additional file 2: Figure S5D). To exclude the ef-

fect of different sequencing depth, we subsampled the

human and mouse sequencing data to the same depth

and obtained a similar result (human versus mouse: 795

versus 285, Additional file 2: Figure S5E). The human

early embryos showed a higher number of circRNA host-

ing genes as well as more types of circRNA transcripts

than the mouse embryos from oocyte to morula stages,

reaching the highest level at the 4-cell stage (Fig. 5c and

Additional file 2: Figure S5F). Comparing expressions of

the species-specific and shared genes showed that, while

species-shared circRNAs hosting genes are generally

expressed in both human and mouse embryos, a portion

of species-specific circRNA hosting genes are solely

expressed in the corresponding species (Fig. 5d). This in-

dicates that the species-specific circRNAs are partially due

to the differential expression of their hosting genes be-

tween human and mouse pre-implantation embryos.

To investigate whether there were factors other than

differential hosting gene expression leads to a species dif-

ference of circRNA, we compared the circRNAs derived

from the hosting genes that are highly expressed in both

human and mouse embryos (RPKM >10, Additional file 2:

Figure S5G). The result showed that the human-specific

(See figure on previous page.)
Fig. 3 Genomic features of circRNAs expressed during human pre-implantation development. a Distribution of the number of different types of circRNA
transcripts from each circRNA hosting gene. b Distribution of the back-spliced exons in circRNAs. Nearly all (99.9 %) back-spliced exons that contribute to
circRNAs are located in the middle of their hosting genes, whereas six are in the first exon and none are in the last exon, as annotated. c An example in
which potential extra exons are located upstream of the annotated first exon that participates in the circularization of FAT3. Back-spliced reads of FAT3
circRNA are presented as a red curve. The peaks connected by the green dashed line are the reads mapped to the first exon that participates in the
circularization, and the extra exon which is not annotated, simultaneously. d Distribution of the number of back-spliced exons in each circRNA. More
than 95 % of circRNAs contain multiple back-spliced exons and more than half of them contain 2–6 exons. The maximum number of exons in a single
circRNA was 56. e Length distribution of back-spliced exons. The box plots show that the exon length distribution from the circRNA consisted of a
different number of back-spliced exons (***P value = 7.4E-32, Student’s t-test). f Distribution of the number of Alu elements in flanking and all other
introns. The median number is given in the bracket. The number of Alu elements in flanking intron (upstream in blue and downstream in purple)
is much higher than that in the randomly selected control introns no matter in circRNA (in green) or not (in red)
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circRNA hosting genes still outnumber the mouse-specific

ones (human versus mouse: 526 versus 134, Fig. 5e) and

also in the subsampling data (human versus mouse: 232

versus 104, Additional file 2: Figure S5H). Since the flanking

intron has been shown to play an important role in cir-

cRNA generation, we calculated the length of introns flank-

ing these circRNAs. Notably, we found that the introns

flanking the species-shared or human-specific circRNAs are

significantly longer than their mouse counterparts (P

<0.001, Fig. 5f). In particular, the introns flanking the

human-specific circRNAs in the human genome are about

1.7-fold longer than their mouse counterparts (human ver-

sus mouse: median 6.42 versus 3.86 kb, P = 5E-5, Fig. 5f).

On the contrary, the length of the introns flanking the

mouse-specific circRNAs showed only a mild difference be-

tween the two species (human versus mouse: median 3.7

versus 3.45 kb, P = 0.03).

Together, these results demonstrated that circRNAs in

human pre-implantation embryos are more complex

compared with those in mouse embryos, which may be

partially due to the increase in intron length during evo-

lution of the human genome.

Analysis of the novel linear transcripts in human

pre-implantation embryos by SUPeR-seq

Finally, we performed RNA de novo assembly and identi-

fied 2322 novel candidate transcript units and 10,084

candidate isoforms by excluding known genes in RefSeq

genes, Noncode V4.0 long non-coding RNA (lncRNA)

databases [33], and novel lncRNAs reported in our pre-

vious study [1] (Additional file 7: Table S6). These de

novo transcripts were rigorously filtered: each transcript

comprised at least two exons, was located >10 kb away

from the known genes in the human genome, and was

longer than 500 bp [1, 19, 34]. The average length of

these candidates was 1052 bp and they were usually

shorter than 2 kb (Additional file 2: Figure S6A). These

novel genes have longer introns than other known genes

and half of them consist of two exons (Additional file 2:

Figures S6B and S6C). Furthermore, their average expres-

sion levels are higher than those of the genes identified in

the Noncode database or our previous work using the

single-cell RNA-seq technique that only detected polyA+

mRNAs (Fig. 6a), implying that these novel transcripts are

polyA– or with short polyA tail. These novel genes were

classified into distinct categories that may function in spe-

cific stages during pre-implantation development (Fig. 6b).

The expression levels of novel transcripts in each develop-

mental stage increased before the 8-cell stage and then de-

creased (Fig. 6c). This pattern was similar to that of the

novel genes discovered in mouse embryos using SUPeR-

seq [19]. The conservation level (calculated with the

metric ω) [35] of these novel transcripts was similar to

those of the known lncRNAs and novel transcripts that

we detected previously. In addition, these novel transcript

candidates were less conserved than protein-coding exons

but more conserved than the introns of protein-coding

genes (Additional file 2: Figure S6D). CPC (Coding Poten-

tial Calculator) [36] analysis revealed that among these

2322 novel genes, 89.9 % (2087) produced transcripts

without significant coding potential, indicating that they

were potential novel lncRNAs.

Conclusions
Overall, our investigation of the transcriptomic land-

scape of human pre-implantation development by

SUPeR-seq identified abundant circRNAs and revealed

dynamic gene expression changes during human pre-

implantation development. A large number of circRNAs

are transcribed from maternal genes, most of which are

present before fertilization, and persisted during pre-

implantation development possibly due to their resistant

to the maternal mRNA degradation process. Compared

with mouse, human circRNAs are proved to have both

conservation and an increase in complexity, pointing to

their conserved and specific roles during human pre-

implantation development. In sum, our data provide an

invaluable resource for investigating their functions in

the future.

Methods

Embryo collection

The oocytes and embryos for this study were donated

from female volunteers who provided informed consent.

After ICSI (intracytoplasmic sperm injection), embryos

were cultured in G1.3 medium (Vitrolife, Sweden) covered

with mineral oil (Sigma, 6 % CO2). Oocytes, zygotes, and

(See figure on previous page.)
Fig. 4 CircRNA and mRNA expression pattern during human pre-implantation development. a The pattern of circRNAs percentage in their hosting
genes changes during pre-implantation development based on the ratio of back-spliced reads in total reads at each junction locus, the equation is:
back-spliced reads/(back-spliced reads + forward-spliced reads). b Comparison of the expression levels of circRNA hosting genes and other coding
genes in each stage during pre-implantation development. The expression levels of the hosting genes only include linear transcripts by excluding
circular transcripts (RPKMdiscounted = RPKM×(1-circRNA ratio in Fig. 4a). The expression levels of circRNA hosting genes are higher than those of other
coding genes before the 8-cell stage, whereas the opposite pattern is observed after the 8-cell stage (***P value <0.001, *P value <0.1, Student’s t-test).
c The CLR values comparison of hosting genes from maternal genes and zygotic genes, respectively, during human pre-implantation development.
d The circRNA percentage in their hosting genes which are maternal genes and have circular transcripts detected before 4-cell stage, as 950 genes
from 1554 maternal hosting genes
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Fig. 5 (See legend on next page.)
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2-cell-stage embryos were collected at the appropriate

time during embryonic development.

Embryos at the 4-cell and 8-cell stages were thawed

immediately after removal from liquid nitrogen as de-

scribed previously [1]. The embryos were cultured in G2

medium (Vitrolife) continuously to obtain morulae and

early blastocysts, blastocysts, and hatched blastocysts.

Each selected oocyte or embryo was transferred drop wise

to the acidic solution to remove the zona pellucida by

mouth pipette. Then, the embryo or oocyte was washed

gently several times before being transferred to lysis buffer.

To obtain ICM and TE transcriptome information, we

isolated these compartments from each other by laser

cutting. This process was executed carefully to retain all

cells in the ICM with minimal laser damage.

Single embryo transcriptome amplification

The RNAs in individual oocytes or embryos were reverse

transcribed and amplified using the SUPeR-seq method

we recently developed. Briefly, after cell lysis, RNAs with

or without polyA were reverse transcribed with T15N6

primer [19] using Super Script III (Invitrogen). After re-

verse transcription, unreacted primer was digested by

ExoSAP-IT (USB) and RNA was degraded by RNase H

(Invitrogen). Then, a polyA tail was added to the first

strand cDNA at its 3′ end by terminal deoxynucleotidyl

transferase (Invitrogen). Thus, the second strand cDNA could

be synthesized by a primer with a poly T and an anchor

sequence. The double-stranded cDNAs were then amplified

by primers with the two anchor sequences for 20 + 10 cycles.

Before single-cell RNA amplification, we quantitatively

added spike-in RNAs, as ERCC RNA Spike-In Mix1

(Ambion) and RGC-A80 to the lysis mixture. The

spike-in RNAs were used for quality control and

mRNA quantification.

RNA-seq library construction and sequencing

After the single-cell cDNAs were amplified with the

SUPeR-seq method, we sheared approximately 200 ng of

purified cDNA products into fragments of 150–350 bp

using the Covaris S2 system. The fragmented DNA was

subjected to end-repair, dA-tail, adaptor ligation, and

10–12 cycles of PCR amplification using the TruSeq

DNA library preparation kit (Illumina).

SUPeR-seq data processing and validation of circRNA

candidates

The sequenced raw data were first cleaned to remove

low-quality reads (reads with more than 50 % of the

bases with quality value ≤5 and >10 % of the bases un-

determined). The adaptor sequences, poly (A) 24/(T) 24

sequences and sequences with >80 % AT bases were

trimmed. To detect circular reads using CIRCexplorer,

the trimmed data were aligned to an hg19 reference

using the two-step approach recommended by https://

github.com/YangLab/CIRCexplorer/ [12].

The mapped reads in the first step were considered

linearly mapped reads. For linearly mapped reads,

HTSeq [38] was used to count the unique mapped reads

to each gene to estimate the abundance of the transcripts

(shown as RPKM) and define differentially expressed

genes. We used a GTF file combined with hg19 RefSeq

genes in the UCSC Genome Browser, the NONCODE

V4.0 database, and the genes from a former study previ-

ously reported by our lab [1] to identify non-coding genes

as well as 92 exogenous ERCC spike-in RNAs and RGC-

A80 information. After HTSeq, unannotated reads were

used to assemble novel genes. The potential novel tran-

scripts were identified based on three criteria. First, the

expression level (RPKM) of candidate transcripts was >0.5

and the RPKM in every replicate was >0.25. Second, the

potential novel transcript was at least 10 kb away from

any known genes. Third, the potential novel gene had at

least two exons, and the total length for all exons

was >500 bp. The coding potential for novel genes

was estimated using the Coding Potential Calculator

(http://cpc.cbi.pku.edu.cn) [36].

In the second step, the unmapped reads from the first

step were mapped to the genome using TopHat-Fusion

[12, 39]. CIRCexplorer was used to detect circular reads.

(See figure on previous page.)
Fig. 5 Comparative analysis of human and mouse circRNAs. a High conservation of circRNA hosting genes between human and mouse
pre-implantation embryos. The Venn diagram shows that the majority of genes that express circRNAs in mouse also produce circular transcripts in
human embryos. b GO analysis of the top enriched terms of the circRNA hosting genes in human pre-implantation embryos. c The box plots show the
numbers of expressed circRNA hosting genes in human embryos (in red) and mouse embryos (in blue), during pre-implantation development, and the
number was normalized to the total mapped reads (in millions) after subsampling the sequencing data. d Expression level of circRNA hosting genes in
human embryo and mouse embryo. All circRNA hosting genes are plotted according to the value of log10 of (max RPKM during pre-implantation) in
human and mouse embryo, respectively. e Heat map of circularized level of highly expressed circRNA hosting genes (RPKM >10) during human and
mouse pre-implantation development. The numbers of circular isoforms from each hosting gene were presented and the columns on the top of the
heat map show the average number of circular isoforms from each hosting gene who were producing circular transcripts at this stage. The number of
circRNA isoforms is frequently higher than that in mouse. The shared, human-specific, and mouse-specific hosting genes are presented, respectively. f
Box plots show the distribution of the length of introns flanking the back-spliced sites from the highly expressed hosting genes after subsampling the
sequencing data. The median value of intron length is shown in the box. The back-spliced sites of human-specific and mouse-specific circRNAs are
converted using liftover tool, respectively. The numbers of introns are indicated in the bracket
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Because we used pair-end sequencing data, which pro-

vides more reliable results for circular regions, CIRCex-

plorer was modified to ensure that each circular read

had a back-spliced read across two exon junctions in the

same gene and the other read from a pair-end reads was

linearly aligned between the two exons. Finally, the ratio

of circular to linear transcripts was estimated by the

back-spliced reads over the step1 mapped reads at each

junction locus.

We verified five circRNA candidates in hESCs. The

total RNA was extracted from 1 million hESCs, then the

total RNA (2 ug) was treated with RNase R (Epicentre)

or nuclease-free water as mock control at 37 °C for 15

min. After being reverse transcribed with random

primers, the cDNAs were used as qPCR templates to

compare the different effects of RNase R treatment be-

tween the linear transcripts and circRNA candidates.

The hESCs total RNA was subjected to RT-PCR and

A

C

B

Fig. 6 Expression pattern of de novo assembled transcripts during human pre-implantation development. a The box plots show that the expression
levels of the novel assembled genes are lower than those of the RefSeq genes but higher than those of the lncRNAs from Noncode V4.0 and
our previous paper. b Hierarchical clustering analysis of novel genes indicating stage-specific expression patterns during human pre-
implantation. Based on the heat map, these novel genes can be divided into three major types: early zygotic genes, maternal genes, and late
zygotic genes. c The pattern of total expression levels of all novel 2322 candidate genes revealing that genes enriched before the 8-cell stage
are mostly maternal genes
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Sanger sequencing to verify the back-spliced sites of cir-

cRNA candidates at single-base resolution.

Estimation of technical error

We first merged the counts of reads mapped to the 92

exogenous ERCC spike-in RNAs for each sample. Then,

the ERCC expression level (RPKM) matrix was calcu-

lated using the total mapped reads and the length of

each spike-in molecule. Only ERCC with RPKM ≥1 in

more than two samples was considered. ERCC with

RPKM <1 was excluded for further analysis. The tech-

nical error was then estimated using the Pearson correl-

ation between samples.

Correlation analysis for RNA-seq data and hierarchy

clustering, PCA

The correlation between samples was calculated using

the RefSeq gene expression level (RPKM) matrix with

the parameter use = “pairwise.complete.obs,” method

= “pearson” using an in house-developed R script. Based

on the correlation matrix, ward distance was used when

performing hierarchy clustering. PCA was also per-

formed using the FactoMineR package in the CRAN R

program based on the same expression level matrix.

Quantification of total transcripts copy number

The spike-ins of RGC-A80 included three species of in

vitro transcribed RNA molecules (RFP, GFP, and CRE)

which had 80 nt polyA tails and mixed as the molecule

ratio of RFP: GFP: CRE being 100: 10: 1. By using

ddPCR (BioRad, QX200), the capture efficiency of RGC-

A80 was verified as about three times higher than

ERCCs in SUPeR-seq (Additional file 2: Figure S2A).

Therefore, addition of the RGC-A80 spike-ins can par-

tially overcome the low capture efficiency of the ERCC

spike-ins and achieve a more accurate estimation of the

total transcript content in each sample.

For the ERCC/RGC-A80 normalization algorithm,

firstly, linear regression was applied to fit the data points

between the RPKM value of the 92 exogenous ERCC

spike-in RNAs (log10-transformed RPKM) in the SUPeR-

seq dataset and the number of molecules per lysis reaction

(log10-transformed attomole) (Additional file 2: Figure

S2C). Only ERCC species whose molecules >0.001 atto-

mole were retained in the regression. The linear regression

equations for each sample were then applied to the RPKM

value of all RefSeq genes and summed up as the ERCC-

based total mRNA copy number. Then, the total mRNA

copy number was also calculated from each molecule spe-

cies from spiked RGC-A80 as the ratio of the total RPKM

to the RGC-A80 RPKM multiply the spiked molecules

and then averaged out (Additional file 2: Figure S2D).

Lastly, the final total mRNA copy number was obtained

by fitting the RGC-A80-based and the ERCC-based values

in all 29 samples to a linear regression model (Additional

file 2: Figure S2E).

We also estimated the copy number of circRNAs in

each oocyte and embryo during human pre-implantation

development. Firstly, we calculated the RPKM of cir-

cRNA as junction reads/(circRNA length × total mapped

reads). And the circRNA length = (length of reads-25

bp) × 2, as 25 bp is the segment length of Tophat. This

means that for reads of 100 bp in length, a back-splicing

event can be detected by reads mapping up to 75 bp

away in each direction, as 75 bp × 2 = 150 bp in length.

Then we could calculate the copy number of circRNAs

= (sum of circRNAs’ RPKM)/(sum of Refseq genes’

RPKM) × (copy number of mRNA).

Copy number quantification with ddPCR

For validation of the algorithm of mRNA quantification

in SUPeR-seq by ERCC and RGC-A80, the total RNAs

were extracted from ~100,000 hESCs and SUPeR-seq

was performed in three technical replicates for 1 ng total

RNA in each replicate. The rest of the RNAs were reverse

transcribed to cDNAs to examine the copy number of 44

genes in 1 ng RNAs by ddPCR in two replicates. The

primers for ddPCR are listed in Additional file 8: Table S7.

Differentially expressed genes identified based on

normalized RPKM

Differential gene expression analysis across all samples was

performed using the DESeq2 package in the Bioconductor

R program [40], which is based on the negative binomial

distribution model. Raw read counts calculated by HTSeq

were normalized by a set of size factors accounting for

both the sequencing depth and the mRNA quantity in

each sample. For a strict definition of differential

expressed genes, the RefSeq genes expressed in at least

one of the samples with normalized RPKM ≥1 were used

for the analysis.

Comparison of circRNAs with hESC data and mouse

pre-implantation embryo data

The hosting gene and read counts of the circRNA

matrix were merged from the pair-end checked CIRCex-

plorer results. For each sample, circRNAs with read

depths <2 were discarded. The hosting gene of circRNAs

in H9 cell line were filtered according to the gene list

provided in a former study [12] and are listed in the

Supplemental Information Table. We also subjected the

sequencing data of mouse early embryo cell data in our

published work [19] to the same approach. The 20 bp at

each site of the back-spliced junction of mouse cir-

cRNAs were converted from mm10 to hg19 using the

liftover tool from UCSC utilities with the parameter

-minMatch = 0.5, which enabled comparison with hu-

man early embryo cell data [14]. When comparing the

Dang et al. Genome Biology  (2016) 17:130 Page 13 of 15



circRNA expression pattern, we subsampled the sequen-

cing data from human and mouse pre-implantation em-

bryos to the same depth as 9 millions reads per stage

and kept the same number of developmental stages side

by side for analysis. Venn diagrams were used to show

the shared gene lists and GO analysis for each portion of

the Venn diagram was performed using the GOstat

package in the Bioconductor R program [41]. For GO

analysis of the circRNA hosting genes in human pre-

implantation embryos, all genes expressed above 1

RPKM were set as the background. The combined gene

list of circRNA hosting genes in human and mouse em-

bryos was set as the background for the comparison be-

tween these two species. The combined gene list of

circRNA hosting genes in human embryos and H9 cells

was set as the background for the comparison between

these two cell sources.
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