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A Track Before Detect Algorithm for

Tracking Extended Targets
Yvo Boers and Hans Driessen

THALES Nederland B.V., Hengelo, The Netherlands

Johan Torstensson, Mikael Trieb, Rickard Karlsson and Fredrik Gustafsson

Linköping University, Linköping, Sweden

Abstract— For certain types of sensor-target configurations a
point target model or approach is not suitable and the physical
extent of the target has to be accounted for in the processing. An
extended target track before detect algorithm is presented and
the performance is compared to an algorithm based on the point
target assumption. Simulations illustrate the gain in performance
obtained by using the extended target model where a particle
filter is used for the track before detect implementation.

Index Terms— Track Before Detect, Particle Filters, Nonlinear
Filtering, Target Tracking, Radar, Extended Targets.

I. INTRODUCTION

In this paper an extended target tracking radar application is

studied. The application under consideration deals with track-

ing on the basis of unthresholded measurements, as opposed

to tracking on the basis of thresholded measurements, or radar

plots. This method is sometimes also referred to as track before

detect (TBD), see [1, Chapter 11] for an overview. An efficient

method to implement such a TBD processing is provided by

the particle filter (PF), see the seminal papers on PF TBD [2],

[3]. More work in this area has been performed recently, once

more [1] contains an overview and many additional references.

For PF TBD related issues also see [4].

Mostly, in tracking and detection, targets are assumed to be

point targets. Often this is quite a valid assumption. However,

there also exist situations in which this is not the case. If

in such situations the target is still treated as a point target

performance degradation or worse failure or divergence of the

algorithm might occur.

Summarizing, the contributions of this paper are: incorpo-

ration of an extended target model in a PF TBD algorithm,

illustration of the working of the new algorithm, a comparison

of the extended target model with the point target model

and showing the superior performance and robustness of the

extended target algorithm in an example.

The paper is organized as follows: In Section II the TBD

problem is introduced. In Section III the nonlinear Bayesian

particle filtering technique is described. Section IV presents a

PF TBD simulation study. In Section V concluding remarks

are given.

II. TRACK BEFORE DETECT

In Fig 1 typical illustrations of radar measurements are

given, where the power is plotted as a function of range and
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(a) SNR=13 dB. A high SNR makes it easy to detect
the point target.
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(b) SNR=3 dB. A low SNR makes the target hard to
detect in a cluttered environment.

Fig. 1. Examples of simulated measurement data for a point target in noise
with different SNR.

Doppler cells for one fixed bearing angle. In Fig 1 (a), the

target is a point target with a relatively high signal to noise

ratio (SNR), hence easily detected and spotted if the received

energy is above the detection threshold. This is the normal

procedure for traditional radar receivers, which only delivers

a single measurement from the radar video signal. This ex-

tracted data is often referred to as a radar plot, consisting of

for instance a single value (rt, dt, bt), for measured range,

Doppler, and bearing. Traditionally radar tracking systems are

based on plots from thresholded data, [5], [6]. In Fig 1 (b) the

target is present as well, though much weaker, and it is not

obvious that by means of classical extraction the target would

be detected.
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Fig. 2. Radar signal processing : Classical methods based on thresholded data
and the TBD method where tracking and detection is done simultaneously.

For track before detect (TBD) problems, [1], [2], [3], [7],

much lower SNR values are possible, where the target is not

easily distinguished from the cluttered noisy background for

any given frame. The TBD, despite of its name, consists

of a simultaneous detection and tracking part. Instead of

thresholding, the entire radar video signal is used as the

measurement, i.e., the received power, P (rj , dk, bl), ∀j, k, l. In

the application under consideration the measurements consist

of the power levels in Nr ×Nd ×Nb sensor cells, where Nr,

Nd, and Nb are the number of range, Doppler, and bearing

cells, respectively.

A schematic overview of a TBD processing chain in com-

parison with a more classical one is given in Fig 2. The smaller

boxes represent the steps that are normally distinguished in

a classical setup, i.e., thresholding, clustering, and feature

extraction to obtain a radar plot from the analog video signal.

These plots are filtered and connected over time to form

trajectories, or tracks, in the tracking algorithm.

A. Measurement Model

First, the measurement model under the assumption of a

point target is briefly discussed, as given in [8]. Thus one

measurement consists of a frame of reflected power levels over

a three dimensional array. The measurement model describes

how these measurements are related to the target state. For

each range-Doppler-bearing cell the received power in the

measurement relation is given as

y
jkl
t =

{

e
jkl
t , if mt = 0,

h
jkl
P (xjkl

t , e
jkl
t ), if mt = 1,

(1)

where j = 1, . . . , Nr, k = 1, . . . , Nd, l = 1, . . . , Nb. The

modal state, mt, denotes if the target is present or not, and

e
jkl
t denotes the measurement noise in a cell, and the function

h
jkl
P (·) represents the received radar power in a cell. The power

measurement per range-Doppler-bearing cell is related to the

signal amplitude by

y
jkl
t = y

jkl
P,t = |yjkl

A,t|
2, (2)

where y
jkl
A,t is the complex amplitude of the target

y
jkl
A,t = A

jkl
t · hjkl

A (xt) + e
jkl
t , (3)

with

A
jkl
t = Ã

jkl
t eıφt , φt ∈ [0, 2π[ , (4)

and where h
jkl
A (xt) is the reflection form that is defined for

every range-Doppler-bearing cell by

h
jkl
A (xt) = e−

(rj−rt)
2

2R
λr−

(dk−dt)
2

2D
λd−

(bl−bt)
2

2B
λb . (5)

The constants R, D, and B are related to the size of the

range cell, the Doppler cell, and the bearing cell. Losses are

represented by λr, λd, and λb.

The noise is defined by

et = eI,t + ı · eQ,t, (6)

which is complex Gaussian, where eI,t and eQ,t are inde-

pendent, zero-mean white Gaussian with variance σ2
e , for the

in-phase and quadrature-phase, respectively. In this way the

power measurement in a specific range-Doppler-bearing cell

is defined by

y
jkl
t =

∣

∣

∣y
jkl
A,t

∣

∣

∣

2

=
∣

∣

∣A
jkl
t · hjkl

A (xt) + e
jkl
I,t + ı · ejkl

Q,t

∣

∣

∣

2

. (7)

These measurements conditioned on the system state {xt,mt}
are now exponentially distributed, and the likelihood function

is given as

p(yjkl
t |xt,mt) =

1

µ
jkl
0

e
−

1

µ
jkl
0

y
jkl
t

, (8)

where

µ
jkl
0 = E(yjkl

t |xt,mt), (9)

and

µ
jkl
0 = EeI ,eQ

(yjkl
t |xt,mt)

= EeI ,eQ
(|Ãte

ıφth
jkl
A (xt) + e

jkl
I,t ) + ıe

jkl
Q,t|xt,mt)|

2)

= EeI ,eQ
((Ãth

jkl
A (xt) cos(φt) + e

jkl
I,t |xt,mt)

2

+(Ãh
jkl
A (xt) sin(φt) + e

jkl
Q,t)

2)

= Ã2 · (hjkl
A (xt))

2 + 2σ2
e = P̃ · hjkl

P (xt) + 2σ2
e ,

with

h
jkl
P (xt) = (hjkl

A (xt))
2

= e−
(rj−rt)

2

R
λr−

(dk−dt)
2

D
λd−

(bl−bt)
2

B
λb . (10)

Observe that the likelihood under the noise only assumption

is readily obtained from the above formulations as well. The

above model has been taken from [8].

B. Extended Target Model

A target is denoted extended whenever the target extent is

larger than the sensor resolution. Thus, whether or not a target

is considered to be extended does not only depend on the

physical size of the target, but also on the physical size relative

to the sensor resolution. Typically for point targets the under-

lying assumption is that the target occupies one resolution cell.

Very recent work on extended target tracking on a plot basis

has been done in [9], where a diffuse spatial distribution over

the target extent has been assumed. Here a similar approach

is followed, but unlike in [9] no data association has to be

considered. This is because unthresholded data are considered

here, so no hypothesizing over clutter target hypotheses have to

be performed, which is a well established additional advantage

of TBD, [1]. Another difference with the approach of [9] is

that no a priori knowledge of the target extent is assumed. The

target extent and orientation are to be inferred from the data.

This has been mentioned in [9] under “further developments”.



In this section a specific type of extended target model is

introduced by partially following the discussion in [9, Section

2.3], where a spatial distribution model for extended objects is

assumed. The spatial extension is modeled by the distribution

p(x̃|x), which can be interpreted as a generator of a point

source x̃ from an extended target with its center and orientation

given by the state vector x. Receiving a measurement from

a source x̃ somewhere on the target leads to a likelihood

conditioned on a specific source x̃, Λ(x) = p(y|x̃). Using this

model the total likelihood, conditioned only on x, is obtained

as the convolution between p(y|x) and p(x̃|x), i.e.,

p(y|x) =

∫

p(y|x̃)p(x̃|x)dx̃. (11)

Point Target: The model (11) also covers the point target

case, which is retrieved for:

p(x̃|x) = δ(x̃ − x), (12)

where δ denotes the delta-Dirac function.

Point Sources: Also the case of a finite number of point

target sources over the target extent is covered by the above

model. For example if there are M sources at location x(i),

i = 1, . . . ,M , the pdf p(x̃|x) is defined as:

p(x̃|x) =
M
∑

i=1

Λ(x(i))δ(x̃ − x(i)). (13)

Extended Target: In its general form the pdf p(x̃|x) could

or should reflect (prior) knowledge on the position of possible

scatterers on the target extent. The general expression for the

likelihood of an extended target, as represented by (11), might

not be available analytically. In this case this expression can

always be approximated numerically through an importance

sampling approach. This approximation is readily calculated

by:

p(y|x) ≈
1

M̃

M̃
∑

i=1

p(y|x̃(i)), (14)

with x̃(i), independently drawn according to p(x̃|x) for i =
1, . . . , M̃ .

III. NONLINEAR STATE ESTIMATION

Consider a general nonlinear and non-Gaussian system

evolving according to

xt+1 = f(xt,mt, wt), (15a)

yt = h(xt,mt, et), (15b)

Πij = Prob (mt+1 = i|mt = j) , i, j ∈ {0, 1}(15c)

where xt ∈ R
n is the kinematic state of the system, mt ∈ N

is the modal state of the system, yt ∈ R
p is the measurement,

wt is the process noise, et is the measurement noise, f is the

system dynamic function, h is the measurement function, and

Π is the Markov matrix, including all modal state transitions.

It is assumed that the sample period is T . The system defined

by (15) is referred to as a jump Markov system, see e.g. [7] and

[10]. The key feature of such a system is that it involves both

continuous as well as discrete state variables. The continuous

state variables represent kinematic information, e.g. position,

orientation, and velocity. The discrete state variable describes

the modal state. In this application the modal state is an

indicator of target absence/presence, see (1) and (15).

A. Bayesian Estimation

The recursive Bayesian estimation problem can be formu-

lated as a time-update and a measurement-update for the

posterior pdf, [11]. By extending the state space with the

modal state, i.e., χt = (xT
t , mt)

T , it can be expressed as

p(χt+1|Yt) =

∫

Rn

p(χt+1|χt)p(χt|Yt) dχt, (16a)

p(χt|Yt) =
p(yt|χt)p(χt|Yt−1)

p(yt|Yt−1)
, (16b)

where the integration of the modal-space should be interpreted

as a summation over the possible combinations and where

p(χt+1|Yt) is the prediction density and p(χt|Yt) the filtering

density.

The solution to the problem can in general not be repre-

sented in a finite dimension. There are two fundamentally

different ways to approximately solve the problem:

• The extended Kalman filter (EKF), [12], [13], that is

the sub-optimal filter for an approximate linear Gaussian

model, or the optimal linear filter for linear non-Gaussian

systems.

• Numerical approaches, such as the particle filter (PF)

[14], [15], [1], that give an arbitrary good approximation

of the optimal solution to the Bayesian filtering problem.

As the TBD problem is highly nonlinear and non-Gaussian,

the PF is preferred in this application.

B. The Particle Filter

In this section the particle filter (PF) theory is presented

according to [16], [15], [14], [17], [1]. The particle fil-

ter provides an approximative solution to the discrete time

Bayesian estimation problem formulated in (16) by updating

an approximate description of the posterior filtering density.

The particle filter approximates the density p(xt|Yt) by a

large set of N samples (particles), {x
(i)
t }N

i=1, where each

particle has an assigned relative weight, γ̃
(i)
t , chosen so that

all weights sum to unity. The location and weight of each

particle reflect the value of the density in that region of state

space. The particle filter updates the particle location and the

corresponding weights recursively with each new observed

measurement. If the measurement noise is assumed additive,

the unnormalized weights are given by

γ
(i)
t = pe(yt − h(x

(i)
t )), i = 1, . . . , N. (17)

Using the samples (particles) and the corresponding weights

the Bayesian equations can be approximately solved. To avoid

divergence a resampling step is introduced. This is referred to

as the sampling importance resampling (SIR), [14].



As the estimate for each time, choose the minimum mean

square estimate, i.e.,

x̂t = E(xt|Yt) =

∫

Rn

xt p(xt|Yt) dxt ≈
N

∑

i=1

γ̃
(i)
t x

(i)
t . (18)

The PF approximates the posterior pdf, p(xt|Yt), by a finite

number of particles. However, asymptotically the approxi-

mated pdf converges to the true one, [15].

IV. APPLICATION

A. Tracking Model

In the dynamic model that is used here both the target’s

center dynamics as well as its extent are modeled within the

dynamical model. In the application under consideration the

target is assumed only to have a significant extent in one

dimension. The state vector is defined as:

xt =
(

xt yt ẋt ẏt Lt

)T
, (19)

where (xt, yt) is the position of the center of the target and

(ẋt, ẏt) is the velocity of the center of the target, and Lt is the

extension or length of the target.

Note that although in this application the shape of target is

known to the filter, the actual size is not and is to be inferred

from the data. Furthermore, it is assumed that the orientation

is along the direction of the velocity vector, i.e., the heading

angle. If this is not the case, the state can be extended with

another state, in order to estimate the orientation.

The systems dynamics are:

xt+1 = f(xt,mt) + g(xt,mt, wt), (20)

with

f(xt,mt) =













1 0 T 0 0
0 1 0 T 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1













xt, (21)

where T is the update time. The process noise input model is

given by

g(xt,mt, wt) =













σx 0 0
0 σy 0
σẋ 0 0
0 σẏ 0
0 0 σl













wt, (22)

where wt =
(

wk1
wk2

wk3

)T
, and {wkn

}3
n=1 ∼ N (0, 1).

The modal state of the system evolves according to (15c),

which can be described by a transitional probability matrix,

with

Πij =

(

1 − Pb Pb

Pd 1 − Pd

)

=

(

0.9 0.1
0.1 0.9

)

. (23)

This transition model represents transitions from target ab-

sence to presence and vice versa.
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Fig. 3. The scenario for the extended target, consisting of a straight moving
part and a turn with constant angular velocity.

The relation between the Cartesian coordinates in which the

system state is given and the radar coordinates is given through

the nonlinear transformation,

rt =
√

x
2
t + y

2
t , (24a)

dt = ṙt =
xtẋt + ytẏt
√

x
2
t + y

2
t

, (24b)

bt = arctan

(

yk

xk

)

, (24c)

for range, Doppler, and bearing, respectively.

B. Simulations

To illustrate the extended target TBD application a PF is

employed on simulated measurements from a target with a

physical spatial extent, such that the target occupies multiple

resolution cells. A point target particle filter (PTPF) will be

compared to a PF with an extended target model, in this
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Fig. 4. Tracking performance based on 100 Monte Carlo simulations for a straight moving target. RMSE for position, velocity, and target length are depicted.

TABLE I

RADAR SENSOR PARAMETERS AND UPDATE RATE.

Number of cells Resolution

Nr Nd Nb Range [m] Doppler [m/s] Bearing [mrad]

500 16 11 2 4.25 0.5

example referred to as extended target particle filter (ETPF).

In the proceeding three types of filters are compared. These

are the PTPF and two versions of the ETPF. The two versions

of the ETPF differ in the amount of process noise that is used

in the models.

Setup: In the simulations the target is assumed to be

extended in one dimension, with an extent of 20 m. Again,

it is emphasized, that this not known to the filter. As can be

seen from Table I, the target may depending on its orientation,

occupy as much as 10 range cells. Additionally, no prior

knowledge on spatial distribution is assumed. Therefore, the

density p(x̃|x) is assumed to be a uniform over the target

extent. Furthermore, the target appears at time t = 6 at

[9.65, 0] km, and is initially moving at a constant velocity of

[−10, 0] m/s towards the sensor. The dynamics of the target

is captured by a constant velocity model.

The standard deviations for the process noise inputs are

listed in Table II. The maximum target accelerations are

assumed to be ax,max = 4 m/s2 and ay,max = 4 m/s2. The

update time for the radar is assumed to be T = 1 s and

the average target SNR has been set to 10 dB and known

to the filter. It is emphasized that this assumption can be

relaxed on, straightforwardly by including the average SNR

or equivalently target radar cross section (RCS) into the filter,

see e.g. [1].

All filters have been implemented through a more or less

standard particle filter and N = 2000 particles have been used

in each of the filters. This number has been obtained experi-

mentally. It has been observed that increasing the number of

particles to values greater than N = 2000 did not significantly

improve the results, thus 2000 particles are sufficient for the

application at hand.

Measurement data for both a straight moving object and a

turning object have been generated. For the turning object the

lateral acceleration was 1 m/s2.

TABLE II

PROCESSING PARAMETERS FOR THE POINT TARGET PF (PTPF) AND THE

EXTENDED TARGET PF (ETPF).

N σx[m] σy[m] σẋ[m/s] σẏ[m/s] σl[m]

PTPF 2000 4 4 8 8 -

ETPF1 2000
2

3

2

3

4

3

4

3
2

ETPF2 2000 4 4 8 8 2

Results: In Fig 3 (a) an illustration of the scenario for

a maneuvering target is given, where the trajectory is shown

and the PF cloud at time t = 50 is indicated. In Fig 3 (b) a

more detailed representation of the true target extent together

with its estimate is shown, as well as the particle cloud.

It has been observed that if the “plain” point target model

is used on extended target data the filter often diverges.

The reason for this is that the target extent induces virtual

accelerations. These virtual accelerations, av , could in “worst

case” amount to

av =
2L

T 2
. (25)

Thus, if the level of process noise for the point target model

is not adjusted, taking into account the above virtual acceler-

ations, divergence occurs frequently. ¿From the target extent

and (25), it follows that the maximal virtual acceleration is

av = 40 m/s2. Note that the true maximum target accelerations

(without the virtual acceleration term), ax,max and ay,max, are

only a tenth of the maximum virtual acceleration, av , for this

setup.

The ETPF is tested with a level of process noise, accounting

only for true target accelerations. This filter is referred to as

ETPF1. Also a version of the ETPF is applied, for which

the process noise has been matched to the same level as the

one used in the point target filter. This filter is referred to

as ETPF2. This model allows us to isolate the performance

gain due only to the adaption of the measurement model.

Simulation results in terms of root mean square error (RMSE)

performance of the different filters over 100 Monte Carlo runs

both for a straight moving target as well as for the maneuvering

target are shown in Fig 4 and Fig 5. It is evident from these

performance figures that the extended target model algorithm

results in a significantly improved performance in terms of



accuracy, compared to the point target model algorithm. This

holds even for the case where the process noise level of the

extended target filter (ETPF2) has been increased to match the

level of the process noise in the point target filter. Furthermore,

it can also be seen that the target extent is estimated relatively

well.

V. CONCLUSIONS

A track before detect algorithm for extended targets has

been proposed. The algorithm has been implemented through

a particle filter. The performance of the extended target

algorithm has shown to be superior to the algorithm based

on a point target model assumption. Furthermore it has been

shown that the algorithm is capable of estimating the target

extent well enough to have a good overall performance, i.e., a

performance that is significantly better than the performance

under the point target model assumption.
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Fig. 5. Tracking performance based on 100 Monte Carlo simulations for
a maneuvering target. RMSE for position, velocity, and target length are
depicted.




