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1. INTRODUCTION

r'1i th the construction of stora?,e rings a new era D.f experimental high

eIlerrry .physics had begun. In the CEl?N Intersect.ing Storage R.ings center

of-mass energies have been reached which are not obtainable by fixed

target experiments so far. At these high ene.rgies particle multiplici

ties are high and detectors are camp.Zex.

At the same time, proqress in electronics allowed the acqu.isition of

events at high rates, and high-Fesolution detectors have been bu.il t

which achieve the precision necessary to measure the momentum o.f

energetic particles.

'l'1Je ana.Zysis of the data requires that the reconstruction algorithms

must be of a precision at least equivalent to that of the measurements,.

and must be sufficient1y fast to be able to deal wi th the amount of

co,l.lectod data. Furthermore, they must be flexible so that the recon

st:ruct.i.on program is able to dea.Z with any required combination of

.ind,ivid1..lal detector modules, but still be of a simple architecture.

Therefoi:e, to make the mathematical algor.ithms full!] ef.f1cient, they

must be cOllce.ived in close connect.ion {-lith the design of the hardware

com.nonen ts.

For the purpose of this paper 1 t is assumed that the problem of asso

c.iatinCJ the many hund.reds and often ambiguous coordinates to particle

track candidates has a1.ready been so.Ived. Them, it turns out that the

requirements o.t track f.ittin9, .i.e. estimation of track parameters,

are met best by the least squares estimate, being rather fast, f1.exible

and relatively robust:. If this method is to be optimal, the weight

matrix must vary sufficientl.!] smoothly as a function of the track para

meters in the neiyhbourhood of an ind.ividua,l track's path, and its

covariant (off... diacfonalj terms must be well understood.

The first concli tion is well fulfilled for mul tiwire proportional

chambel:s, but must be carefu.Zly checked for novel-type detectors like

drift tU!Jes tolorking i~ the· streamer mode. The second condition is

rather easily fulfi1.led as fal." as multiple scattering is concerned,

but mit;fht be more com.plicated in case of a dense stack of wire or

m.icTostr.ip detectors. If, in addition, the track model can be ap'~roxi-

mated suFficiently well by a linear model in the neighbourhood of the

measurements belongin~7 to an individual track, the least squares

estimator has minimum variance among all linear estimators. Asymptoti

cally, or in case of gaussian measurement errors, this estimator is

also efficient:.
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The linear properties D.f the least squares method and the equivalence

of its mean quadrat.ic properties wi th those of a gaussian process make

this method a.Iso well adapted for error propagation and therefore for

a subsequent fit of a vertex or a kinematical hypothesis, and also for

a chi-square test .

.rn practice, it turns out that a tree-like hierarchical strategy is

the best 011e to assemble coordinates or track elements from many

part.icl.es to a common vertex_ 'l'herefore chapter 2 will discuss different

attemyts to assemble individual track elements to complete tracks in

the context of a complex detector wi th possibly rad.ically different

modu,l(;).<=:. It should clar)fy the precise meaning, advantages and dis

advantn.qes of a1.7. methods d.is-cussed. Chapter 3 t"ill describe a novel'

alqori thm to evaluate the cornman vertex in the presence of high track

muJ. t:1p.7..ici t.i.es. Its ma.in advantage is the fact that the number of re

qu.irec1 ar.i.tlJmetic operations is proportional to n (number of tracks)
2 . I 2i..f only the estimate and the X are computed, and proport~ona to n

if the covar.iance matrix of the estimate is computed as well.

The guid.i.ng l.in(~ for thJs report was a case study (the LEP experiment

DBLPHI at CERN), but al.l the methods discussed are of general use and

can be applied v/.i thout any restriction for any similar experiment.

2. TRllCK ELEMENT MERGING STR1l7'E'GY

2.1 GeneraJ.ities

7'he pat:h of a charged particle in a magnetic fie.1d is given by the

sO.lution of a differentia.l equation. Neglecting energy loss and

the effect of an electric field, the absolute value of the momentum,

IFf, remains unchnnged .in vacuum, and is a constant of motion [1,2J.
In this case the equation of mot.ion can be written in the simple'

form:

(q/ I PJ) (dr/ds x E(i')) (J.la)
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cartesian coordinate vector
. 2 2

path length, w.i th ds dx

(x,y,Z),

2 2
+ dy + dz ,

q a constant proportional to the cl1arge [1] I

-+
B magnetic induction.

III the presence of matter along the ..r;>article's path, (1 * la) has to be

modified:

2.-.. 2
d rids (1.1b)

->

"lhero tp (s) is a "white floise"-like stochastic process which de"scribes...
mu.Itip.le scatterinq. I P I is no lonqer a constant, but a .fallin'] function

of s:

I pes) 1 ...
lp(o) I. w(s)

w(s) 1, For 5:=::::0

w(s2) ~ w(s1)' .for s2 > s1

-.
Unlike ~(D)J w(s) can be~ considered as a deterministic function.

Frequently it is convenient to choose one of the coordinates, e.g.

z, as the independent variab.le instead of s. The preferred choice

is the axis perpendicu.7.ar to the detector sur.faces.

'1'11e posi t.ion of the und.isturlJed track at a certain value of z is- then

a function of z and ·of the "set o:f initial conditions P
R

at a reference

p,lane z = z .
R"

x(z)

y(z)
(2.1a)

PR is a five-d.imensional array.; in vector notation:
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(2.1b)

If one takes into account multiple scatterinq,the solution of the

equation of ~otion can be written as

x(z)
~ Ems (z)fx(Z'PR ) +

x

y (z) fy(z"t}R) + Ems (z)
y

(2.2a)

.provided that
...
B is sufficiently homogenous over a range covered by the

ensemb1.e of scattered tracks with the same initial conditions. The
ms

random Vl'ocesses £.. x
thE! U1l5Ca. t:terocl track

and I:: ms describe
'I

(Eiq. 1).

the particle's deviation from

By introduc.il1<]

dx
dz

df
x

dz
+

dt': ms
x---

dz

£!L
dz

+
dE. ms

y
dz

(2.2b)

and

in (jeneral d.i.f.ferent so.lutions of the will be selectedof motion

Z := Z
R

equation

to 0 at

can define a vector Pz similar to P
R

(see 2 .1b) I which describes

track behaviour at any value of z. Note that zR is not necessarily

plHJ8.ical starting .qoint of the particle's path, which may also extend
ms ms

essential to understand that E , €.
x y

by de£inition, and that

the

to z < ZR' It is, 11Ovlever,

and their derivatives ar(~ set

one

the

for difFerent choices of z (fier. 2)
.R .

Jlssum.ing absence o.f multi.ple scattering,

is a deterministic function of :d :
"R

-the parameter vector Pz
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(2.3.1 )

The funct.ion p is called the track model. Por small variations 415.. R....
of the re.ference parameters P

R
One -can write:

(2.3b)

point:

".~ " ...CI.qzl oP
R

propagates a

z. More generally, one

change in the

can ."9ropa'Ja te

varameters at z = z to the
- R
a vayia tion of the parameters

at z == zi to Z = zk by means of the formula [3,4J:

(2.3c)

Xn practice, the track model p and the "di.f:f.erential propagator"

can be obtained e.i ther

- by an explicit solution of (1.1a);

- or by numerical integration of a re.ference track and five auxili.ary

tracks, each of them varying One of the five reference parameters,

i.e. numerical differentiation I'lith respect to the reference parameters;

- or by other approximation methods [6,7,8J.

In general, a suitable choice of track parameters can be made such

that smal.l variat}ons around the reference track are ~'lell described by

a linear track model. If, hotvever, large deviations from the reference

track OCcur during the fitting procedure, it is more convenient to

compute a new r~ference track, instead of co~puting (2.3b) up to

second order. If an explicit solution of (l.la) is known, the con-

struction oE a linear track model is in principle unnecessary, but

may simpliFy the least -squares estimation (olobal method).
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If mul tiple scattering becomes important, and if It or the mater.ial

transversed by the particle is rather inhomogenOtl5 r the ansatz (2.2a)

and the linear approximation as indicated in (2.3b) may turn out to

be inadequate. In this case,a composite model offers a way out [6,9J: In

order to a.l1.ow tll(~ .model to stay close to the physica1. path of the

scattered particle, break points are added to the track mOdel, e.g.

at the beam tube, at thick detectors or wa.Ils of vacuum vessesls, or at

ahritrary points inside massive obstacles. The track model is no

.longer a function of only five parameters, but two parameters

(scattering allgl(~s) per break point have to be added.

'l'heSfJ addi tiona] parameters co~~respond to direct measurements of the

sc:at:terinc; angles at cfO!rta.in points each with datum 0 and with an error

qiVt:Hl by the theory [10,11,12J ~

'l'}U:.' third Inethod dcscr.ibed in this chapter, the recursive method,

makes llse of the properties of both the g10bal and the break point

methed L!3, i,D.Pirst a p"rt.ia1 track segment is fitted by the global

mothod, the reference plane bei-ng between this segment and the rest

of the t~~ack~ After l:eversinq the tl'ack direction at the reference

plane, a local track model Is calculated hy usinq a track propagator

sJ:m.ilar to (2 ~ 3c), extending as far as to the next detector surface

which .is U)(~n taken· as the' new r(~fereJ)cG plane~ In such away, detector

after detector is added. Each detector can either supply sim,T).Ze

coordinates, or more elaJJorate inFormation such as track position and

directien sllmmar.iz.ing the OlltJ)lJt of a whole detector modll.Ie (fig. 3).

Ar::C'ordin~1 to the GauB-."'!arkov theo.rem, for a linear model the least

squares estimator has the srllallest variance amon~1 all unb.iased linear

ef;;timators, provided that the ~..,eir;ht matrix used to compute the x.. 2.

. is the inverse of the covariance matrix of the measurement errors.

(Unbiased measurements and a non-singular covariance matrix are assumed) ~
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With (2.2a) and using the linear term of

least squares ansatz can be .formulated:

(2.3b), the .following

1!LCPI1)= (f(p) + A'(PR-po)- t;:; )T. V- 1
.

. Cf qJJ -I- A . (p~ - po") - m)

wi tlJ:

(2.4a)

v .

~..'"
111 :-;:~

-->
f

(111 .)
1

(f. ).,
vector of measurements

vector of .functions corresponding

. . f -+covar.lance mi:l tr~x 0.: In

.....
to 111

...
Po , •..•...... approximate

A = 'Jf/'JP
R

at the point =6
0

in.i t.ia.l value of the track at z z
R

The solution of the least squares problem is tIleD given by:

(2. 4b)

The covariance matrix V is the sum oE two independent contributions:,

(V) ..
1]

r (dct
oij . E1. £., i {

I1IS I1IS \+ E f... • f.. • j
1 ]

(2.5)

L det. L • • • f L d . .WfJerc E. 15 tJJe J.ntrlnSJ.C measurement error o. tile etectlng deV.lCG,
1

i. e. the difEerence between the impact of the actual track and the

measurement, whereas

track from the ideal

I1IS
10: i is the deviation oE the actual (scattered)

(unscatte.red) track with the initial values p .
o
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For the evaluation of the matrix V it is convenient to distinguish

betl-'Ieen discrete scatterers (DS) I where all ma.terial is concentrated
• IDS

into a single surface, and cont~nuous media (eM). Then £. can be
~

approximated by:

(2.6aJ

with:

8
1

(S), 8
2

(s) two independent scattering angles

8 ~e (s ) scatterin~_ ang.. le at DS k.i,kik "
·~.(s) ~ c1e.(sJ/c1s
~ ~

s path length along track

The sum extends over all DS with sk < si' the in~egral extends over

a.I.!. eM w,i th s <" s ..
~

Using (2.6a) one can compute

(2.6b)

~li 1.:11:

variance of multio.Ze scatterinu angle per unit length
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In the der.ivation of (2.6b) the independence o.t scattering angles

at different points was used, i.e.:

(2.6c)

For efficient algorithms to evaluate (2.6b), also including energy

[ J [ ms ms}loss, see 5,6 . Note that the term E £. i . E
j

must be evaluated

[or at most two independent coordinates per detector plane; additional

cool~dinates call be hand.led by error propagation.

Due to the influence of mu.l tiple scattering, the actual track may

st.ray qu.i"te far from the ideal, unscattered track. It should be

str.'essec1 that the goal D.f the global method is a good estimation of

the track parameters at the point where the particle croSSes the re

fcronce plane. 7th-is is a.lso important for error propagatio.n and for

comparison with the two other methods d.iscussed below.

When l:ni'o:r.mation from add.itional detectors Js added, the fitted value
~

P (2.4J;) is in general corre.l.ated to the coordJnates obtained f:r:om
R

this addi tiona.) detector. Usin'l (2. 4b) one obtains:

~ _(add))
cov (P

R
1m

T -1 -1 T -1 _ _ (add))
(A V A) A V • cov (m 1m (2. 6d)

and

the

(add)
cov (m

i
}m

i
, ) is calculated w.ith (2.6b); the prime denotes

index of additiona.J. coordinates.

Some advantaqes of this method are:

2
- 1'ranspa.rent X ansatz;

- The asymptotic properties of tl1e estimate are known,.

- B.fficient algori thms are ava.iiabie;

- Good starting point for a vertex fit;

- Initialization is not critical;

- Information from other detectors rvhich mat] be added in subsequent

proryram steps is altV'ays used to imp.rove the estimate of the same

quantity, namely P
R

(Ug. 4).
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- After elimination of an outlying coordinate k, the inversion of

the reduced covariance matrix can be avoided by updating the re

duced weight matrix according to the follotving formula:

-1 '
(V )"

~J

Some drawbacks ~re:

-1 -1
;;::; v .. - V~'k'

~J ~

- '1'l1e fitted track .is an "extrapolated ideal traG'k lt and can be quite

far from the physical track.

- TJ)(~ .pull quanti tJ: es (di fferences between P.Jeasured and estimated

impact on c1 detector.) can be dominated by rou] tiple scattering and

tJu·.~refore bear little information about the detector behaviour~

2'h.is fact can also impede the judrJement of poss.ible outliers.

- A matrix of the dimens.ion of the coord.inate vector must be inverted.

However', an im.r?ortant qain in computing time can be achieved if

it .is possible to sp1i t: the cova.rJ:ance matrix into t~..,o inde_oendent

projections. 'l'h.is is often the case fo1.' tracks with high momenta.

2.3 7'he break point: method

7'his method is an attempt to follow the path of the scattered particle

more closely. T-7hen the partic.1.e crosses a layer of material, two

independent scattering angles are introduced which are considered as

a direct measurement with datum 0 and a r.m.s. which is given by the,

Moliere formula [15J. 'llhe actual values of the scattering angles are

,intI'odl1ced into the fi t as parameters to be estimated along wi th the

standard track parameters.

If there are T!J breakpoints, the track mode.! .leads .to functions of

5+2m parameters, in analogy to (2.2a):

~
m (2.7)

with:

e:::=: (e1 ,l ,82 ,i' , , e
l

,m ,B
2

,m) ••••• scatterinry anryles

.- det ".' f th 't tE. ..•.••.•• ~ntrJ_ns~c measurement errors 0" . e (ie .cc 'ors
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The least squares ansatz is now a sum of two terms, the first one

deaLing wi th the detector err01"S and the second one lvi th the

scattering at the hreak points (see also (2.4a)):

IrL (P
R

....
7n

1 + 111 2
,8)

7J1 1
-" .. .... -> .... -+ T -1 - _ ~ - T;)(.oR ,8) (f (P

R
,8) - m) V (f (.oR ,8)

1Yl 2
.... .... ~T -1-"

(.oR ,8) 8 S 8

tvi th:

F covariance ma.trix of detector errors (usually diagonal)

S covariance matrix of scatterinq anq1.es (diac;onal)

Again, a l.inear cxpans.ion a.round an ap9roximate initia.Z value Po
is performed:

(2.Ba)

(2.Bh)

(2.Bc)

Ttll th:

(2.9)

A

....
8.f

o

F can he computed as descrihed in [5,6J .using (2.9), (2.B) can

be rewritten:
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~ -(f
o

+ A.Llp

~T -1-.
+ e 5 e

with:- ~~

f = f(pO ,0)
0

L1p ~ ~- Pl/ - D. 0

D.itIc!.T.'en t.i a tion of 1TL ~·,i th :respect to e gi ves:

l' '-1 - T -1 -1-
P V (.f ./. A. LlP - m) + (F V P + 5 ) e = °

o

(2.10a)

or, setting X

-'" -1 ']' -1 -~e = - X F V (.f + A. Ll p - "1)
o

Subst.itut.ion of (.?10b) into (2.10<1) leads to:

1ll.. =
....,

A·L1,P -. Px-1p Tv- 1 (f A.,ff; ..:0 '1' -1
(f

o
+ - m - + - m)) • V .

0

- A. Li,..p ...., -1 T -1 ...,
A.Llo. (f

o
+ - m - FX PV (f + - Iii )) +

0

(2.1 Ob)

or

w.i tIJ:

- .A -" -1' T(f + A.lJp - m)
o

• V1 •
....,

(f
o

,,~ -+ A.i.Jp - m)

(2.11)

w -1 T -1 l' -1 -1 T -1 -1 -1 -1 -1 T -1
(I-FX P V ) V (I-FX F V ) + V FX 5 X P V

·I •..•• identity matrix
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The weight matrix f-v may be reduced further:

W v- 1 _ 2V- 1FX- JF TV- J + v-1FX-1FTV-JFX-1FTV-J +

+ V-JFX-JS-JX-JFTV-J =

-Jr., = V
-1 -J T -J

V FX F V (2.J2)

w.ith

-1 T -1
X - 5 + F V F.

global method (2.4a),

and (2.6b) can be

notation of this sect.ion .. In fact, r'll.in the
T

FSF.is the .inve.r'se of V +

(2.11) is just the x/ ansatz obtained by the

s,inco the covariance matrix com.outed in (2.5)
l'

expressed as V ./. FSF

(V- J _ v- 1PX- 1F 1'V- J ) . (V + FS1'T ) =

I - v- 1pX- 1p T + V-JFS1'T ' V- J1'X-11'1'V- 11'SpT

-1 T -J -1 l' -J T
I + V FSF - V FX (.[ + F V 1'8) F =

I + V- J1'8pT _ v- 1px-1 (8-1 + F1'V- 11')SpT = I q.e.d.

It follows that the global method and the breakpoint method are

eg,uivalent as far as the est.imate of the initial oarameter r; is.. • R

concerned.

7~e amount of con~utation, however, is different for the two methods.

If tllex'e are n coord.inates and m breakpoints, the calculation of W
3 2 2

accordin~r to (2 .. 12) needs about 4m + 8m n + 2n m operations

(1 o!Jel.~at.ion = 1 multipl:ication -I- 1 addition), whereas the calculation

of fy as the inverse of V + FSpT needs about ])3/2 + 2n
2
m operations.

Therefore, the globa.I method .is more efficient than the breakpo.int

method as soon as therC9 are more than about n/4 breakpoints. It does

not give, however, the close approximation of the particle's path

everywhere along the track tha t can be achieved by the breakpo.int

method. As a consequence, the breakpOJ:nt method also allows a better

judqement of outliers/ and is especially adequate for track models

like spline-interpolation [8,9J.



- 14 -

A disadvantage of the breakpoint method is the fact that continuous

scatterers have to be approximated by layers of materia.l. This

might drastically increase the number of breakpoints in a dense

mater.ial.

2.4 'l'rack e.lement merging by weighted means

In c1 cOlllp.lex detector it is often necessary that track segments

ilYe first fi tted separa tely. The problem of combining the informa-

tion is d.isGussed in this section.

l't shtl.ll be assumed tha t there are two detector modules wi th t~vo
~

est.ima tes p, of the track parameters at the respecti ve re.ference
..L

planes z ~zR, I i = 1,2 (see .fig. 5). 1'he covariance matrices of

tho f. are ~desig.nated bt] C. (1 = 1,2). The reference plane of
" . "

tht:;: comhined track jnformat.ion is assumed to be equal to Z = zR •
2

~

The .idea i.s now to propagate the estimate P
l

and its covariance

matrix C'1 t:o Z = zR :
2

C '1
7'

D. C
1

. D with D (2.13a)

mul Upl.e scattering between zR and zR (incl.uding
1 2

are added to c
1

' , to give the final covariance

Contr.ibu'tions of

mater.ial. at Z )
R

1

matr.ix C (2) of -p~ (2)
. 1 l' :

(2) L
'JP2 ()(P1,3 , P 1,4)

C
1

~ C
1

,
+

i d (1'1,3 P 1,4) d (e. 1 , e. 2)", ",

';)(.0 1 ,3
T

'JP2
T- , P1,4)

e(e .) • 'd (e. 1 p 1,4)
+

" , e. 2) 'CI(P1,3 ,", ~,

(2.13b)

+ contributions of cont.inuotls scattering (see 2. 6b).
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with

....
cle .)

~
cQvar.iance matrix of the scattering angles e. , e. 2

~,1 .1,

i ..... index for al.l scattere.rs in the interval

~ (2) -:::
If one cons.iders now p 1 and P2 as direct measurements of P2
one can make a joint least squares ansatz:

mlp2) IP2 -
~ T -1 .... - if )P2) C2 IP2 +

2

-1
(2.14a)

-, ~ (2) )TC (2) I .... _fj (2))+ IP2 - P 1 1 P2 .. 1

'l'he .final estimate is a weighted mean:

-1
IC (2)

1
IC ( 2 )-l ff (2)
l' 1

12.14b)

an.d is
2X distributed with 5 degrees of freedom.

. interest.ing case of z
• R2

first that the difference

case the combined (~stimate is between the two modules and
2

therefore not of great interest, except for a X test. In the more

being at the far end of module 2, one notes

The ansatz 12.14a) conta.ins an impLicit assumption, namely that 73
1

(2)
~.....and P2 are independent. '1'11is is, however, only true if the reference

plane z is at the near end of module 2, as regarded from module 1.
R

2
In this

(where i denotes the true values of the track parameters) is a

random quantity. It is correlated to the contr.ibution of multiple
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sca.ttering to the measurement errors in module 2 and hence also to

~ (2)
Therefore, also (P

J
covariance matrix has

-t
-" P ) and

2
the form:

~ 1..
(P2 - P2) are correlated and their

~ nlS
~dle.n::.' E. is the cont:rilJution of mul t.iple scattering in module 2

2
and A

2
' V

2
are the matrices of formula (2.4b) for module 2.

'l'he t;?va.Zuation of the expectatl:on in (2.15) can be quite lengthy,

aJ.though a certa.i.n amount of it can be clolle elu,ring the individual

£i t .in module 2. '1'he prob.Zem disappears if there is no mul tj.ple

sca ttering in module 2.

2.5 21he recu:cs.i VB method

(2.15)

An elegant way out of the dilemma described above is the recursive

method of track following proposed in [13,14]. It can be regarded

as a special case of track e.lement merging, where the second element

consists only of a measurement of two independent coordinates at

z ~ zR ,e.g. m
2

l' m
2

2 (n pairs of coordinates are assumed to
2 11+ n+

have been used for track segment 1). In this case the second

t-/eight matrix has the simple form:

2 0 01/0 "2n+1 0 0

2
0 1/6 2n+2 0 0 0

-1
0 0 0 0 0C2

~

0 0 0 0 0

0 0 0 0 0
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and

~ . T
P2 (m 2n+1 , m2n +2 ' 0 , 0 , 0) .

is just the intrinsic measurement error of the
. ~(2):::

detector I there is no corre.latJ.on between p 1 and P2' and formula

(2.141») can be applied. This procedure can be continued iteratively

by inco.r.porating measurement after measurement (fig. 6) .. It should

be noted that only the current. last estimate of p contains all the

inFonnaL.ion used so far, since the 'preceding estimates are not

tlpda Led. Therefore, this method should be used in such a way that

one sta.rts fL'om the outer detectors and proceeds towards the vertex

req.ion, until Finally al.I the availab.Ze information has been used ..

'1'110 method .is not restricted to measurements of coordinates but can

.3.15;0 he applied to measurements of qua.ntities related only to the

momentum (e. g. E, ~ o:r: m). In this easel only the corresponding

element (e
2

) 55 is not equal to o.

Du.r.ing track fol.low.ing j. t .i.s a1.so of interest to define a cumu.lative

X/:
2

X 2n+2
2

X 2n +
2X(+)

(2.16)

where X22n is the X2 resu1.ting from the fit of track segment 1
. 2 . .

and has an average value of 2n-5, wlule X (+) ~s obta~ned by

minimising (2.14a) and has in this case 2 degrees of freedom.

The average value of X2
2

2 is therefore 2n-3. If the errors are
2 .n+ 2

gauss.ian, X 2n anq X2(+) are independent and really X. distri-

2
lJuted, and so is then X 2n+2 .

the track. It might
2 .X (+) ~s used as a

'2
X (/)
track;

of

if

can be used as a

the cumulative

fast check whether a pOJ:nt be1.ongs to a

X2
gives a judgement of the overa}J. qua1.ity

be biased towards smaller values, however,

selection cri tel'ion.
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The main advantage of this method is its efficiency in the case of a

large number of coordinates and non-negligible multiple scattering:

- The inversion of a matrix of the dimension of the number of measure-

ments .is avoided. Only matrices of the dimension 5x5 have to be

.inverted'.

- '1'11e dec.isian on outliers can be taken as one goes along the track.

- 'J'he J::eal track .is fol1 Otved .

- IJ1he 1.inear approximat.ion of the track model needs only to be valid

over a short range.

Somo drtl whacks are:

_. ~l'he method .is "per se /I a m.ixed method, as an 1ni tial track segment

has to be fitted by some other method. ('1'wo points, 'however, are

enot1ql1 iF the momentum is g.iven weight 0).

- '1'0 start track fo.l1olv.ing at: the outside requires some care to over

come the following problem: Usua.Ily no dense coordinate strings are

ava.ila.bJ.e in the oute.!' detcctol:S, and the track must be propagated

over 1.ar~Je .inte.rdetectoJ.: gaps, through thick scattGrers etc.

- 'l'he decision on outliers r21ie8 only on the J~nformation .incorporated

so far, wJlich m.iqht be rather poor at the beginn.ing.

_. 1'he asymptotic properties must be checked emp.irically.

3. VERTEX EVALUATION

3. 1 CO!lCept_~

A vertex fit serves tti0 purposes. 'l'he first one is to estimate the

pos.i tion (J.E the po.lnt of interact.ion and the momentum vectors of the

tracks emerging from this po.int (with improved precision due to the

vertex constraint:). '1'11e second one is to check the association of

tracks to a vertex, i. e. the decision whether the track does indeed

originate at this vertex.

'1'ho follow.ing d.iscussion is applicabl.e both to the pr.imary interaction

vertex and to an eventual. secondary vertex (a decay or secondary

interaction). r-vhile in the first case the exact posi tion of the vertex
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might seem as a simple mathematical constraint, it is of Some importance

in the second case, since it determines the direction of the (possibly

unse:?en) track connecting the two vertices.

In both cases the momentum vectors D.f a.II emerging tracks should be

computed tvi th the best poss.ible precision together wi th their cavari

ance matrix, since theV are the input to a subsequent kinematical fit.

'The method described below has been pro/)osed and used successfully

by the first generation exoeriments at the CEH.N Intersecting Storage

R1.nqs [4J. Unfortunate.ly, it involves the inversion D.t a matrix

of the order 3n (n = number DE tracks). Since the number of arithmetical

opera t;.ions for the inveTsion increases wi th the third powe.r of the

order, this method becomes prohibitive Ivith a further .increase in

enC";!Tqy !v,i th the consequence oE h.igher mul ti,Plici t.ies _ Also, the events

b(:"C'Ol1Jt_~ mo,r.e complex with increasing need to elimJnate tracks which

do not: l)e1.o11(J to the primary interaction vertex.

'Therefore, a new al.gorithm for the computat.ion o.t the estimates, their

cova.eiancE;s and the i was dev(~.Ioped, al1.owing to apply this method

also to very complex events. -Tn ordeJ: to avoid unnecessary repetitions

of the vertex fit al.so a recursive method is proposed, which allotvs

to check the association of tracks to a common vertex.

'1'he input to the vertex :f.it consists of information about the tracks

to be grouped together. NormaLly one considers the estimated track

parametert> at a reference surface (see cha.pter 2) as virtual measure

ments. The reference surface will in most cases be either a plane,

a cy.linder (especially in storage rings experiments) or the beam tube.

~l'he choice of the re.terence surface has a certain inf.luence on the

behaviour of the fit,- since it is desirable that the virtual measure

ments, namely the track parameters, are to a good approximation linear

functions of the vertex pos.ition and of the parameters determining

the momentum vector at the vertex.
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III some cases the referenc'? sur.face will coincide tvi th a physical

sUI"face, e. g. the r"all of a vacuum vessel or a vertex chamber. If

multiple sca.ttering in this wall is important, it can be taken into

account easily, by augmenting the cQvar.iance matrix of the estimated

track parameters (see 2.13c).

If the position of the vertex is known to some precision a priori,

as it is the case for the interaction region of a storage ring, this

knowledge can be cons.idered as an independent measurement of. the

posi.t.ion, with its proper error matrix.

IF a sinylo track is poorly clef.ined, its coordinates should be in

corporated direct.Zy .into the vertex fit, instead of a possibly biased

ostimate ot" the track parameters. Th1s should also be done if some

a {>.c.iori knowlC'.'clge of the vertex posi tion was used in a first incli

vidua.l t.rack fit.

3.2 '!-.!ast global met!!.9.<i

For the vertex fi t, the fi tted track parameters if: are regarded as
~

vi.rtual measurements and denoted I.;.i thout AJ in the fo.Zlowing.

Undor the assumption that there are n tracks w.i th the estimated para

meters Pi , ..... ,~ and the corresponding y.JeJ:ght matr.ices G
1

, •.•. • ,G
n

'

th(:~re are 5n virtual measurements. The parameters are the vertex posi

tion x and n 3-vectors q., where q. is a generalized momentum vector
~ .~

at the vertex (sec fig. 7). Therefore, there are 3 (n+i) parameters. The

charge o:f a ~rack is assumed to be knol'll1 from the individual track f.it .

1'he functional

pressed by the

.~
dependence of Pi

following linear

, ..... ,p on the parameters is now ex
n

model:
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... .... ,
P j

A
j

B
j

0 0 -x C
j

A
2 0 B2

0 0 -qj

0 0 + (3.1)

An o o o B
n

wjtlJ:

:it
.1

A .
.1 "F'

~t -X X
0' gio

~-. Jp.
B. '() q.l.1 -) ...

X
0' Qio.1

~

X ,
a

~ . . f~ d~gio approx~mat~on O. x an qi (expansion point)

(J. '1/; (7, a": ) - A.1' - B.7]': , constants which are ami tted wi thout
~ .~ 0 ~~O ~ 0 ~ ~o

->- ->- ....,.
loss of generality: in the following, Pi stands for Pi - 0i

A .
.,

on

~

and B. are 5x3 matrices. A. devends also on qi and Bi depends also
.1 .1...... .'x. It J.S therefore mandatory that a gooel approxJ:mation of all para-

meters is ava.ilable. ~
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The usual least squares ansatz yields the fo.Zlowing estimates of the

parameters:

rJ

X'

-1
'1 . N . (3.2,,)

w-i.th:

D D
1

D
a n

T
D

1
8

1

0

11 (3.2b)

0

7'
D 8

n J]

7'
D = ,:[>. G.J!.a ; ~ ~ ~

D.
7'

i (3. 2c)J!. G.B. > 0
~ ~ ~ .1

8.
T i= B. G.B. >- 0

~ ~ ~ ~
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and w,it:h:

o

N

o

1't' . t M- 1. t ] f' . ~"e wrJ,:e .In: 10 ann:

c
00

-1
M

Cno

o

Con

C
nn

o (3. 2d)

(3.3a)

the submatrices C, . can be computed explic.itly:
1J

.... T -1
C (D - L- D.W.D. )
00 o. ~ ~ ~

1

wi th W.
J

C .
oJ

C.
JO

C •.
1J

-1
E.

J

C T J'>Ooj I

7'
J1'J'~J' + W.D. C D.W.

1 1 00 J J

r T . . >= Q . . W. - W.D. C . I ~,] 0
1J J 1 1 oJ

(3.3b)
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-1
From (3.2a) it follows that M is the covariance matrix of the fitted

parameters:

C := cov (f, fi)
00

~ ~

C cov (x, ~ ), j;.O (3. 3c)
oj

~ ~

c .. ... g.) I i,j '70cov ('ii'"J J

~ ~
It is .important to note that: the fitted parameters x and qi

ca.l.culat(~d without evaluation of the full covariance matrix

can be
-1

M .

Suhst.i.tut.ioll of (3.3b) into (3.2a) yie1.ds the following expressions

for 3~ and fj.
"

. ,..,-.x '" C
00

n
I::
j=1

(3.4a)

T ~
fi.13. G.(-A.x 1, p,)
J.~~ ~ .L

(3.4b)

'l'he amount of computat1on needed is proportional to the number of

tracks and is in the ordeT of a few hundred times n operations (as

defined ,in section 2.3).

'l'he X2
of the fit is given by

w.i.th

(3. 5a)

'"- A .)1 +
J

~
13.'1.

J J
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It can be computed t"ith less than JOOn additional operations. It is

essential to perform the X2
test before the calculation of the

covar.iance matrix tyhieh needs another ~~ I'l
2 + 40 I'l )operations. Note

1 3 27 3 2
that a standard inversion of M alone would need 2" (3n~3) ~ r +40n

ope,ra tions! Hence this method yields a substantial gain already for

vertices with 3 or 4 tracks, and can be applied equally well to V's.o

If there is an independent measurement v of the vertex position (e.g.

knol,Y]edqe of the beam profile obtained from elastic scattering data)

"dth the w,,,ight matr.ix G, (3.4a) has to be modified:

~ = c . [ev +
00

(3.6)

(3.41» ])()lds wi thout chanye. In the computation of C the matrix Do
00

has to be J:eplaced by D +G.
o

3.3 Track association

III though the method presentE'd in section 3.2 is much faster than a

conventional least squares f.it, it is stJ:1.] not economical to find

the a~;sociation of tracks to a common vertex by repeated application

of the g./obal fit to d.iffr>rent subsets of tracks.

Instead, Wt~ propose an iterative procedure of track association, in

analogy to the recursi¢e method of section 2.4:
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and fit

c 1m) One needs
00

this vertex. To

has been reconstructed wi th m tracks,

its covariance matrix

a vertex
~Im) dx angiving an estimate

Let us assume that

now to check whether track m+l is compat.ible tvith

h · d ·d ~Im) d - .t ~s en I we GanSl er x an p 1 as vlrtual measurements
m·r 2

the parameters x and q by min.imizing the 'Y :
m+1 IV

X/ I+)

1~lm) ~)T Im)-11~lm)+ x -x C x
00

- k) 13.7)

It turllS out that the solution is given just by the formulae (3.4a),

(3. ,U)) , which yield:

-1
·';lm r1) .. c: Im+J).[ elm)

00 . 00

~(m)
x +

7' T
+ A G II-B W IJ G ) It ]m+J m·r1 m+1 m+l m+l m+1 m+l

(3. Sa)

W IJ TG I ::;'lm+1) ...". )
m+1 m+1 m+J -Am+1x + Pm+1 13. Sb)

using Isee 13.2c) and 13.3b) ):

c
00

Im+l )
-J

[c 1m) +
00

A 1' G A - D rv DT J-J
m+! m+J m+J m·r) m+J m+J

13. Sc)

= [c Im)-\ AT G II-B ~I B
T

G )
. 00 m+J rn+J m+1 m+1 m+1 m+1

1'herefore, thjs fit is equivalent to 13.4a,b) and hence to a complete
2

,!lobal f.i.t w.i.th m+1 tracks. 7'he global X can be updated:

2
X m+1

2
X m +

2
X 1+)

(3.9a)

A proof of thjs fact is sketched at the end of th.i.s sect.ion.
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~ ,..,
can be computed using only the fitted values -;; and q

m+1

It is norma.lly not necessary to update the remaining estimated momentum
~ (m) ~(m).

vectors q1 I 0*0" q I s~nce it is more economical to recompute
,.., nl

all q. by means of (3.4b) at the end. It can be done, however, easily
~

by using (3.4b):

~ (m) T (!)((m+1) !:;(m))
q, - W.D. x - x
~ ~ ~

(3.9b)

X
2 X2(+) is distr.ilJUted with 2 deg.rees of freedom and can be used

as a test: criterion for the decis.i.on whether track m+l is compatible

w'.i tIl the vertox !j(w).

By the same c1.Igo~'ithm a track can also be removed from a vertex by

chah5linq the sign of its .weight matrix G ..
~

Secondary vertic:e:; - if properly recognized by the pattern recognition 

hear 110 nE~W features and can be treated exactly in the same way as

the pr.imary vertex.

II proof of (3. 9a) can be obtained in the foll.owing way.

wr.i tton as:

2
X (+)

can be

2
X (+)

(3.lOa)

+ ('?t(m) _ ~(m+1))T (m)-1(~(m) ~(m+1))
x C x-x

00

2 X2.We' sho<.; that the difference 'Y m ~s equal to (3.10a):fIJ m+1 -

2
X m+1

2
X m

(15. -
~

~ (m+1) )
Pi

m
""" (p~. _ ~ (m)) 7'G (... _? (m))
L- ~ Pi i Pi ... ~
i=1

~ ~(m+1) T
G

(... ~(m+1))
(Pm+1 - Pm+1 ) 'm+1 Pm+ 1 - Pm+1 +
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m ~ 1m) ~ Im+l) 1'G I~ ~ 1m))+ 2 L (Pi - Pi ) i Pi - Pi +
i=l

m (3. lOb)

+ L I~ 1m) ~ Im+l) T ~ 1m) ~ Im+l))
Pi - Pi ) GilPi - Pi

i=l

1'he fh'st terms in (3.1 Oa) and (3.1 Db) are equal. By using 13. 4b) and

(3.5b) j.t fO.l1ows that

~ 1m)
p.

.r
. T ~Im) T -'7

~ (A.-B.W.D.)x +B.W.B. G.p.
~ ~ L ~ ~ L L L L

13.11a)

and .d~.
.I.

13.11b)

lJy subst:ituting 13.11a), 13.11b) and (3.4a) into 13.10b), it turns out

that: the second term is equal to 0, and that the third term is equal to:

m

1
41m) ~lm+l))1'x -x . T T l':::lm) ~Im+l))

Lilli Gill
i

- D.W.D. ). x -x
i=l L 1. .1

13.12)

II glance at 13.2c) and 13.3b) shows that (3.12) is equal to the second

term in (3.10a). Hence 13.10a) and (3.10b) are identical, q.e.d.
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1. AN EXAMPLE

One of the detectors (DELPHi) at the Large Electron positron Collider (LEP)

Be.rves as an eXClmp.7.e .for the applicat.ion of the methods discussed above.

Til this detector, a time projection chamber (TPC) I giving a high number of

measured space _001nts for larqe angle tracks, is surrounded by several

ou t:or detector modules qi ving less poY-;erful measurements. Inside the TPC,

a l1iqh prec.isiolJ inner d(~l:ector measurin(j' a small number of coordinates

impr:oves the .vI'eeis.ion towards the vertex region (f.ig. 8).

1'he natural. cho.ice for obta.ining a track se,rment to start with is the 1'PC,

because of t.he .large number of measurements, the small mu1 tiple scattering

and Uno? hlqhly homogenous ma(]n(~tic [ie.ld. In this detector the recursive

method m.iuht Sf::?rve as a powe.rFu.l check of the pattern recognition', particular

ly in the case of high mult.1:plic.itieD, but for the final track fit the qlobal

method seems to be the most ap.propriate one . .In.formation from some of the

outer det:ectol'.s vlill be merged in by [l com.b:Lnation of these methods. This

wi1.l .he d.iscussed somewhere else.

'1'he .information provided by the inner detector will be added by the re

cursive method. Th.is procedure ensures that tracks close to each other

ill the vicinity of the vertex rogion can be well separated. Also,' the

estjmate of the final tl."dck pararrwters is o!)timized where it ought to be,

namely. at the beam tube.
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FIGURE CAPTIONS

1. Deviation of the actual (scattered) track from an ideal (unscattered)

track at a detector plane

2. Track w.i th discrete mul tiple scattering; for different choices of zR

d.ifferont so.lutions of the equation of motion are selected.

3. Tntc:L1nf}dl:ate status of track fittiny in a complex but modular detector.

4. ~l'he qJoha.l method. Additional .info:rmation ,in subsequent program steps

]:5 a.lvJays used to improve the cst_imate of the salTle quantity, namely

~

5. In track element merging, the track parameters PI are propagated to a
~ (2) . ':.::4

nCl-! reference plane. p 1 and p 2 are considered as direct measurements

of the t.rue track parameters at the reference plane.

6. 1'he recursive method. Starting from the outer detectors, the track is

followed step b.'J step towards the center. 1'he estimate of the actual

running track parameter is optimised.

7. On the ri.ght side, the track .f.it:ting for single tracks is demonstrated.

Por the vertex fi t, the parameters p. are considered as "virtua,Z measU.re
1.

monts 1/ (Iett side).

8. An example for a program structure is shown. llfter a global fit in tIle

1'!?C and a recurs.i ve track fol1otv.in:J through a higl1 precision detector,

the II v irtud.l measurements" for the subsequent vertex fit are obtained ..
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