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Characterizing the complex composition of solid tumors is fundamental for understanding

tumor initiation, progression and metastasis. While patient-derived samples provide valuable

insight, they are heterogeneous on multiple molecular levels, and often originate from

advanced tumor stages. Here, we use single-cell transcriptome and epitope profiling together

with pathway and lineage analyses to study tumorigenesis from a developmental perspective

in a mouse model of salivary gland squamous cell carcinoma. We provide a comprehensive

cell atlas and characterize tumor-specific cells. We find that these cells are connected along a

reproducible developmental trajectory: initiated in basal cells exhibiting an epithelial-to-

mesenchymal transition signature, tumorigenesis proceeds through Wnt-differential cancer

stem cell-like subpopulations before differentiating into luminal-like cells. Our work provides

unbiased insights into tumor-specific cellular identities in a whole tissue environment, and

emphasizes the power of using defined genetic model systems.
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S
olid tumors represent one of the main causes of morbidity
and mortality worldwide. The molecular understanding of
what drives carcinogenesis and tumor progression remains

elusive though. This is in part due to the great extent of intra- and
intertumoral heterogeneity in human tumors which confound a
vast diversity of genetic and epigenetic factors that are subject to
constant changes as a result of intrinsic and environmental cues1.
Additionally, clinical samples are often derived from advanced or
mixed tumor stages where information related to the initial
induction of the cancer is frequently lost.

Another challenge consists in the limited availability of
methods, which allow to disentangle the highly complex com-
position of the diseased tissues where cancer cells coexist together
with tumor-associated and non-tumoral elements of the tumor
microenvironment2. Advances in single-cell technologies have
recently enabled several studies to elucidate the cellular com-
plexity of a given tumor in more detail or to characterize specific
tumor subtypes3–8. These findings support hierarchal models of
tumor initiation by cancer stem cells (CSCs) that proliferate and
differentiate, and induce heterogeneities in cancer cell pheno-
types. CSCs are defined by their inherent ability to initiate and
drive tumor growth and resistance to conventional treatment
strategies9. Wnt signaling has been recognized to be a key driver
for the initiation and maintenance of CSCs10, and it appears that
stemness can be reversibly acquired and lost via epigenetic or
environmental triggers, such as metabolic reprogramming or
epithelial-to-mesenchymal transition (EMT)11,12. CSCs have thus
become a prime focus for investigating molecular mechanisms
that control tumorigenesis and metastasis. Their study, however,
has been difficult due to their low frequency, unclear cell surface
immunophenotype and other variable biological properties dur-
ing disease progression13.

While emphasizing the great molecular diversity of human
cancers, recent single-cell studies also revealed extensive coupling
between different molecular levels. For instance, differences in
genomic alteration patterns correlated with substantial transcrip-
tional differences in head and neck cancer7. In contrast, in gliomas
and breast cancer, the transcriptomes of different tumors were
found to share similar differentiation or stemness signatures that
were independent of genetic lineage relationships3,6,14. Moreover,
complex relationships between tumor expression programs and
tissue-of-origin transcriptomic signatures were found8, under-
scoring the need to comprehensively profile not only the tumor and
its microenvironment but also histologically normal tumor-adjacent
tissues as well as healthy controls in order to gain a full under-
standing of the complex feedback between tumor and host tissue15.
Altogether, this accentuates the need to use controlled model sys-
tems to obtain a deeper understanding of general mechanisms that
are intrinsic to tumorigenesis.

In a previous study, we found that high Wnt/β-catenin and low
Bmp signaling were characteristic for aggressive forms of salivary
gland and head and neck squamous cell carcinomas (SCCs) in
humans16. With the aim to better understand these Wnt-specific
mechanisms, we thus created a mouse model16 with K14-cre-
driven β-catenin gain-of-function (β-catGOF) and Bmpr1a loss-of-
function (Bmpr1aLOF) mutations. We showed that these mice
developed very specific salivary gland SCCs within 100 days after
birth which contained highly self-renewing Wnt-dependent
CD24+CD29+ CSCs which, upon isolation and injection into
NOD/SCID mice, produced fast-growing tumors16,17. These
CSCs showed high activity of the stem cell-associated SSEA1
marker as well as nuclear β-catenin and Wnt-specific target genes
such as Axin2 which were not found in other subpopulations
within the tumor16.

To gain a more basic understanding of tumorigenesis, we here
used single-cell transcriptomics together with our Wnt-dependent

double-mutant salivary gland SCC mouse model16,17 to system-
atically study CSCs in a controlled setting in vivo. Our setup
(Fig. 1a) enabled us to build a high-resolution salivary gland cell
atlas, to dissect tumor heterogeneity in a whole tissue environment
and to identify CSC-like cells de novo directly from solid tumor
samples. We show that tumor-specific epithelial cells consist of
luminal- and basal-like cells as well as a small, but distinct CSC-
like population. Further molecular characterization together with
pathway and lineage analyses allowed us to infer and reconstruct a
robust trajectory of the tumor progression. We found that upon
activation of β-catenin gain- and Bmpr1a loss-of-function muta-
tions in basal cells, tumorigenesis is initiated by expression of an
EMT signature and proceeds through heterogeneous populations
of CSC-like cells driven by differential Wnt signaling, before dif-
ferentiating into luminal-like cells. Our work reveals several genes
and expression patterns that may be fundamental in the regulation
of tumorigenesis, and provides a novel and unbiased approach to
study CSCs from a developmental perspective.

Results
Single-cell RNA sequencing of salivary gland tumors. To
identify and characterize the cellular heterogeneity that is specific
to the solid tumor context, we first established controlled ways to
dissociate tumor-bearing (double-mutant: β-catGOF; Bmpr1aLOF)
and control salivary glands into high-quality single-cell suspensions
(Fig. 1a). After dissociation, dead cells and enucleated cellular debris
were excluded and live intact cells obtained by fluorescence-
activated cell sorting (FACS) (Supplementary Fig. 1a). Cells were
directly sorted into methanol for fixation18, and further processed
to profile their transcriptomes by a high-throughput droplet-based
approach (Drop-Seq)19. In total, 26 single-cell RNA libraries were
generated from 12 control and 14 double-mutant (tumor-bearing)
salivary glands of either female or male mice from an early and a
late tumor stage at postnatal days 40 (P40) and 90 (P90), respec-
tively (Fig. 1a). To validate our experimental approach, we com-
pared all single-cell samples, computationally pooled by disease
status (control or double-mutant), to bulk mRNA-seq data that
were generated from equivalent, freshly dissected but unprocessed,
salivary glands (Supplementary Fig 1b). Although gene expression
levels correlated better within experimental procedures and samples
grouped by genotype, correlations between all samples were gen-
erally high (R ≥ 0.74). Additionally, comparison of global transcript
counts (Supplementary Fig. 1c) show that individual single-cell
RNA libraries correlated well to each other (R ≥ 0.8) with no
apparent bias towards the disease-, sex-, stage-related status or the
experimental batch in which a specific sample was processed. After
computational cell selection and filtering, we obtained a total of
~23,000 cells from 26 individual salivary glands (Supplementary
Fig. 1d) and typically detected a median of ~500 genes and ~1000
unique molecular identifiers (UMIs) per cell (Supplementary
Fig. 1e, f). To quantify sample-to-sample variation and the extent of
possible batch effects, we developed an entropy-based approach20 to
measure how evenly cells’ nearest neighbors are distributed among
different samples. This analysis showed that although these dis-
tributions were not completely random, ~80% of the variance was
explained by the three major biological variables (genotype, sex, and
stage) (Supplementary Fig. 2a). Further, cell distributions were
largely balanced except in cell types that are affected by one of these
biological variables (Supplementary Fig. 2b). We thus conclude that
our protocol is reproducible given biologically-relevant sample
differences.

A comprehensive salivary gland cell atlas. In order to provide a
comprehensive cell atlas of the salivary gland that could also serve
as an appropriate reference to the tumor context, we first pooled
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and analyzed single-cell datasets from control salivary glands using
Seurat21 (Fig. 1b). After inspection of marker genes, we assigned
the cell type identity to clusters, for which the expression of specific
genes has been reported in previous literature22–31, and molecu-
larly characterized and validated additional cell types for which no
or only ambiguous information was available (Fig. 1b, c; Supple-
mentary Figs. 3, 4). In agreement with previous studies32–34, we
observed that Egf and Smgc were expressed in cell populations with
strongly sex-dependent representation (Supplementary Fig. 3) and
identified several other marker genes with similar patterns (Sup-
plementary Fig. 4a). Interestingly, we also noted that Dcpp1+ cells
were more abundant in tissues from mice at the P40 than at the
P90 stage and validated this finding by immunofluorescence in
tissue sections (Supplementary Fig. 3b, c). Altogether, this indicates
that we can reliably identify and characterize cell types at high
resolution and provide evidence that the ductal composition of
healthy salivary glands is sexually dimorphic and stage-dependent.
Our approach combined with imaging-based validations enabled

us to chart all epithelial cells onto a consolidated anatomical
sketch depicting female- (Fig. 1c) and male-specific (Supplemen-
tary Fig. 3e) features.

Identification of cancer stem cells and other tumor-specific cell
populations. To systematically uncover cells that were specific to
the tumor samples, we analyzed and clustered cells pooled from
all single-cell datasets of control and double-mutant samples
(Fig. 2a). This combined analysis enabled us to recapitulate all
previously identified cell types without the need to resort to
advanced sample alignment methods21 as cells from both control
and double-mutant mice were distributed evenly on the tSNE for
many clusters as shown in the local density plot (Fig. 2b).
However, in line with our entropy-based analysis (Supplementary
Fig. 2), we noted that a number of cell types, including stromal
and immune-related cells were significantly more abundant in
double-mutant (Supplementary Fig. 5a, Supplementary Fig. 6),
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while acinar and some ductal cell types were accordingly more
prevalent in control tissues (Supplementary Fig. 5b).

In particular, our analysis revealed clusters of epithelial cells
with transcriptional profiles unique for the tumor context. This
included luminal- and basal-like cells as well as a small but
distinct cancer stem cell (CSC)-like population in which Wnt-
specific genes were activated (Fig. 2b, c). Among others, the
expression of several genes such as Axin2, Ptn, Wif1, Clu and
Wfdc18 was particularly characteristic for these tumor-specific
cell clusters (Fig. 2c). Using these genes as markers, we further
confirmed that the tumor-specific epithelial cells identified in our
data were truly located in tumor regions. Immunofluorescence
analysis of submandibular gland tissue sections from double-
mutant mice showed that antibodies against these gene products
positively stained cells within evident tumor lesions (Supplemen-
tary Fig. 7). To further increase tumor-specific resolution, we
included other epithelial markers where possible. In line with our
transcriptome data, Clu and Wfdc18 distinctively stained K8-
positive luminal-like cells within the tumor region. Nuclear β-
catenin is considered to be the hallmark of active Wnt signaling
which ultimately drives the expression of its target genes35,36 and
was previously described to be a key feature of CSCs in several
cancers including our model16,17,37. We, therefore, used this as an
additional marker, and found that nuclear β-catenin-positive cells
were generally K8 negative and greatly overlapped with high
Axin2, but only partially with Ptn and Wif1 stainings. Taken

together, we identified a small subset of tumor-specific epithelial
cells and provide a marker set that can identify them both at the
RNA and protein level.

Simultaneous quantification of mRNA and cell surface pro-
teins resolves immune cell diversity. Unbiased transcriptional
profiling identified four clusters of various adaptive and innate
immune cells. T or NK cells (‘T/NK’; Ccl5, Nkg7, Cd7)38 and
tissue-resident monocytic phagocytes (‘immune’) were already
present in control salivary glands (Fig. 1b). In the tumor context,
‘immune’ cells were significantly more abundant in double-mutant
compared to control samples (Supplementary Fig. 5a). Addition-
ally, new populations of monocytic cells (‘immune2’) and term-
inally differentiated B plasma cells (‘Ig-producing’; Ly6c2, Slpi,
Xbp1)39 emerged in double-mutant tissues showing an influx into
or activation of immune cells in the tumor environment (Fig. 2a;
Supplementary Fig. 5a). To investigate this tumor-specific immune
compartment in more detail, we used ‘CITE-seq’40 in conjunction
with a panel of 63 oligonucleotide-coupled antibodies mainly
directed against immune and some epithelial cell surface proteins
(see Supplementary Table 1). This allowed us to simultaneously
quantify mRNA transcripts and protein epitopes from single cells
of freshly dissociated ~P70 control and tumor-bearing salivary
glands (Fig. 3a). Implementation of CITE-seq did not introduce
any obvious transcriptional biases as mRNA-based clustering with
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our earlier obtained transcriptome datasets recapitulated all cell
clusters with cells from the CITE-seq experiments evenly dis-
tributed in the tSNE (Fig. 3b). Integration of cell surface protein
information enhanced the signals for specific markers such as
CD172a and CD11b (Fig. 3c), confirming that ‘immune’ and
‘immune2’ clusters predominantly consist of myeloid cells from
the monocytic lineage. Subclustering of the combined ‘immune’

clusters revealed four cell subsets that exhibited signatures of
tumor-associated macrophages (TAMs) with diverse activation
and functional states (Fig. 3d, e). These TAMs differed in
expression of genes associated with tissue-remodeling (Vim,
Mmp12, Fn1)41–43, proliferating (Hmgb2, Mki67)44,45, interferon-
responding (Isg15, Rsad2, Irf7)46,47 or inflammatory (Irg1,
S100a9, S100a8)48–50 properties (Supplementary Fig. 8). In
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summary, our results suggest that the immune landscape in this
Wnt-dependent salivary gland tumor model is dominated by
myeloid cells and TAMs, accompanied by a small population of
tumor-associated B plasma cells. Consistent with the aggressive
nature of these tumors, infiltration by inflammatory T cells
seemed low51 with T/NK mostly corresponding to tissue-resident
cells. Our data support the newly emerging concept that TAMs
exhibit a wide and continuous spectrum of functional and
differentiation states20,52 rather than conforming to a defined
polarizing tumor-supporting vs. tumor-suppressing model.

Subclustering reveals two subpopulations of cancer stem and
basal cells. Since our data indicated heterogeneity within tumor-
specific cells (Fig. 2b, c), we selected basal cells and CSC-like cells
for subclustering (Fig. 4a), which showed that each of the two
clusters consists of two distinct subpopulations. Inspection of the
top marker genes (Fig. 4b; Supplementary Fig. 9a) revealed that
the CSC 1 subpopulation exhibited more basal-like (K14+ /K5+)
Wnt-high (Bmp2, Bmp4, Dkk4+) whereas CSC 2 rather luminal-
like (K18+) features. Moreover, we were able to distinguish the
tumor-specific basal cell subset (‘basal tumor’) from the ‘normal’
one (‘basal normal’), as illustrated by projecting the subclustered
cell populations back onto the original tSNE coordinates from the
clustering of all samples (Supplementary Fig. 9c).

To functionally characterize these differences, we performed
differential expression and subsequent pathway analyses between
the respective pairs of CSC-like and basal subpopulations (Fig. 4c).
This confirmed our initial observation in CSC-like cells as terms
related to Wnt/β-catenin signaling and basal cell carcinoma were
most significantly enriched in the ‘CSC 1’ compared to the ‘CSC 2’
subcluster. When comparing the two basal subpopulations, we
found that the main systematic differences were linked to
extracellular matrix (ECM) proteins or epithelial-to-mesenchymal
transition (EMT) signatures, which were strongly upregulated in
the tumor-specific basal subset. Specifically, we observed a more
than two-fold upregulation of the EMT master regulator Snai2 and
strong induction of other characteristic genes such as Serpine2,
Sparc, Acta2, S100a6 or the TGF-β modulator Bgn53 (Fig. 4c,
Supplementary Fig. 9, Supplementary Data 1, Supplementary
Fig. 10), while many other canonical EMT markers such as Zeb1/2,
Twist1/2, Fn1 or Cdh2 were insufficiently detected in our data
to be tested for differential expression. To make our data easily
accessible, we created a resource, which allows to access and
interrogate our single-cell data for any gene of interest interactively
via a web-based online tool (https://shiny.mdc-berlin.de/sc_msga/).

Computational lineage analyses reconstruct tumorigenesis. We
further investigated to what extent tumor-specific cells were
connected to one another and contributed to the tumorigenesis in
our genetic model. We chose a diffusion map approach, which
embeds data in low-dimensional space where distances between
cells represent a gradual but stochastic continuation such as
during developmental processes54. Together with pseudotemporal
ordering, this analysis allowed us to predict a differentiation

trajectory for tumorigenesis (Fig. 5a, Supplementary Fig 11a). In
agreement with our model, in which tumors are induced by
activation of β-catenin and Bmpr1a mutations via the basal-
specific K14-cre promoter16,17, we find that this trajectory initi-
ates in basal tumor cells, further proceeds through the two CSC-
like subpopulations, and ends in the luminal Clu+ cell cluster
with continuous transitions in between (Fig. 5a, b). We show that
this trajectory is robust and reproducible across individual
double-mutant tumor samples (Supplementary Fig. 11b) and that
removal of CSC-like cells from the analysis still predicts the
tumorigenesis path although disrupting cell connectivity (Sup-
plementary Fig. 11c).

To validate this trajectory, we made use of the different time
points (P40 and P90) at which we collected samples and
monitored the contributions of tumor-specific cells pooled by
stage (Fig. 5d, e; Supplementary Fig. 12) instead of cell type. In
agreement with our model, we found that the number of cells
from the early P40 tumor stage was significantly increased at
the initial phase of tumorigenesis compared to that from the late
P90 one, while the reverse was true at a more advanced phase.
Stage-specific quantification of tumor-specific cells showed that
although relative proportions of both CSC-like populations were
similar, basal tumor and luminal Clu+ cells were, in fact,
significantly more and significantly less abundant in P40 cells
than in P90 cells, respectively (Fig. 5e).

To study potential changes in global expression dynamics along
the trajectory, we took the most differentially expressed genes
between the four subpopulations and ordered their expression by
pseudotime (Fig. 5f, Supplementary Fig 13). The results replicated
the differential expression analyses summarized in Fig. 4c, and
showed that we could additionally capture more subtle differences
for individual genes for which the expression changed as a
function of the tumor progression. We found that EMT-related
genes such as Ctgf55 and Sparc56,57 were first activated in basal
tumor cells, and that their expression extended and decreased
within the cell population (Ctgf) itself or throughout both CSC-
like subpopulations (Sparc) as tumorigenesis proceeded (Fig. 5f,
Supplementary Fig. 13). A similar pattern was observed for Meg3,
a long non-coding RNA previously found to regulate EMT58 as
well as the Wnt/β-catenin and p53 pathways59,60.

While several genes (e.g., Ptn, S100a6, S100a14) were
expressed in a more ubiquitous manner in CSC-like cells, Wnt
target genes such as Axin2 and Bmp4 were specifically switched
on in the CSC 1 subpopulation and continued to be only mildly
expressed and subsequently inactivated in CSC 2 (Supplementary
Fig. 13). However, in the latter, increased expression of the
transcriptional regulators Nupr1 and Elf3 could be detected, both
genes with known functions in epithelial cell differentiation
and tumorigenesis61,62. Finally, Clu, and Wfdc18, which we
identified as being specific to luminal Clu+ cells (Fig. 2), were
expressed at a later stage towards the end of our inferred
trajectory. Validating previously proposed associations between
EMT, Wnt signaling and stemness63, we found that gradual loss
of the EMT expression signature correlated with activation of

Fig. 3 Combined mRNA and epitope profiling from single cells resolves immune cell diversity in the tumor microenvironment. a Overview of cellular

indexing of transcriptomes and epitopes by sequencing (CITE-seq) experiments (n= 4). Single live cells were prepared as described earlier. A pool of 63

oligonucleotide-coupled antibodies was incubated with the cell suspension from one submandibular gland, washed and further processed by Drop-seq. The

oligonucleotides contain an antibody-specific barcode, a PCR handle and are polyadenylated for capture by the Drop-seq primer beads. b mRNA-based

clustering of all single-cell datasets. Cells from the CITE-seq experiments are highlighted (opaque colors) over those from previous ‘Drop-seq only’

transcriptome datasets (translucid colors). c Epitope and mRNA signals in cells from CITE-seq experiments for selected immune-specific markers.

d Subclustering of the immune cluster (shown in b) identifies 4 macrophage subpopulations. e Contributions of cells from control or double-mutant

samples to immune subpopulations. P-values from mixed effects binomial model using 3207 cells in 30 samples. Boxes span the 25th to the 75th

percentile, whiskers 1.5 times the interquartile range.
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Wnt signaling and induction of known CSC marker genes in
head and neck squamous cell carcinoma64 (Fig. 5c). Moreover,
by inspecting differential pathways with mean log2 fold changes
below the cutoff imposed in Fig. 4c, we identified dysregulated
metabolic signatures suggesting that activation of the EMT

program in basal tumor cells is accompanied by metabolic
reprogramming from oxidative phosphorylation towards glyco-
lysis (Supplementary Fig. 14). Together, our results show that
our approach can identify specific genes and expression patterns
potentially regulating and driving tumorigenesis.
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Discussion
In this study, we created a high-resolution salivary gland cell atlas
and systematically dissected the cellular heterogeneity in a
genetically-controlled, Wnt-dependent mouse model of a solid
tumor. We identified, molecularly characterized and validated cell
clusters that were specific to the tumor and established their
lineage relationship by uncovering the progenitor and progeny
populations of CSCs.

Different from other studies involving single-cell transcriptome
profiling of human biopsy samples5–7, we could not computa-
tionally pinpoint the tumor cells by global copy-number variation
(not present in our data), nor by identifying β-catenin and
Bmpr1a mutations (not detectable) or EYFP-positive cells
(mRNA transcripts not sufficiently captured by our sequencing
method). Instead, we leveraged the reproducibility and large
sample size of our data to systematically compare cells from
control and tumor-bearing tissues to reliably and robustly identify
those that were specific to the tumor samples, and confirmed
these results by immunostainings in tissue sections.

Although only representing <1% of cells in our data, we were
able to detect and extensively characterize CSC-like cells without
relying on pre-defined surface markers, which often also target
unrelated cells9,13. We found that Wnt target genes such as Axin2
and Bmp4 were exclusively activated in this small population, but
also other genes with highly tumor-specific functions such as Ptn
(promoting tumor angiogenesis65) and S100a14 (involved in
tumorigenesis66). Further investigation revealed that these CSC-
like cells consist of a Wnt-high/K14+ and a luminal-like/K8+
subpopulation, also characterized by differential expression of the
transcriptional regulators Nupr1 and Elf3, which are thought to
promote metastasis and the induction of chemoresistance61,62.
Further experiments will be required to functionally characterize
these CSC subpopulations and to address their stemness poten-
tial. Nevertheless, it has been recognized that different stem cell
types with tissue renewal capacity can reside within the same
tissue, that a continuum of stem cell states may provide a higher
degree of flexibility67, and that Wnt signaling is essential for stem
and progenitor cell formation and function throughout
development10,68. Our results indicate that the stabilizing β-
catenin mutations in our mouse salivary gland SCC model trigger
similar processes, as uncontrolled Wnt signaling can lead to
aberrant expansion of stem cells or confer stem cell behavior,
paving the way for malignant proliferation9.

Since the tumor in our model was driven by a K14-cre, we
argued that the CSCs most likely originated from the tumor-
specific basal population, characterized by an EMT expression
signature. The importance of the EMT program is well estab-
lished as a major mechanism for the ‘invasion-metastasis cascade’
in cancer biology63. With an ability to degrade and reorganize the
ECM, it promotes the loss of cell-cell adhesion and the acquisi-
tion of migratory and invasive traits. In fact, EMT signatures have
been observed in the tumor microenvironment69,70, but also in
malignant cells7, and its critical role for the induction of a stem-
like phenotype has only been recognized over the last years12. It
has emerged that epigenetic and environmental cues can control
EMT without introducing new genetic alterations, that this

transition is therefore reversible, rarely fully executed under
physiological or malignant conditions, and that an intermediate
state between the poles of fully epithelial and mesenchymal cell
identity is particularly favorable for the induction of the CSC
phenotype63,71. Specifically, Snai2/Slug in coorporation with Sox9
have been identified as stemness- and EMT-inducing factors in
the basal layer of the mammary epithelium72. Moreover, the
activity of these transcription factors can promote the existence of
transient epithelial cell populations which can convert to stem
cells with long-term tissue reconstituting ability72, and we pro-
pose that similar mechanisms play an essential role in our system.

Further, while connections between Wnt signaling both
downstream and upstream of the EMT have long been drawn63,
we find here that genetic Wnt activation and Bmp deactivation in
our model triggers EMT (presumably through Snai2) and meta-
bolic reprogramming, before other Wnt targets, such as Bmp2/4
or Dkk2/4 can be detected.

Our data allowed us to put the different tumor-specific cell
populations on a robust trajectory and to map the continuous shifts
in cellular identities during tumorigenesis by means of diffusion
maps, which have been widely used together with single-cell data to
study differentiation dynamics during development73,74. We note,
however, that the directionality of the inferred trajectory is not
conclusively fixed and requires further investigation. Nevertheless,
based upon the K14-cre-dependence of mutations triggering the
tumor in our model as well as the relative timing of early- and late-
staged samples, we hypothesized that the tumorigenesis here is
initiated in basal cells. This model further suggests that after EMT
induction, Wnt signaling was upregulated in one CSC subpopula-
tion in concert with the acquisition of a stemness phenotype that
persisted throughout another CSC subpopulation already primed
towards a luminal-like cell fate, towards which tumorigenesis finally
transitioned. Comparable to epithelial differentiation processes, we
noticed a general K14+ to K8+ gradient indicating that tumor-
specific cells shifted from exhibiting basal-like to more luminal-like
characteristics along the trajectory. This was accompanied by a
gradual loss of EMT markers and therefore also suggests a reversal
to an epithelial cell identity. Moreover, we found that the luminal-
like cells exhibited high expression of Wfdc18, a gene that we
identified to be specific to the excretory and intercalated ducts in
control tissues. This suggests that in our model, Wfdc18-positive
cells in the tumor may have undergone a similar differentiation
path as normal cells in these ductal compartments.

Our work demonstrates the importance of using controlled
models to robustly and reproducibly study essential mechanisms
of carcinogenesis and tumor progression which would otherwise
not be possible. Finally, our approach provides a blueprint to
molecularly identify markers and characterize transcriptional
events that are fundamental in the regulation of tumorigenesis,
and ultimately facilitate further clinical studies in the design of
appropriate treatment strategies.

Methods
Mouse strains. K14Cre(Δneo), β-cateninflox, Bmpr1aflox alleles, and Cre-inducible
R26EYFP reporter mice have been described, and mutant mice were analyzed for
genotype and recombination by PCR16,75–79. To obtain the double mutants,
homozygous mice carrying the β-cateninflox gain-of-function, the Bmpr1aflox loss-

Fig. 5 Computational lineage modeling allows to infer a robust trajectory of tumorigenesis. a Diffusion map of tumor-specific epithelial cell populations

together with inferred trajectory obtained by smoothing diffusion coordinates over pseudotime. b Density plot of cells from the different subpopulations

along pseudotime. c Normalized EMT, Wnt and stemness64 pathway scores, smoothed over pseudotime using LOESS regression (gray shading indicates

95% confidence intervals). d Density plot of cells from double-mutant P40 and P90 samples with ≥5 cells in the 4 subpopulations along pseudotime.

P-value from linear model using 855 cells in 12 samples. e Proportions of the subpopulations from the same samples according to stage (P-values from

binomial mixed effects model). Boxes span the 25th to 75th percentile, whiskers 1.5 times the interquartile range. f Heatmap of SAVER-imputed gene

expression for the top 100 differential genes between the 4 subpopulations (top 16 are highlighted).
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of-function allele and R26EYFP were crossed with K14-Cre mice that were homo-
zygous for the Bmpr1aflox allele. Control mice were obtained by crossing K14-Cre
mice with mice carrying the Cre-inducible R26EYFP reporter. All mice used in this
study had a C57BL/6 background. Animal experiments were approved by LAGeSo
Berlin and performed according to EU and national institutional regulations.

Tissue dissociation and single-cell sample preparation. Submandibular glands
and primary tumor samples were collected, minced and dissociated with a Gen-
tleMacs Dissociator (Miltenyi Biotec) in digestion buffer (DMEM/F12 1:1 (Invi-
trogen), 1.67 mg/ml collagenase (Invitrogen), 1.33 mg/ml hyaluronidase (Sigma)
and 1.67 mg/ml dispase (Invitrogen)). Cell suspensions were passed through a
stainless filter (70 μm) and centrifuged at 900 × g for 5 min at 4 °C. Pellets were
suspended in 10 ml Dulbecco’s modified Eagle/F12 1:1 medium and washed three
times with PBS containing 10% fetal bovine serum (Invitrogen). Prior to sorting,
cells were stained with DAPI, and then filtered through a 40 μm mesh. The FACS
Aria (BD Biosciences) instrument was used for sorting and dead cells excluded by
elimination of DAPI-positive cells and gates set to exclude cell clusters. Cells were
directly sorted and fixed in ice-cold 80% methanol and stored at −80 °C until
further processing.

Drop-seq procedure, single-cell and bulk library generation, and sequencing.
Monodisperse droplets of about 1 nl in size were generated using microfluidic PDMS
devices (Drop-SEQ chips, FlowJEM, Toronto, Canada; pre-coated with Aquapel).
Barcoded microparticles (Barcoded Beads SeqB; ChemGenes Corp., Wilmington,
MA, USA) were prepared and flowed in using a self-built Drop-seq set up19 (Online-
Dropseq-Protocol-v.3.1: http://mccarrolllab.com/dropseq/) as previously described18.
Cell preparations and reagents were kept on ice and handled in the cold. Methanol-
fixed cells18 were centrifuged at 3000–5000 × g for 5 min, rehydrated in 1 ml PBS+
0.01% BSA supplemented with RNAse inhibitors (1 unit/μl RiboLock, Thermo-
Fisher), pelleted and resuspended again in 0.5 ml PBS+ 0.01% BSA in the presence
of RNAse inhibitors. Cells were manually counted by means of a hemocytometer and
diluted to a suspension of typically ~50–100 cells/μl in PBS+ 0.01% BSA. Droplets
were collected in 50ml Falcon tubes for ~13min, corresponding to ~1ml of com-
bined aqueous flow volume (1 ml cells and 1ml of beads). Droplets were broken
immediately after collection and barcoded beads with captured transcriptomes were
reverse transcribed and exonuclease-treated. First strand cDNA was amplified by
equally distributing beads from one run to 24 PCR reactions (50 μl volume; 4+ 9 to
11 cycles). 20 μl fractions of each PCR reaction were pooled (total= 480 μl), then
double-purified with 0.6x volumes of AMPure XP beads (Beckman Coulter).
Amplified cDNA libraries were assessed and quantified on a BioAnalyzer High
Sensitivity Chip (Agilent) and the Qubit dsDNA HS Assay system (ThermoFisher). If
necessary, more cDNA was purified from the PCR reactions. 600 pg of each cDNA
library was fragmented, amplified (12 cycles) and indexed for sequencing with the
Nextera XT v2 DNA sample preparation kit (Illumina) using custom primers
enabling 3’-targeted amplification as described19. The libraries were double-purified
with AMPure XP Beads (0.6 × , 1 × ), quantified and sequenced on Illumina
NextSeq500 sequencers (library concentration 1.8 pM; NextSeq 500/550 High
Output v2 kit (75 cycles) in paired-end mode; read 1= 20 bp using the custom
primer Read1CustSeqB19, read 2= 64 bp).

For bulk sequencing, RNA was extracted with Trizol (Invitrogen) from freshly
dissected submandibular glands. RNA integrity was assessed on a BioAnalyzer
RNA Nano Chip (Agilent). Strand-specific cDNA libraries were generated from
500 ng total RNA according to the Illumina TruSeq protocol (TruSeq Stranded
mRNA LT Sample Prep Kit, Illumina). Libraries were sequenced on an Illumina
NextSeq 500 sequencer using the High Output v2 Kit (150 cycles), single read:
150 bp, index read: 6 bp.

CITE-seq experiments. Antibodies were covalently and irreversibly conjugated to
DNA-barcoding oligonucleotides by iEDDA click chemistry as previously descri-
bed80. The antibody panel (see Supplementary Table 1) was prepared by mixing
equal quantities of each DNA-barcoded antibody and concentrating the panel on
an Amicon Ultra 0.5 ml 30 kDa MWCO centrifugal filter (Millipore).

Live intact cells from control and double-mutant submandibular glands of ~P70
mice were prepared as described above. Cells from each animal were processed
separately and immediately prepared for simultaneous transcriptome and epitope
profiling as outlined in the online CITE-seq protocol (https://cite-seq.com/) using
the panel of 63 barcoded antibodies. We further supplemented the cells with a low
amount (3%) of human HEK cells (cultured and prepared as described before18)
used as a spike-in control. The cells were then processed for Drop-seq and cDNA
libraries prepared as described earlier. Antibody-derived tag (ADT) libraries were
amplified for 12 cycles together with TruSeq Small RNA primers for indexing and
sequenced together with cDNA libraries on Illumina NextSeq500 sequencers using
the same settings as those used previously for single-cell transcriptome libraries.

Immunostainings. Immunofluorescence analyses were performed on formalin-
fixed paraffin-embedded tissue sections as described76. Antigen retrieval was
accomplished by Tris-EDTA (10 mM Tris, 1 mM EDTA, 0.05% Tween-20, pH 9.0)
at 99–100 °C for 20 min. Following retrieval, sections were stained with one or
several of the following primary antibodies for immunodetection: mouse-anti-β-

catenin (BD Transduction Laboratories, 610153), rabbit-anti-EGF (Abcam,
ab9695), goat-anti-Smgc (Sigma, SAB2501988), rabbit-anti-Kal1 (aka Wfdc18;
Abcam, Ab115270), rabbit-anti-Axin2 (Cell signalling, 2151), rabbit-anti-Wif1
(Abcam, ab186845), rabbit-anti-SMA (aka Acta2; Abcam, ab5694), goat-anti-Prol1
(Abcam, Ab119999), mouse-anti-PGRP (aka Pglyrp1; ThermoFisher, MA1-41044),
rabbit-anti-Hepacam2 (Abcam, ab189943), goat-anti-Muc19 (Abcam, ab121014),
mouse-anti-AQP5 (Santa Cruz Biotechnology, sc-514022), rabbit-anti-Clusterin
(Abcam, ab92548), guinea pig-anti-CK8 (aka K8 or Krt8; Progen, GP-K8), rabbit-
anti-CK14 antibodies (aka K14 or Krt14; ThermoFisher, MA5-11599), rabbit-anti-
Klk1 (Boster, PA1709), mouse-anti-Ptn (Santa Cruz Biotechnology, SC74443),
goat-anti-Sparc (R&D Systems; AF942). Secondary antibodies were conjugated
with Cy2, Cy3, or Cy5 fluorochromes (Jackson ImmunoResearch Laboratories).
Images were captured using an Axio imager Z1m and AxioCam MRm (Carl Zeiss)
and a Leica TCS SP8.

Processing and analysis of single-cell RNA-seq data. Drop-seq data were
processed using Drop-seq tools v1.1219, based on the Gencode vM7 reference
augmented by two pseudo-chromosomes containing the Cre and EYFP sequences,
respectively. Selecting valid barcodes with the ‘knee’ method, resulting DGEs for
each sample were combined and analyzed in R (version 3.4.4) using Seurat21

(version 2.3.4). We additionally filtered for at least 100 genes and less than 15%
mitochondrial content. Clustering and t-SNE were performed based on a PCA with
significant components chosen using JackStraw. For clustering, we used a resolu-
tion of 0.7 for the control samples and of 1.0 for the combination of all samples,
and merged several acinar subclusters which were not distinguishable from their
marker genes. We controlled replicate-to-replicate consistency (see below) across
samples, and pooled and analyzed singe-cell datasets without any sample alignment
method. For improved visualization, we additionally filtered out all cells located
more than 3 standard deviations away from their cluster center and those which
had a different identity than the majority of their 10 nearest neighbors in the
t-SNE.

Bulk RNA-seq data were mapped to the same augmented Gencode vM7
reference using STAR81 (version 2.6.0c), quantified using featureCounts (version
1.6.0), and converted to TPM. For the comparison between bulk and single-cell
RNA-seq, we used AverageExpression followed by a TPM transformation, and
selected all genes found in all samples with TPM > 1.e−4.

For the CITE-seq samples, we used the same processing pipeline on the RNA
fraction as for the other Drop-seq samples and filtered for at least 100 but less than
2500 genes and less than 15% mitochondrial content. We regressed out number of
UMIs as well as the percentages of mitochondrial and ribosomal genes before
performing clustering and t-SNE based on a PCA using 30 significant components.
We also performed an additional analysis where we mapped against a combined
hg19 and mm10 reference. From the second pipeline run we used reads mapping to
the human genome to identify cells of human origin or doublets, and removed
these cells from the standard pipeline output. We used CITEseq-count (v1.2) to
quantify ADT counts for the respective cells found in both pipeline runs.
Specifically binding antibodies were identified by inspecting ADT count
distributions for human and mouse cells.

Batch effects and sample-to-sample variability were quantified using an entropy-
based approach inspired by the one in Azizi et al.20. Specifically, we aimed to
measure how well the local distribution of cells among samples mirrors the global
one, taking into account that the latter might not be perfectly uniform. Therefore we
used the relative entropy (Kullback-Leibler divergence) Dj ¼

P
iϵI qi logðqi=q

0
i Þ,

where qi is the proportion of cells from group i in the local neighborhood N(j) of
cell j, and q0i is the proportion of cells of group i in the entire data set. The set I of
sample groups was defined by the biological factors sex, stage, and genotype, by their
combination, by technical factors such as cell dissociation protocol, or simply by
replicate, and the local neighborhood was defined by taking the 30 nearest neighbors
in the kNN-Graph (calculated in PCA space). Controls were obtained by randomly
shuffling the group assignment between cells.

The relative density of two sample groups on the t-SNE was plotted using the
log2 ratio of two separate 2D kernel density estimators interpolated on the t-SNE
coordinates of each cell. Differences in cluster proportions were analyzed using
mixed-effects linear models (lme4 package;82 version 1.1) using a binomial model
with sex, stage and genotype (if applicable) as fixed effects and sample identity as
random effect.

Subclustering of cancer stem and basal cells was performed on these
populations separately, removing one sample (B9T90R4F) with high content of
ribosomal genes and the few cells from control samples from the cancer stem cell
clusters. Differential genes between subclusters were detected by pooling counts
over all cells from one sample and subcluster, using DESeq283 (version 1.18) on the
pooled counts with the number of cells per group as covariate, and then filtering for
genes expressed in at least 5% of cells. Pathway analysis was done with GAGE84

(version 2.28) on the log2 fold changes estimated by DESeq2. We used
HALLMARK, KEGG and REACTOME gene sets from the Molecular Signature
Database (MsigDB: http://www.broad.mit.edu/gsea), kept pathways with a q-value
<0.1 and absolute average log2 fold changes >0.5, and ignored those with more
than 10% ribosomal genes. For the diffusion map, we combined the tumor-specific
basal and CSC subclusters with the luminal Clu+ cluster and used destiny85

(version 2.6.2) on the highly variable genes to create the diffusion map embedding
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and diffusion pseudotime. We also ran destiny on each sample with more than 10
cells in the relevant subpopulations separately and compared sample-specific to
global pseudotime estimates. Differential genes along the trajectory were identified
on pooled counts using DESeq2 with a likelihood ratio test on all 4 clusters
simultaneously, and gene expression values plotted along the trajectory after
imputation using SAVER86 (version 1.1.1). Gene set scores were computed
supplying imputed expression values to Seurat’s AddModuleScore function. An
additional “stemness” gene set (Pou5f1, Nanog, Sox2, Prom1, Bmi1, Lgr5, Msi1,
Tdgf1, Bmp4, Cspg4, Cxcr4, Alcam, Slc2a13, Aldh1a) was curated from the
literature64.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The sequencing data generated is available in GEO under the accession GSE124425.

Metadata for each sequenced cell, from which figures based on the single-cell RNA

sequencing data can be reproduced, are provided as a source data file.

Code availability
Custom R scripts used to analyze data and generate figures are available upon request.
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