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Résumé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

1 Introduction 1

1.1 Graph layouts (drawings) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Queue and stack layouts . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 3D graph drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.3 Layered (hierarchical) drawings . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Fixed parameter tractability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.1 Fixed parameter tractability and graph drawing . . . . . . . . . . . . . 11

1.3 Contributions, organization, and guidelines for the reader . . . . . . . . . . . 12

2 Preliminaries 15

2.1 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Rooted trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.2 Graph parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.3 Vertex ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Graph layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Stack and queue layouts . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Mixed layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.3 Track layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.4 2-Layer drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.5 3D straight-line and polyline drawings . . . . . . . . . . . . . . . . . . 21

2.3 Bibliographic notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21



CONTENTS ii

3 Crossing Minimization 22

3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Properties of optimal drawings . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 An efficient FPT algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.1 The bounded search tree approach for the algorithm . . . . . . . . . . 28

3.3.2 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Two generalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.1 Multiple edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.2 Improper 2-layer drawings . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Conclusion and bibliographic notes . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6 Computing crossing numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Planarization 38

4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1 Biplanar graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.2 Problem statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.3 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 2-Layer planarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.1 The candidate set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.2 Size of the candidate set . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.3 The kernelization algorithm . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.4 The bounded search tree algorithm . . . . . . . . . . . . . . . . . . . . 53

4.3 1-Layer planarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Approximations for 1- and 2-LAYER PLANARIZATION . . . . . . . . . . . . . . . 58

4.5 Conclusion and bibliographic notes . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Basics of Track Layouts 61

5.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1.1 Fixed track assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1.2 An extremal question . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1.3 A lower bound on track number . . . . . . . . . . . . . . . . . . . . . . 63

5.1.4 Computational complexity . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Manipulation of layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.1 The wrapping lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.2 Track layouts into track layouts . . . . . . . . . . . . . . . . . . . . . . 66

5.2.3 Queue layouts into track layouts . . . . . . . . . . . . . . . . . . . . . 67

5.2.4 Track layouts into queue layouts . . . . . . . . . . . . . . . . . . . . . 68

5.3 Geometric thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



CONTENTS iii

5.4 Layouts of trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.5 Bibliographic notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6 Layouts of Bounded Treewidth Graphs 74

6.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.1.1 Treewidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.1.2 Tree-partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2 Pathwidth bounds track-number . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.3 Tree-partition-width bounds track-number . . . . . . . . . . . . . . . . . . . . 79

6.4 Tree partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.5 Treewidth bounds track-number . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.6 Treewidth bounds queue-number . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.7 Conclusion and bibliographic notes . . . . . . . . . . . . . . . . . . . . . . . . 89

7 Layouts of Subdivisions 90

7.1 Introduction and preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.1.1 Stack, queue and track layouts of subdivisions . . . . . . . . . . . . . . 90

7.1.2 Thickness and topological parameters . . . . . . . . . . . . . . . . . . 93

7.2 Small subdivisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.2.1 Track layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.2.2 Queue layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.2.3 Stack layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.3 Big subdivisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.3.1 (k, T )-Layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.3.2 (k,H)-Layout into layout of G . . . . . . . . . . . . . . . . . . . . . . . 105

7.3.3 Queue layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.3.4 Stack layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.3.5 Mixed layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.3.6 Track layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.4 Planar subdivisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.4.1 Planar stack layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.4.2 Planar queue and track layouts . . . . . . . . . . . . . . . . . . . . . . 118

7.4.3 Planar mixed layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.5 Bibliographic notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

8 Three-Dimensional Graph Drawings 122

8.1 Track layouts into 3D drawings . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8.2 Straight-line drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127



CONTENTS iv

8.3 Polyline drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.4 Conclusion and bibliographic notes . . . . . . . . . . . . . . . . . . . . . . . . 129

9 Conclusion and Open Problems 131

Bibliography 134



Abstract

Graph drawing problems originate from diverse application domains. In some, such as

software engineering and cartography, graphs are required to be visualized or drawn in

ways that are easy to read and understand. In others, such as VLSI design, graphs are

required to be laid out while satisfying some physical constraint. For example, when a

drawing is to be displayed on a page or a computer screen, or is to be used for VLSI design,

it is important to keep its area/volume small to avoid wasting space.

More often than not however, the idea of a good drawing, regardless of its purpose, coin-

cides with having no edge crossings or having very few crossings. Unfortunately, whichever

of the numerous drawing styles one considers, a problem requiring a crossing minimization

of sorts will, almost certainly, be NP-hard. The theory of fixed parameter tractability (FPT)

provides a new and promising approach for coping with intractable problems. In the first

part of this thesis we apply algorithmic techniques developed in this theory to well-known

graph drawing problems. In particular, we contribute efficient FPT algorithms for crossing

minimization and planarization problems concerning the 2-layer drawing style.

In the second part of this thesis we introduce and comprehensively study so-called track

layouts of graphs and their subdivisions. A relationship between this combinatorial structure

and several well-known types of graph layouts is established, leading to a number of new

results. For example, our study of track layouts of bounded treewidth graphs settles an open

problem due to Ganley and Heath (2001) regarding queue layouts of such graphs. Moreover,

the study also establishes that graphs of bounded treewidth have three-dimensional straight-

line grid drawings with linear volume.

Through the study of track layouts of subdivisions, we determine that every graph with

n vertices and m edges has a three-dimensional polyline grid drawing with the vertices on

a rectangular prism, O(n + m log n) volume and O(log n) bends per edge.



Résumé

Les problèmes de dessin de graphes proviennent de domaines d’application divers. Dans

certains, tels que le génie logiciel et la cartographie, des graphes doivent être visualisés

ou dessinés d’une manière facile à lire et àcomprendre. Dans d’autres, tel que la concep-

tion de VLSI, des graphes doivent être dessinés tout en satisfaisant certaines contraintes

physiques. Par exemple, au moment où un schéma doit être montré sur une page ou un

écran d’ordinateur, ou être employé pour la conception de VLSI, il est important de main-

tenir une petite aire/volume du schéma pour éviter de gaspiller de l’espace.

Le plus souvent cependant, l’idée d’un bon schéma, indépendamment de son but, cöıncide

avec avoir aucun ou très peu de croisements d’arêtes. Malheureusement, quelque soit le

style de dessin que l’on considère, un problème exigeant une minimisation de croisements

sera, presque certainement, NP-dur. La théorie de la tractabilité fixe de paramètres (FPT)

fournit une approche nouvelle et prometteuse pour faire face à certains de ces problèmes

insurmontables. Dans la première partie de cette thèse nous appliquons des techniques al-

gorithmiques dérivées de cette théorie à des problèmes de dessin de graphe bien connus.

En particulier, nous présentons des algorithmes efficaces de FPT pour des problèmes de

minimisation de croisements et de planarisation du modèle de dessin 2-couche.

Dans la deuxième partie de cette thèse nous présentons et étudions en dètails les agence-

ments voies (track layouts) des graphes et de leurs subdivisions. Un rapport entre cette

structure combinatoire et plusieurs types bien connus d’agencements de graphe est établi,

menant à un certain nombre de résultats nouveaux. Par exemple, notre étude des track lay-

outs des graphes de largeur arborescente (treewidth) bornée règle un problème non résolu

dû à Ganley et Heath (2001) concernant des agencements-queues (queue layouts) de tels

graphes. D’ailleurs, l’étude établit également que les graphes de treewidth bornée ont des

dessins tridimensionnels de grille à ligne droite avec volume linéaire, qui représentent la

plus grande classe connue de graphes avec de tels dessins. Par l’étude des track layouts des

subdivisions, nous déterminons que chaque graphe avec n sommets et m arêtes a un dessin

de grille tridimensionnelle de polyligne avec les sommets sur un prisme rectangulaire, un

volume de O(n + m log n) et O(log n) coudes par arête.
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Chapter 1

Introduction

Graphs are used to model structural information arising from many fields, such as eco-

nomics, engineering, social sciences, genetics, mathematics and computer science. In chem-

istry, the popular ball-and-stick model of a molecule is a graph. The nodes are atoms and

the edges correspond to molecular bonds. In graph models of the World-Wide Web, nodes

represent web pages and edges represent hyperlinks.

Graphs, as models of information, are often required to be visualized or drawn in ways

that are easy to read and understand, or they are required to be laid out while satisfy-

ing some physical constraint. Graph drawing addresses the problems of characterizing the

existence of such drawings and layouts, as well as developing algorithmic techniques for

their automatic generation. Although graph drawing problems are attractive from a purely

mathematical standpoint, they also arise in many application areas, including VLSI design,

visualization, and DNA mapping.

There are infinitely many drawings of a graph. Producing a good drawing of a graph

typically involves the optimization of several application-specific criteria. More often than

not, the idea of a good drawing, regardless of its purpose, coincides with having few edge

crossings. When a drawing is to be displayed on a page or a computer screen, or is to be

used for VLSI design, it is important to keep the area/volume small to avoid wasting space.

A bend on an edge increases the difficulty for the eye to follow the course of the edge.

For this reason, both the total number of bends and the number of bends per edge should

be kept small when the readability of a drawing is of concern. For most of these cases,

it is hard to achieve the optimum. Garey and Johnson [87] showed that minimizing the

number of crossings is NP-complete. Kramer and van Leeuwen [130] proved that to test

whether a graph can be embedded in a grid of prescribed size with vertices at grid points

is NP-complete. Garg and Tamassia [89] proved the NP-completeness of determining the

minimum number of bends for orthogonal drawings where edges consist of vertical and

horizontal line segments.



CHAPTER 1. INTRODUCTION 2

Due to the seemingly inevitable combinatorial explosion of running time as a function

of problem size, most of the algorithms that attempt to find exact solutions to NP-complete

problems are in general highly impractical. The theory of fixed parameter tractability (FPT)

provides a new and promising approach for coping with intractable problems. The key

idea behind FPT algorithms is to isolate some aspect(s) of the input as a parameter, and to

confine the exponential part of the running time to that parameter, the benefit being that

this parameter will often be much smaller in practice than the size of the whole input. Re-

searchers in many fields are now developing fast and practical FPT algorithms for problems

previously considered unsolvable. One such problem is the vertex cover problem.

This thesis and its contributions can be divided into two main parts. The first part is

concerned with algorithmic graph drawing problems, in particular, NP-hard optimization

problems regarding 2-layer drawings. In a 2-layer drawing, the vertices of a graph are placed

on two parallel lines (layers), and the edges are drawn as straight line-segments between

the layers. Such drawings have been studied extensively by the graph drawing community.

We initiate the study of these problems from the FPT point of view and contribute efficient

FPT algorithms for three well-known problems concerning 2-layer drawings (Chapters 3

and 4).

The second main contribution of this thesis is concerned with structural graph drawing

problems, that is, with characterizing the existence of, and deriving bounds for, certain

types of drawings and layouts. In particular, we introduce and study comprehensively the

track layouts of graphs and their subdivisions. Similar structures, although less general,

are implicit in several previous works [80, 110, 114, 165]. A k-track layout of a graph

consists of a vertex k-colouring, and an ordering of vertices in each colour class, such that

between each pair of colour classes no two edges cross. The track-number of a graph G is the

minimum k such that G has a k-track layout. As an outcome of this study we derive several

new results for well-known models of graph layouts: queue-layouts, stack layouts (more

commonly called book embeddings), 3D straight-line grid drawings and finally 3D polyline

grid drawings (Chapters 5, 6, 7 and 8).

The principal results of this thesis are outlined in more detail in Section 1.3. In addition,

at the beginning of each chapter we state its contributions and put them into perspective

with regard to the current state of the art.

1.1 Graph layouts (drawings)

In this section we introduce the topics of graph drawing that are in the scope of this thesis

and also provide the relevant background.
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1.1.1 Queue and stack layouts

A queue layout of a graph G = (V,E) consists of an ordering < on the vertices V (G), and a

partition of the edges E(G) into queues, such that no two edges in the same queue are nested

with respect to <: two edges vw and xy are nested with respect to < if v < x < y < w. The

minimum number of queues in a queue layout of G is called the queue-number of G, and is

denoted by qn(G).

A similar concept is that of a stack layout, which consists of an ordering < on V (G), and

a partition of E(G) into stacks (or pages) such that no two edges in the same stack cross with

respect to <. Two edges vw and xy cross with respect to < if v < x < w < y. More detailed

definitions of stack and queue layouts may be found in Chapter 2.

The minimum number of stacks in a stack layout of G is called the stack-number of G,

and is denoted by sn(G). A queue (stack) layout with k queues (stacks) is called a k-queue

(k-stack) layout, and a graph that admits a k-queue (k-stack) layout is called a k-queue

(k-stack) graph. Examples of 3-stack and 3-queue layouts of K6 are illustrated in Figure 1.1.

(a) (b)

FIGURE 1.1: Layouts of K6: (a) 3-stack, (b) 3-queue; the edges with the same colour form a stack in

(a) and a queue in (b).

Stack layouts were independently introduced by Bernhart and Kainen [7] and by Cottafava

and D’Antona [28]. Queue layouts were introduced by Heath et al. [110, 114]. Stack lay-

outs are more commonly called book embeddings, and stack-number has been called book-

thickness, fixed outer-thickness, and page-number.

Heath and Rosenberg [114] characterized 1-queue graphs as the ‘arched leveled planar’

graphs, and proved that it is NP-complete to recognize such graphs. This result is in con-

trast to the situation for stack layouts; 1-stack graphs are precisely the outerplanar graphs

[7], which can be recognized in polynomial time. However, 2-stack graphs are characterized

as the subgraphs of planar Hamiltonian graphs [7], which implies that it is NP-complete

to test if the stack-number of a given graph is at most two [201]. Heath et al. [110] proved

that 1-stack graphs are 2-queue graphs (rediscovered by Rengarajan and Veni Madhavan

[165]), and that 1-queue graphs are 2-stack graphs.

While it is NP-hard to minimize the number of stacks in a stack layout given a fixed

vertex ordering [88, 189], Heath and Rosenberg [114] describe an O(m log log n) time al-

gorithm for the analogous problem for queue layouts.
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A tree is a 1-queue graph, since in a breadth-first vertex ordering of a tree no two edges

are nested. Chung et al. [25] proved that in a depth-first vertex ordering of a tree no

two edges cross. Thus trees are 1-stack graphs. Loosely speaking, treewidth measures how

similar a graph is to a tree, and band-width is a measure of linearity of a graph (see Chap-

ter 6 for the definitions). Rengarajan and Veni Madhavan [165] proved that graphs with

treewidth at most two (the series-parallel graphs) are 2-stack and 3-queue graphs. Heath

and Rosenberg [114] proved that for every graph G, the queue number is bounded by the

bandwidth. Stack and/or queue layouts of bounded (that is, constant) treewidth graphs

have been investigated in [25, 85, 165]. Ganley and Heath [85] proved that, for every

graph G, the stack-number is bounded by the treewidth (using a depth-first traversal of a

tree-decomposition), and asked whether queue-number is bounded by the treewidth. The

principal result of Chapter 6 is to solve this question in the affirmative.

Yannakakis [207] showed that planar graphs are 4-stack graphs. The best known upper

bound on the queue-number of a planar graph is O(
√

n). Heath et al. [110, 114] asked

whether every planar graph has O(1) queue-number.

Applications of stack and queue layouts include sorting permutations [78, 104, 119, 155,

162, 186], fault tolerant VLSI design [25, 171, 173, 174], parallel process scheduling [8],

complexity theory [82, 83, 125], compact graph encodings [120, 148], compact routing ta-

bles [91], and graph drawing [9, 38, 202–204]. Stack and queue layouts of directed graphs

[37, 105, 107, 111–113] and posets [2, 3, 134, 154, 185] have also been investigated.

Table 6.1 on page 75 summarizes some of the known bounds on the stack-number and

queue-number of various classes of graphs, including the bound established in this the-

sis. Despite this wealth of research on stack and queue layouts, the following fundamental

questions of Heath et al. [110] have remained unanswered.

Open Problem 1.1. [110] Is stack-number bounded by queue-number?

Open Problem 1.2. [110] Is queue-number bounded by stack-number?

Suppose that stack-number is bounded by queue-number, but queue-number is not

bounded by stack-number. This would happen, for example, if there exists a constant s

such that for every q there exists an s-stack graph with no q-queue layout. Then we would

consider stacks to be more ‘powerful’ than queues, and vice versa. Note that for every

sufficiently big integer n, there is an n-vertex graph G with sn(G) ≥ 3qn(G) [110].

Depth-first search and breadth-first search can be thought of as the same algorithm,

where depth-first search operates with a stack and breadth-first search operates with a

queue. Thus stack and queue layouts of graphs are a means for measuring the relative

power of depth-first search and breadth-first search. It is no coincidence that many algo-

rithms for computing stack layouts use depth-first search [25, 85, 138], while breadth-first
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search is often used for computing queue layouts [110, 165]. These ideas are made partic-

ularly concrete in the case of trees (see Lemmas 5.16 and 5.17).

1.1.2 3D graph drawings

Graph drawing in the plane is well-studied (see [35, 126]). Motivated by experimental

evidence suggesting that displaying a graph in three dimensions is better than in two [193,

194], and applications including information visualization [193], VLSI circuit design [135,

163, 172], and software engineering [195], there is a growing body of research in three-

dimensional graph drawing.

In this thesis we study three-dimensional straight-line grid drawings, henceforth called

3D drawings. In this model, vertices are positioned at distinct points in Z
3 (called grid-

points), and edges are drawn as straight line-segments with no crossings. (Two edges cross

if they intersect at some point other than a common endpoint.) We focus on the problem

of producing 3D drawings with small volume. This problem has been extensively studied

[16, 19, 26, 36, 39, 40, 80, 106, 158, 161, 204]. Drawings of graphs in three dimensions

with the vertices in R
3 have also been studied [18, 23, 24, 32, 64, 90, 115–118, 144, 156].

Aesthetic criteria besides volume which have been considered include symmetry [115–118],

aspect ratio [24, 90], angular resolution [24, 90], edge-separation [24, 90], and convexity

[23, 24, 64, 180].

The classical result of de Fraysseix et al. [34] and Schnyder [176] states that every

planar graph has an O(n2) area 2D straight-line grid drawing. In contrast to the case in the

plane, a folklore result states that every graph has a 3D drawing. Such a drawing can be

constructed using the ‘moment curve’ algorithm in which vertex vi, 1 ≤ i ≤ n, is represented

by the grid-point (i, i2, i3). It is easily seen — compare with Lemma 8.2 in Chapter 8 — that

no two edges cross.

Since every graph has a 3D drawing, we are interested in optimizing certain measures

of the quality of a drawing. If a 3D drawing is contained in an axis-aligned box with side

lengths X−1, Y −1 and Z−1, then we speak of an X×Y ×Z drawing with volume X ·Y ·Z.

That is, the volume of a 3D drawing is the number of gridpoints in the bounding box. This

definition is formulated so that two-dimensional drawings have positive volume.

Observe that the drawings produced by the moment curve algorithm haveO(n6) volume.

Cohen et al. [26] improved this bound, by proving that if p is a prime with n < p ≤ 2n, and

each vertex vi is represented by the grid-point (i, i2 mod p, i3 mod p), then there is still no

crossing. This construction is a generalization of an analogous two-dimensional technique

due to Erdös [76]. Furthermore, Cohen et al. [26] proved that the resulting O(n3) volume

bound is asymptotically optimal in the case of the complete graph Kn. It is therefore of

interest to identify fixed graph parameters that allow for 3D drawings with small volume.
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The first such parameter to be studied was the chromatic number [19, 158]. Calamoneri

and Sterbini [19] proved that every 4-colourable graph has a 3D drawing with O(n2) vol-

ume. Generalizing this result, Pach et al. [158] proved that graphs of bounded chromatic

number have 3D drawings with O(n2) volume, and that this bound is asymptotically opti-

mal for the complete bipartite graph with equal sized bipartitions. If p is a suitably chosen

prime, the main step of this algorithm represents the vertices in the ith colour class by grid-

points in the set {(i, t, it) : t ≡ i2 (mod p)}. It follows that the volume bound is O(k2n2) for

k-colourable graphs.

The first non-trivial O(n) volume bound was established by Felsner et al. [80] for outer-

planar graphs. Their elegant algorithm “wraps” a two-dimensional drawing around a trian-

gular prism. Poranen [161] proved that series-parallel digraphs have upward 3D drawings

with O(n3) volume, and that this bound can be improved to O(n2) and O(n) in certain spe-

cial cases. Di Giacomo et al. [39] proved that series-parallel graphs with maximum degree

three have 3D drawings with O(n) volume.

In a recent development, Bose et al. [16] proved that graphs admitting three-dimensional

drawings with O(n) volume have O(n) edges. In particular, the maximum number of edges

in an X × Y × Z drawing is exactly (2X − 1)(2Y − 1)(2Z − 1)−XY Z.

Straight-line drawings are a special case of polyline drawings. In particular, a three-

dimensional polyline grid drawing of a graph, henceforth called a 3D polyline drawing, rep-

resents the vertices by distinct points in Z
3, and represents each edge as a polygonal chain

with bends (if any) also at gridpoints, such that distinct edges do not cross. Here a point

where a polygonal chain changes its direction is called a bend. Polyline drawings provide

great flexibility as they can approximate drawings with curved edges. The number of bends,

however, should be kept as small as possible, since bends typically reduce the readability

of a drawing. A 3D polyline drawing with at most b bends per edge is called a 3D b-bend

drawing. Thus 0-bend drawings are 3D drawings. Of course, a 3D b-bend drawing of a

graph G is precisely a 3D straight-line drawing of a subdivision of G with at most b division

vertices per edge. This provides one of the motivations for our study of graph subdivisions

in Chapter 7. The volume and number of bends in 3D polyline drawings where edges are

restricted to be axis aligned have been previously studied; see [67, 68, 205] for example.

This thesis initiates (in Chapter 8) the study of upper bounds on the volume and number of

bends per edge in arbitrary 3D polyline drawings.

Table 8.2 on page 123 summarizes the best known upper bounds on the volume and

bends per edge in 3D drawings and 3D polyline drawings, including those established in

this thesis. In general, there is a trade-off between few bends and small volume in such

drawings, which is evident in Table 8.2.
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1.1.3 Layered (hierarchical) drawings

A common method for drawing directed graphs, which produces layered drawings or hi-

erarchical drawings was introduced by Tomii et al. [188], Carpano [20] and Sugiyama

et al. [183]. In this type of drawing, vertices are arranged on h ≥ 2 layers (that is, on h

parallel lines in the plane), and edges are drawn as straight line-segments between vertices

on adjacent layers (as illustrated in Fig. 1.2). Layouts of this kind have applications in visu-

alization [35], in DNA mapping [197] and in row-based VLSI layout [136]. Note that not

all graphs have layered drawings, even if edge crossings are allowed. For example, a 3-cycle

has no layered drawing.

FIGURE 1.2: A layered drawing.

As is the case with other styles of drawings, the quality and readability of layered draw-

ings depends heavily on the number of edge crossings. If the vertices of a planar graph G

are not preassigned to layers, testing whether G has a layered drawing without edge cross-

ings is an NP-complete problem. Heath and Rosenberg [114] derived this result as part of

their proof that recognizing 1-queue graphs is NP-complete. However, if the vertices of G

are preassigned to h layers as part of the input, Jünger et al. [121] demonstrated that there

is a linear-time algorithm to test if G has a layered drawing without edge crossings subject

to the vertex assignment.

Crossing minimization. The number of edge crossings in a layered drawing depends only

on the ordering of the vertices within each layer, rather than on the precise coordinates

of the vertices. Although this simplifies the problem in some sense (that is, the problem

becomes discrete), choosing vertex orderings that minimize the number of edge crossings in

layered drawings is in fact an NP-complete problem even if there are only two layers [70].

The two layer problem was proposed by Harary [102], Harary and Schwenk [103] and

Watkins [198]. They gave the first structural results for the problem. Two-layer drawings

are of fundamental importance in the layer-by-layer sweep method introduced by Sugiyama

et al. [183]. Most techniques for producing layered drawings first assign vertices to h ≥ 2
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layers (sometimes this vertex assignment is determined by the context), and then do a

layer-by-layer sweep. An ordering π1 for the vertices in the top layer L1 is chosen and fixed.

Then for each succeeding layer Li, an ordering πi is sought that minimizes the number of

edge crossings among the edges between Li−1 and Li. This process is repeated until some

stopping criterion is satisfied.

A key step in this method is to minimize crossings between two adjacent layers when the

ordering in one layer is fixed. This problem is called the 1-SIDED CROSSING MINIMIZATION

problem. Unfortunately, this basic problem is also NP-complete [70]. The problem is NP-

complete even for graphs with only degree-1 vertices in the fixed layer and vertices of degree

at most 4 in the other layer [147], that is, for a forest of 4-stars. This problem is the focus

of Chapter 3, where it is studied from the fixed parameter tractability point of view.

The 1-SIDED CROSSING MINIMIZATION problem has been studied extensively by the

graph drawing community. Much effort has gone into the design of efficient heuristics

(e.g. [21, 48, 65, 70, 183, 191, 196]). In terms of exact algorithms, Jünger and Mutzel

[122] succeeded in employing integer linear programming (ILP) methods in order to find

an exact solution to the 1-SIDED CROSSING MINIMIZATION problem. They first transform

the problem to a linear ordering problem that is subsequently solved via the branch and cut

method. In the same work the authors also surveyed numerous heuristics that have been

proposed and experimentally compared their performances with the optimal solutions gen-

erated by their own method. They reported that the iterated barycentre method of Sugiyama

et al. [183] performed best in practice. However, from a theoretical point of view, the median

heuristic of Eades and Wormald [70] is a linear-time 3-approximation algorithm, whereas

the barycentre heuristic is a Θ(
√

n)-approximation algorithm [137]. Recently, Nagamochi

[152] devised a 1.47-approximation for the problem.

Planarization. Instead of minimizing the number of edge crossings, one can seek to remove

the minimum number of edges such that the remaining graph has an h-layer drawing with-

out edge crossings. A graph is biplanar if it has a 2-layer drawing without edge crossings.

Consider a 2-layer drawing of a bipartite graph G produced by first drawing a maximum

biplanar subgraph of G and then drawing all the remaining edges. Although such a drawing

is unlikely to minimize the number of crossings, there is some experimental evidence to sug-

gest that 2-layer drawings in which all the crossings occur in few edges are more readable

than drawings with fewer total crossings [149].

The 2-LAYER PLANARIZATION problem asks for a minimum set of edges to be deleted

from a given graph G so that the remaining graph is biplanar. When the input graph is

bipartite and the ordering of one bipartition is given as part of the input, we talk about the

1-LAYER PLANARIZATION problem (or the 1-SIDED PLANARIZATION problem). The 1- and
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2-LAYER PLANARIZATION problems are the focus of Chapter 4, where we study both of the

problems from the fixed parameter tractability point of view.

Despite the practical significance of the problems, 1- and 2-LAYER PLANARIZATION have

received less attention in the graph drawing literature than their crossing minimization

counterparts. The 2-LAYER PLANARIZATION problem is NP-complete [69, 188], even for

planar biconnected bipartite graphs with vertices in respective bipartitions having degree

two and three [69]. Eades and Whitesides [69] show that the 1-LAYER PLANARIZATION

problem is also NP-complete, even for graphs with only degree-1 vertices in the fixed layer

and vertices of degree at most 2 in the other layer; that is, for collections of 1- and 2-paths.

With the order of the vertices in both layers fixed the problem can be solved in polynomial

time [69, 151].

Integer linear programming algorithms have been presented for 1- and 2-LAYER PLA-

NARIZATION [149, 151]. Shahrokhi et al. [179] present anO(n) time dynamic programming

algorithm for 2-LAYER PLANARIZATION of weighted trees, for which the objective is to min-

imize the total weight of deleted edges. Although Tomii et al. [188] claim an O(n3) time

algorithm for the 2-LAYER PLANARIZATION problem on trees, Mutzel [149] demonstrates a

tree for which their algorithm is not optimal.

Integer linear programming algorithms have also been developed to produce layered

drawings on more than two layers. In particular, ILP techniques have been applied to both

planarization and crossing minimization problems with vertices preassigned to h > 2 layers

[108, 109, 133]. Crossing free layered drawings of trees have been investigated in [181].

1.2 Fixed parameter tractability

One of the outcomes of the last thirty years of complexity theory is the realization that

most interesting computational problems are essentially intractable, being NP-complete

or worse. It has been pointed out in Garey and Johnson [86] that parameters associated

with different parts of the input can interact in a wide variety of ways in producing non-

polynomial complexity. Downey and Fellows [47] initiated a systematic analysis of the

complexity of parameterized decision problems. Specifically, one of the principle ideas of pa-

rameterized complexity is to look more deeply into the structure of the input with the aim

of identifying the parts (parameters) that contribute to intractability. Many intractable com-

putational problems have natural parameters. The number of edge crossings in a drawing

is one such parameter. Some problem parameters may be less obvious. Examples include

treewidth, bandwidth, and pathwidth of an input graph. When the maximum number k of

allowed edge crossings is small, an algorithm for crossing minimization whose running time
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is exponential in k but polynomial in the size of the graph may be useful.

The theory of parameterized complexity [47] addresses complexity issues of this nature,

in which a problem is specified in terms of one or more parameters. This complexity theory

can be viewed not only as a potential means of dealing with intractability but perhaps also

as a general framework for problem analysis and algorithm design, including the design of

heuristics and approximation algorithms.

Just as polynomial time, P, is the basis of traditional complexity theory, the basic con-

cept of the parameterized complexity framework is that of fixed parameter tractability. A

problem with input size n and parameter size k is fixed parameter tractable, or in the class

FPT , if there is an algorithm to solve the problem in f(k) · nα time, where α is a constant

independent of k and n, and f is an arbitrary function dependent only on parameter k. A

problem in FPT is thus solvable in polynomial time for a fixed k. The classical example is

the FPT algorithm that solves the vertex cover problem in time O(kn + 1.29k · k2) [22, 46].

So the problem is well solved for input graphs of any size so long as k is no more than

around 100. Yet it is not surprising that many parameterized problems appear not to be in

FPT . For instance, just as the traveling salesman problem is not likely to be in P accord-

ing to traditional complexity theory, so is the independent set problem not likely to be in

FPT according to parameterized complexity theory. Downey and Fellows [47] defined a

whole hierarchy of parameterized decision problem classes, FPT ⊆ W[1] ⊆ W[2] ⊆ . . .

and appropriate reducibility and completeness notations. The independent set problem, for

example, isW[1]-complete.

In recent years a variety of methods useful for proving fixed parameter tractability have

emerged. One of them is the celebrated graph minors theorem by Robertson and Seymour

[166, 167]. The theorem is considered by many to be the most important result in graph

theory. Its power may be illustrated through the linking number problem, which can be

viewed as a graph drawing problem. Informally, the linking number problem asks if a graph

can be embedded in R
3 such that the maximum size of a collection of linked disjoint cycles

is bounded by k. A graph is linkless if it has an embedding such that no pair of disjoint cycles

is linked. Up until the proof of the graph minors theorem it was unknown if the problem is

decidable even for k = 0, that is, for recognizing linkless graphs. Remarkably, by the graphs

minors theorem, there is an O(n3) algorithm to decide if a given graph is linkless [168]. For

fixed k, the theorem implies that the linking problem is in FPT .

Unfortunately, not only do the algorithms based on the graph minors theorem have as-

tronomical hidden constants, but the non-constructive nature of some parts of this work

make it at times difficult to conceive any kind of algorithm. Specifically, while the theo-

rem may imply the existence of a polynomial-time algorithm for a problem, sometimes no

algorithm is known. One such problem is deciding whether a graph is knotless, that is,
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embeddable in R3 without a knot.

Another major outgrowth from the work of Robertson and Seymour on graph minors,

has been the exploration of a new graph parameter, treewidth, associated with tree decom-

positions of a graph. As already noted, the treewidth measures how similar a graph is to a

tree. The fundamental idea was that many results and techniques applicable to trees should

carry over to graphs that are “tree-like”. Indeed, from the stand point of parameterized

complexity, tree-decompositions have turned out to be a very powerful tool for deriving

FPT algorithms. If a graph has bounded treewidth, then many intractable problems become

tractable by dynamic programming on tree-decompositions, and by automata techniques

[30]. These FPT methods, relying on tree-decompositions of graphs, are currently “ap-

proaching” practicality. The best algorithm for computing a tree-decomposition is due to

Bodlaender [13]. The algorithm runs in O(232k3 |G|) time, where G is an input graph and k

is an upper bound on its treewidth.

There is a steadily growing list of examples of FPT algorithms with more practical costs

in the parameter, such as 2k. Almost all the practical FPT algorithms, including those for

the vertex cover problem mentioned above, have been derived by the important elementary

methods, bounded search tree and kernelization. While very simple algorithmic strategies,

they are in some sense new, as typically they have been overlooked previously because they

have exponential costs in the parameter.

The idea behind the kernelization method (that is, the method of reduction to a problem

kernel) is to define operations that transform (in polynomial time) a given problem instance

P of size n to an “equivalent” problem instance P ′, where the size of P ′ is a function solely

of the parameter k. Then instance P ′ is exhaustively searched for a solution. Since the

size of the space that is exhaustively searched is bounded by k, the exponential part of the

running time will also be a function of k only.

As its name suggests, the idea behind the bounded search tree method is to build a search

tree for a problem. Associated with the root node of a search tree is a given problem

instance. Each node of the tree branches into some number of subproblems, which typically

have a smaller parameter than their “parent” instance. The critical observation for many

parameterized problems in that the size of the tree is bounded by the parameter only, thus

giving rise to fixed parameter tractable algorithms.

We apply the bounded search tree and kernelization methods in Chapters 3 and 4. We

study 3D drawings of graphs that have bounded treewidth/pathwidth in Chapter 6.

1.2.1 Fixed parameter tractability and graph drawing

Applications of FPT techniques to hard graph drawing problems has only just begun. Thanks

to the graph minors theorem, in addition to the examples mentioned in the previous section,
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we now know that testing if a given graph can be embedded in a surface of genus γ is in

FPT . Moreover, for fixed genus, Mohar [143] gave a linear-time algorithm for the problem.

Although conjectured [47] to be fixed parameter intractable, the general crossing min-

imization problem, where vertices are not restricted to lie on parallel lines nor are edges

restricted to be straight, has been shown recently to be in FPT . Specifically, Grohe [94]

gave an f(k) · n2 algorithm for recognizing graphs that can be drawn in the plane with at

most k crossings. A very similar approach would work for deleting k edges to leave a graph

planar. Since the approach relies on deep structure theorems from the Robertson-Seymour

graph minors project, the FPT result of Grohe does not yield a practical algorithm.

Dujmović et al. [49] have studied layered drawing problems from the fixed parameter

tractability point of view. In particular, the h-LAYER CROSSING MINIMIZATION problem as

well as the related h-LAYER PLANARIZATION problem are considered. Here the number of

layers h is also considered to be a parameter of the problem. The h-LAYER CROSSING MINI-

MIZATION problem asks if a given graph can be drawn on h layers with at most k crossings.

The h-LAYER PLANARIZATION problem asks if k edges can be removed from a given graph

such that the remaining graph can be drawing on h layers without edge crossings. (The

vertices of a given graph are not preassigned to layers.) It has been proved in [49], using

bounded pathwidth techniques, that both these general problems (which include 1-SIDED

CROSSING MINIMIZATION, and 1- and 2-LAYER PLANARIZATION) are in the class FPT . The

algorithms use a path-decomposition (a structure related to tree-decompositions) as their

basis. As pointed out in the previous section, a pathwidth-based approach is only of theo-

retical interest, since the running time of the algorithms is dominated by the cost of finding

the path-decomposition which is O(232(h+2k)3n).

Although not practical, these results suggest, at least for restricted versions of the prob-

lems, that there might be more practical algorithms, that is, algorithms with more reason-

able parameter functions. This provides the motivation for our study in Chapters 3 and

4.

1.3 Contributions, organization, and guidelines for the reader

Chapter 2 introduces definitions and notation used throughout the thesis.

We now describe the contributions of each chapter.

Chapter 3 We give anO(φk·n2) fixed parameter tractable algorithm for the 1-SIDED CROSS-

ING MINIMIZATION problem. The constant φ in the running time is the golden ratio

φ = 1+
√

5
2 ≈ 1.618. The parameter k is the number of allowed edge crossings.

Chapter 4 We give an O(k · 6k + |G|) fixed parameter tractable algorithm for the 2-LAYER
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PLANARIZATION problem and an O(3k · |G|) algorithm for the 1-LAYER PLANARIZATION

problem. The parameter k is the number of allowed edge deletions.

Chapter 5 We study basic properties of track layouts. For instance we provide a lower

bound on the number of tracks for any graph. Furthermore, several results describing

how to convert one type of layout of a graph G into another type of layout of G are

presented. These manipulations are critical for a number of results in the subsequent

chapters.

Chapter 6 We prove that the track-number is bounded by treewidth and consequently that

the queue-number is bounded by treewidth, thus resolving an open problem due to

Ganley and Heath [85] (2001), and disproving a conjecture of Pemmaraju [160]

(1992). This result provides renewed hope for the positive resolution of Open Prob-

lem 1.2, on page 4.

Chapter 7 We improve the best known upper bound on the number of division vertices per

edge in a 3-stack subdivision of an n-vertex graph G fromO(log n) toO(log min{sn(G),

qn(G)}). Moreover, this result reduces Open Problem 1.2, whether queue-number is

bounded by stack-number, to whether 3-stack graphs have bounded queue-number.

Furthermore, we prove that every graph has a 2-queue subdivision, a 4-track subdivi-

sion, and a mixed 1-stack 1-queue subdivision. All these values are optimal for every

non-planar graph. In addition, the number of division vertices per edge in these sub-

divisions, namely O(log qn(G)), is optimal to within a constant factor, for every graph

G. The main results of this chapter are summarized in Table 7.1 on page 92.

Chapter 8 We prove that every n-vertex graph with track-number t has a 3D drawing with

O(t2n) volume. Consequently, given the bounds on the track-number derived in Chap-

ters 6 and 7, we infer that the graphs of bounded treewidth have 3D drawings with

O(n) volume. Furthermore, every graph has a 3D polyline drawing with O(m log n)

volume and O(log n) division vertices per edge.

We conclude and give a list of open problems in Chapter 9.

A reader interested in a particular subject may find the following division helpful. Al-

though the individual chapters of this thesis are not fully self-contained, they can be ar-

ranged into topical units that are, as follows.

The FPT algorithm for 1-SIDED CROSSING MINIMIZATION:

Section 2.2.4 and Chapter 3
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The FPT algorithms for 1- and 2-LAYER PLANARIZATION:

Section 2.2.4 and Chapter 4

Basics on track layouts:

Chapters 2 and 5

Track and queue layouts of bounded treewidth/pathwidth graphs:

Chapters 2, 5 and 6

Layouts of subdivisions:

Chapters 2, 5 and 7

3D straight-line and polyline drawings:

Chapters 2, 5, 6, and 8



Chapter 2

Preliminaries

In this chapter we introduce definitions and the notation used throughout the thesis. Unde-

fined terms from graph theory can be found in Diestel [41].

2.1 Graphs

Throughout this thesis G = (V,E) is a graph with vertex set V (G) and edge set E(G).

When the graph is clear from the context, we will sometimes denote the vertex set by V

and the edge set by E. We assume G is finite, simple and undirected unless explicitly stated

otherwise.

The number of vertices and edges of G are respectively denoted by n = |V (G)| and

m = |E(G)|. The subgraph of G induced by a set of vertices S ⊆ V (G) is denoted by G[S].

For all A,B ⊆ V (G), we denote by G[A,B] the bipartite subgraph of G with vertex set

A ∪ B and edge set {vw ∈ E(G) : v ∈ A,w ∈ B}. The spanning subgraph of G induced

by a set of edges S ⊆ E(G) is denoted by G[S]. For a set of vertices S ⊆ V (G), G \ S

denotes G[V (G)\S], and G\v denotes G\{v} for all vertices v. Similarly, for a set of edges

S ⊆ E(G), G \ S denotes G[E(G) \ S], and G \ vw denotes G \ {vw} for all edges vw.

A subdivision of a graph G is a graph obtained from G by replacing each edge vw ∈ E(G)

by a path v, x1, x2, . . . , xp, w where p ≥ 0. Vertices on this path distinct from v and w (that

is, x1, x2, . . . , xp ) are called division vertices.

A clique in a graph is a set of pairwise adjacent vertices. A (proper) vertex t-colouring of a

graph G is a partition {Vi : 1 ≤ i ≤ t} of V (G) such that for every edge vw ∈ E(G), if v ∈ Vi

and w ∈ Vj then i 6= j. A set Vi, 1 ≤ i ≤ t, in a vertex t-colouring of G is a colour class.

The minimum t such that G is vertex t-colourable is the chromatic number of G, denoted by

χ(G). A star colouring of G is a vertex colouring with no bichromatic 4-vertex path; that is,

each bichromatic subgraph is a forest of stars. The star chromatic number of G, denoted by

χst(G), is the minimum number of colours in a star colouring of G.
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A graph H is a minor of a graph G if H is isomorphic to a graph obtained from a subgraph

of G by contracting edges. A family of graphs closed under taking minors is proper if it is

not the class of all graphs. The following general bound on the star chromatic number is

due to Nešeťril and Ossona de Mendez [153].

Lemma 2.1. [153] The star chromatic number of a graph G is at most a quadratic function

of the maximum chromatic number of a minor of G. Hence, every proper minor-closed graph

family has bounded star chromatic number.

2.1.1 Rooted trees

Let T be a rooted tree. The vertices of T are called nodes, and we assume that the edges

are oriented away from its root node r. This assumption on rooted trees will stand for the

remainder of this thesis. A node in T with no outgoing edge is a leaf in T . As is standard,

when referring to the edge of a directed graph, xy means an edge oriented from x to y. The

depth of a node x ∈ V (T ) is the distance from r to x in T , and is denoted by depth(x). The

height of T is the maximum depth of a node in T . Let deg(x), deg−(x), and deg+(x) denote

the degree, indegree, and outdegree of each node x ∈ V (T ). We denote by ρ(x) the parent

node of each non-root node x ∈ V (T ).

2.1.2 Graph parameters

A graph parameter is a function α that assigns to every graph G a non-negative integer

α(G). Let G be a class of graphs. By α(G) we denote the function f : N → N, where f(n)

is the maximum of α(G), taken over all n-vertex graphs G ∈ G. We say G has bounded α if

α(G) ∈ O(1). A graph parameter α is bounded by a graph parameter β (for some class G),

if there exists a binding function g such that α(G) ≤ g(β(G)) for every graph G (in G). If α

is bounded by β (in G) and β is bounded by α (in G) then α and β are tied (in G). Clearly,

if α and β are tied then a graph family G has bounded α if and only if G has bounded β.

These notions were introduced by Gyárfás [99] in relation to near-perfect graph families for

which the chromatic number is bounded by the clique-number.

2.1.3 Vertex ordering

A binary relation < over a set S defines a partial order on S if it is transitive, antisymmetric

and reflexive. An ordered pair P = (S, <), where < is the partial order on set S is partially

ordered set (POSET). A partial order is a total order if it also satisfies x < y or y < x, for all

distinct x, y ∈ S.

A vertex ordering of an n-vertex graph G is a bijection σ : V (G)→ {1, 2, . . . , n}. We write

v <σ w to mean that σ(v) < σ(w). Thus <σ is a total order on V (G). We say G (or V (G))
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is ordered by <σ. At times, it will be convenient to express σ by the list (v1, v2, . . . , vn),

where σ(vi) = i. These notions extend to subsets of vertices in the natural way. Suppose

that V1, V2, . . . , Vk are disjoint sets of vertices, such that each Vi is ordered by <i. Then

(V1, V2, . . . , Vk) denotes the vertex ordering σ such that v <σ w whenever v ∈ Vi and w ∈ Vj

with i < j, or v ∈ Vi, w ∈ Vi, and v <i w. We write V1 <σ V2 <σ · · · <σ Vk. In a vertex

ordering σ of a graph G, let L(e) and R(e) denote the endpoints of each edge e ∈ E(G)

such that L(e) <σ R(e).

For a set of vertices S ordered by σ, let
←−
S denote the set S ordered by the reverse vertex

ordering π, where for each pair of vertices v,w ∈ S, v <π w if and only if w <σ v.

A vertex ordering σ of a directed acyclic graph (DAG) G is topological if v <σ w for all

edges vw ∈ E(G).

2.2 Graph layouts

2.2.1 Stack and queue layouts

In a vertex ordering σ of a graph G, consider two edges e, f ∈ E(G) with no common

endpoint and with L(e) <σ R(e).

• e and f cross: L(e) <σ L(f) <σ R(e) <σ R(f).

• e and f nest and f is nested inside e: L(e) <σ L(f) <σ R(f) <σ R(e).

A stack (respectively, queue) in σ is a set of edges F ⊆ E(G) such that no two edges in F

are crossing (nested) in σ. A queue E ′ has a total order �, called the queue order, such that

∀e, f ∈ E′, e � f ⇐⇒ L(e) ≤σ L(f) and R(e) ≤σ R(f) . (2.1)

A k-stack (queue) layout of G is a pair (σ, {E1, E2, . . . , Ek}) where σ is a vertex ordering

of G, and {E1, E2, . . . , Ek} is a partition of E(G) such that each Ei is a stack (queue) in σ.

At times we write stack(e) = ℓ (or queue(e) = ℓ) if e ∈ Eℓ.

Consider the problem of assigning the edges of a graph G to the minimum number of

stacks given a fixed vertex ordering σ of G. As illustrated in Figure 2.1(a), a twist in σ is a

matching {viwi ∈ E(G) : 1 ≤ i ≤ k} such that

v1 <σ v2 <σ · · · <σ vk <σ w1 <σ w2 <σ · · · <σ wk .

A vertex ordering with a k-edge twist needs at least k stacks, since each edge of a twist must

be in a distinct stack. Unfortunately the converse is not true. There exist vertex orderings

with no (k + 1)-edge twist that require Ω(k log k) stacks [128]. Moreover, as noted in the
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introduction, it is NP-complete to test if a fixed vertex ordering of a graph admits a k-stack

layout [88]1. On the other hand, Kostochka [129] proved that a vertex ordering with no

3-edge twist admits a 5-stack layout, and Ageev [1] proved that 5-stacks are sometimes

necessary in this case. In general, Kostochka and Kratochv́ıl [128] proved that a vertex

ordering with no (k +1)-edge twist admits a 2k+6-stack layout2, thus improving on previous

bounds by Gyárfás [97, 98]. Hence the stack-number of a graph G is bounded by the

minimum, taken over all vertex orderings σ of G, of the maximum number of edges in a

twist in σ.

�✂✁✄�✆☎✝�✟✞✝�✆✠✡�✆☛ ☞✌☛☞✍✠☞✌✞☞✎☎☞✏✁
✑✓✒✕✔ ✖✂✗✄✖✆✘✝✖✟✙✝✖✆✚✡✖✆✛ ✜✢✗✜✎✘✜✌✙✜✍✚✜✎✛✣✥✤✧✦

FIGURE 2.1: (a) 5-edge twist, (b) 5-edge rainbow.

Now consider the analogous problem for queue layouts: assign the edges of a graph G

to the minimum number of queues given a fixed vertex ordering σ of G. As illustrated in

Figure 2.1(b), a rainbow in σ is a matching {viwi ∈ E(G) : 1 ≤ i ≤ k} such that

v1 <σ v2 <σ · · · <σ vk <σ wk <σ wk−1 <σ · · · <σ w1 .

The rainbow {viwi : 2 ≤ i ≤ k} is said to be inside v1w1. We now give a new and simple

proof of a result by Heath and Rosenberg [114].

Lemma 2.2. [114] A vertex ordering of a graph G admits a k-queue layout of G if and only if

it has no (k + 1)-edge rainbow.

Proof. A k-queue layout has no (k + 1)-edge rainbow since each edge of a rainbow must be

in a distinct queue. Conversely, suppose we have a vertex ordering with no (k + 1)-edge

rainbow. For every edge vw ∈ E(G), let queue(vw) be the maximum number of edges in a

rainbow inside vw plus one. If vw is nested inside xy then queue(vw) < queue(xy). Hence

we have a valid queue assignment. The number of queues is at most k.

Thus determining qn(G) can be viewed as the following vertex ordering problem.

Lemma 2.3. [114] The queue-number qn(G) of a graph G is the minimum, taken over all

vertex orderings σ of G, of the maximum size of a rainbow in σ.

1Unger [189, 190] claimed that it is NP-complete to determine whether a given vertex ordering of a graph

G admits a 4-stack layout, and that there is an O(n log n) time algorithm in the case of 3-stack layouts. Crucial

details are missing from these papers.
2Unger [189] claimed without proof that a vertex ordering with no (k + 1)-edge twist admits a 2k-stack

layout. This claim is refuted by Ageev [1] in the case of k = 2.
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Heath and Rosenberg [114] presented a O(m log log n) time algorithm for computing

the k-queue layout in Lemma 2.2.

2.2.2 Mixed layouts

Stack and queue layouts are generalized through the notion of a mixed layout. Here each

edge of a graph is assigned to a stack or to a queue, defined with respect to a common

vertex ordering. We speak of an s-stack q-queue mixed layout and an s-stack q-queue graph.

Part of the motivation for studying mixed stack and queue layouts is that they model the

double-ended queue (dequeue) data structure, since a dequeue may be simulated by two

stacks and one queue.

2.2.3 Track layouts

Let {Vi : 1 ≤ i ≤ t} be the colour classes in a (vertex) t-colouring of a graph G. Suppose

that <i is a vertex ordering on each colour class Vi. Then each pair (Vi, <i) is a track, and

{(Vi, <i) : 1 ≤ i ≤ t} is a t-track assignment of G. We say track(v) = i when v ∈ Vi. To

ease the notation we denote track assignments by {Vi : 1 ≤ i ≤ t} when the ordering on

each colour class is implicit. The span of an edge vw in a track assignment {Vi : 1 ≤ i ≤ t}
is |i − j| where v ∈ Vi and w ∈ Vj. That there is a fixed ordering of the tracks in a track

assignment is implicit in the definition of span. Let {Vi,j : i ≥ 0, 1 ≤ j ≤ bi} be a track

assignment of a graph G. Define the partial span of an edge vw ∈ E(G) with v ∈ Vi1,j1 and

w ∈ Vi2,j2 to be |i1 − i2|.
As illustrated in Figure 2.2, an X-crossing in a track assignment consists of two edges vw

and xy such that v <i x and y <j w, for distinct colours i and j.

�

✁

✂

✄

☎✝✆

☎✟✞

FIGURE 2.2: An X-crossing in a track assignment.

An edge k-colouring of G is simply a partition {Ei : 1 ≤ i ≤ k} of E(G). An edge vw ∈ Ei

is said to be coloured i, written col(vw) = i. A (k, t)-track layout of G consists of a t-track

assignment of G and an edge k-colouring of G with no monochromatic X-crossing. A graph

admitting a (k, t)-track layout is called a (k, t)-track graph. The minimum t such that a graph

G is a (k, t)-track graph is denoted by tnk(G).

(1, t)-track layouts (that is, with no X-crossing) will be of particular interest due to ap-

plications in three-dimensional graph drawing (see Chapter 8). We often refer to such track
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layouts as monochromatic track layouts. A (1, t)-track layout is called a t-track layout. A

graph admitting a t-track layout is called a t-track graph. The track-number of G is tn1(G),

simply denoted by tn(G).

Note: A track layout that allows edges between consecutive vertices in a track is called an

improper track layout. This concept, in the case of three tracks, is implicit in the work of

Felsner et al. [80], who proved that every outerplanar graph has an improper 3-track layout.

The following observation gives a compelling reason to only consider proper track layouts.3.

Observation 2.1. If a graph G has an improper t-track layout, then G has a 2t-track layout.

Proof. For each track (Vi, <i) of an improper t-track layout of G, move every second vertex

from track (Vi, <i) to a new track (V ′
i , <i). Clearly there are no X-crossings and no edges

within the tracks. Thus we obtain a 2t-track layout of G.

Hence the track-number of a graph is at most twice its ‘improper track-number’. For this

reason, in this thesis we choose not to consider improper track layouts.

2.2.4 2-Layer drawings

In a 2-layer drawing of a bipartite graph G = (A,B;E), the vertices in A are positioned on

a line in the plane, which is parallel to a different line containing the vertices in B, and the

edges are drawn as straight line-segments. A biplanar graph is a bipartite graph that admits

a 2-layer drawing with no edge crossings. Note that by the definition, being biplanar and

having a 2-track layout are equivalent notions.

Biplanar graphs are easily characterized as shown first by Harary and Schwenk [103]. A

caterpillar is a tree such that deleting the leaves gives a (possibly empty) path.

Lemma 2.4. [103] Let G be a graph. The following are equivalent:

(a) G is biplanar.

(b) G has a 2-track layout.

(c) G is a forest of caterpillars (as illustrated in Figure 2.3).

3In [53, 204] we called a track layout an ordered layering with no X-crossing and no intra-layer edges, and an

improper track layout was called an ordered layering with no X-crossing.



CHAPTER 2. PRELIMINARIES 21

FIGURE 2.3: Forest of caterpillars.

2.2.5 3D straight-line and polyline drawings

A three-dimensional straight-line grid drawing of a graph, henceforth called a 3D drawing,

represents the vertices by distinct points in Z
3 (called grid-points), and represents each

edge as a line-segment between its endpoints, such that edges only intersect at common

endpoints, and an edge only intersects a vertex that is an endpoint of that edge.

Straight-line drawings are a special case of polyline drawings. In particular, a three-

dimensional polyline grid drawing of a graph, henceforth called a 3D polyline drawing, rep-

resents the vertices by distinct gridpoints, and represents each edge as a polygonal chain

between its endpoints with bends (if any) also at gridpoints, such that distinct edges only

intersect at common endpoints, and each edge only intersects a vertex that is an endpoint

of that edge. Here a point where a polygonal chain changes its direction is called a bend.

A 3D polyline drawing with at most b bends per edge is called a 3D b-bend drawing. Thus

0-bend drawings are 3D drawings. Of course, a 3D b-bend drawing of a graph G is precisely

a 3D straight-line drawing of a subdivision of G with at most b division vertices per edge.

The bounding box of a 3D (polyline) drawing is the minimum axis-aligned box containing

the drawing. If the bounding box has side lengths X − 1, Y − 1 and Z − 1, then we speak of

an X×Y ×Z (polyline) drawing with volume X ·Y ·Z. That is, the volume of a 3D (polyline)

drawing is the number of gridpoints in the bounding box. This definition is formulated so

that two-dimensional drawings have positive volume.

2.3 Bibliographic notes

Observation 2.1 first appeared in [52]. The proof of Lemma 2.2 is a part of [55].
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Crossing Minimization

In this chapter we study a parameterized analogue of the 1-SIDED CROSSING MINIMIZATION

problem, where the parameter k is the number of allowed edge crossings. In particular,

given a bipartite graph G = (A,B,E), an integer k and a vertex ordering πA of A, the 1-

SIDED CROSSING MINIMIZATION problem asks if there is a 2-layer drawing of G that respects

πA and that has at most k crossings. We give an FPT algorithm for the problem that runs in

O(φk|B|2 + |A||B|) time, where the constant φ is the golden ratio. The algorithm is based

on the bounded search tree method.

As noted in the introduction, the more general version of this problem, the h-LAYER

CROSSING MINIMIZATION problem, has been shown [49] to be in the class FPT by the

bounded pathwidth method. However, the running time obtained for the 1-SIDED CROSSING

MINIMIZATION problem is O(2256k3
n), so the algorithm is impractical even for k = 1.

For small values of k, our algorithm should find an optimal solution for the 1-SIDED

CROSSING MINIMIZATION problem in a reasonable amount of time. Of course, for dense

graphs both approaches are highly impractical. We may argue however, that to some extent

dense graphs are of little interest. From the practical point of view, an instance with a

high number of crossings in its optimal drawing, is hardly worthwhile optimizing since

the resulting drawing will be unreadable anyway. From the theoretical point of view, not

only is the problem still NP-complete for very sparse graphs [147], but in addition Eades

and Wormald [70] proved that the ratio of the number of crossings in an arbitrary 2-layer

drawing to the number of crossings in an optimal 2-layer drawing approaches 1 if graphs

become dense.

The remainder of the chapter is organized as follows. After definitions and prelimi-

nary results in Section 3.1, we study properties of optimal drawings in Section 3.2. Our

algorithm for the 1-SIDED CROSSING MINIMIZATION problem is then given in Section 3.3.

Two common generalizations are addressed in Section 3.4. Final remarks are presented in

Section 3.5. Section 3.6 constitutes the appendix to the chapter.
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3.1 Preliminaries

In this section we introduce notation, formalize the problem statement, and recall some

well-known facts about the problem.

Let G = (A,B,E) denote a bipartite graph with vertex set V (G) = A ∪ B and edge set

E(G) ⊆ A×B. We study the following problem.

Problem:1-SIDED CROSSING MINIMIZATION

Instance: a bipartite graph G = (A,B;E), an integer k, and a fixed vertex ordering πA of A

on the top layer.

Question: Is there a 2-layer drawing of G that respects πA and has at most k crossings?

A, πA fixed

B, πB free

FIGURE 3.1: A 2-layer drawing. The vertex ordering πA of A is fixed. Vertices of B are free.

From now on, we assume that input graphs are bipartite, with minimum degree at

least 1, and that a vertex ordering πA has been specified for the top layer. In addition to

denoting a bipartition of G, let A also denote the top, fixed layer, whose vertex ordering πA is

fixed. Similarly, let B denote the bottom, free layer, whose vertices are free to be permuted.

Figure 3.1 illustrates this terminology. We do not consider multiple edges, although these

are easy to handle. Section 3.4.1 discusses this.

Let 〈G,πA, k〉 denote an instance of the 1-SIDED CROSSING MINIMIZATION problem, and

let (G,πA, πB) denote a combinatorial representation of a 2-layer drawing of G, with πA

and πB giving the vertex orderings for the vertices on layers A and B, respectively. Let

the number of crossings in the drawing (G,πA, πB) be denoted by cr(G,πA, πB), and let

the minimum possible number of crossings subject to the vertices of A being ordered by πA

be denoted by cr(G,πA, πopt). Note that cr(G,πA, πopt) = minπB
{cr(G,πA, πB) }, where πB

ranges over all permutations for B. Let v < w denote an ordered pair of vertices on the

same layer, and let v,w denote an unordered pair of vertices. Sometimes it is convenient

to denote unordered pairs of vertices by (v,w), which is also used to denote an edge. The

meaning will be clear from the context. Throughout this chapter, the term “pair” refers to a

pair of distinct objects. The following two simple observations reinforce the important fact

that the 1-SIDED CROSSING MINIMIZATION problem is combinatorial in nature.

Fact 3.1. Two edges (v, v′) and (w,w′), where v,w ∈ B and v′, w′ ∈ A, cross in a 2-layer

drawing if and only if v < w and w′ < v′, or w < v and v′ < w′.
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Fact 3.2. For vertices v and w in the free layer B, the number of crossings of the edges incident

to v with the edges incident to w is completely determined by the relative ordering of v and w.

Having pointed out that the nature of the problem fundamentally concerns vertex order-

ings, the next definition and fact relate the orderings of pairs to the total number of edge

crossings in any drawing, the goal of our optimization. In fact, from pairs alone, we get a

lower and upper bound for cr(G,πA, πopt).

Definition 3.1. Consider a problem instance 〈G,πA, k〉, and let v and w be vertices in B.

The crossing number cvw is the number of crossings that edges incident with v make with

edges incident with w in drawings having v < w; the crossing number cwv is for w < v.

Fact 3.3. [35] The total number of crossings in a 2-layer drawing (G,πA, πB) is:

cr(G,πA, πB) =
∑

∀v<w∈πB

cvw, (3.1)

where the summation is over all ordered pairs v < w of elements of π2; furthermore,

∑

v,w∈B

min(cvw, cwv) ≤ cr(G,πA, πopt) ≤
∑

v,w∈B

max(cvw, cwv), (3.2)

where the summations are over all unordered pairs v,w of vertices of B.

Let lb(G,πA) denote the lower bound
∑

v,w∈B min(cvw, cwv). As pointed out in the in-

troduction, Eades and Wormald [70] showed that cr(G,πA, πopt) ≤ 3 lb(G,πA). Recently,

Nagamochi [152] improved this to cr(G,πA, πopt) ≤ 1.47 lb(G,πA).

3.2 Properties of optimal drawings

In this section, we establish a property of optimal drawings (G,πA, πopt) that will be funda-

mental for our algorithm in the next section (see Lemma 3.1).

For each vertex v in B, let lv denote the leftmost neighbor of v in A, and let rv denote

the rightmost neighbor of v in A. Note that if v ∈ B has degree 1, then lv = rv.

Now consider two vertices v and w in B. We say that v and w are a suited pair if rv ≤ lw,

or if rw ≤ lv; otherwise we call the pair unsuited. For example, in Fig. 3.2 v, u is a suited

pair and so is pair w, u; pair v,w is not suited. If v and w each have degree 1 and have the

same neighbor in A (i.e. lv=rv=lw=rw), we say that v and w are a trivial suited pair. The

following fact, which is an immediate consequence of Fact 1 and the definition of unsuited

pair, indicates the importance of the notion of suitable pairs.

Fact 3.4. A pair of vertices v,w ∈ B is unsuited if and only if cvw ≥ 1 and cwv ≥ 1.
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lv

uwv

rv A, πA fixed

B, πB free

FIGURE 3.2: Pair v, w is unsuited, while v, u and w, u are suited pairs.

On the other hand, the edges of a suited pair v,w do not cross if v and w appear in their

natural ordering in πB, i.e., if v < w when rv ≤ lw, and w < v when rw ≤ lv. If v,w is a

trivial suited pair, then cvw = 0 and cwv = 0, and we say that both v < w and w < v are

natural orderings for the pair v,w.

The notion of natural ordering leads to a useful fact for our algorithm. Let deg(v) denote

the degree of a vertex v.

Fact 3.5. Suppose v,w is a suited pair for πA with natural ordering v < w. Then for any πB,

the drawing (G,πA, πB) satisfies: (i) cvw=0; (ii) if rv 6= lw, then cwv= deg(v) ·deg(w); (iii) if

rv = lw, then cwv= (deg(v) · deg(w)) − 1; and finally, (iv) unless v and w are a trivial suited

pair, cwv > 0.

Note that natural ordering is only defined for pairs of suited vertices. The following

lemma is the basis for our algorithm.

Lemma 3.1. For fixed πA, let Γopt = (G,πA, πopt) be a drawing with the minimum possible

number of crossings. Then all suited pairs appear in πopt in their natural ordering.

To prove Lemma 3.1 the following lemma will be useful.

Lemma 3.2. For 1 ≤ i ≤ |B|, let vi denote the vertex in the ith position in πB of some drawing

(G,πA, πB) with πA fixed. Moving any vertex vi ∈ B from its starting position i across the t

consecutive vertices vi+1, vi+2, . . . , vi+t to the right creates a new drawing (G,πA, π′
B) with:

cr(G,πA, π′
B) = cr(G,πA, πB) +

t
∑

j=1

(cvi+jvi
− cvivi+j

). (3.3)

Similarly, if vi is moved to the left over t consecutive vertices, then the above summation is from

j = −1 to j = −t and the sign in front of the summation is “−”.

Proof. Assume, without loss of generality, that vertex vi moves to the right across t con-

secutive vertices in (G,πA, πB). This creates a new drawing (G,πA, π′
B). For instance, in

Figure 3.3, vi moves from its starting position over t = 2 (shaded) vertices to its final po-

sition. Dotted lines depict vi and its incident edges as they travel across 2 shaded vertices
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vi−1 vi+1 vi+3vi vi+2

A, πA fixed

B, πB free

vi

FIGURE 3.3: Illustration for the proof of Lemma 3.2.

to the new position of vi, between vi+2 and vi+3. The only pairs of vertices in (G,πA, πB)

whose relative ordering changes in (G,πA, π′
B) are the pairs vi, vj for i+1 ≤ j ≤ i+t. Hence

by Fact 3.2, these are the only pairs whose crossing number might change. In particular, the

crossing number for a pair vi, vj for j in the range [i + 1, i + t] changes from cvivj
to cvjvi

.

Substituting these changes into equation (3.1) of Fact 3.3 gives equation (3.3) above.

Now we give the proof of Lemma 3.1.

Proof of Lemma 3.1. The proof is by contradiction. Assume that in Γopt = (G,πA, πopt) there

is a suited pair v,w whose ordering in πopt is not its natural ordering. Note that v and w are

not degree-1 vertices with a common neighbor, as both orderings would be natural in that

case. Assume that v < w is the (unique) natural ordering of v,w.

By Fact 3.5 the crossing number cvw = 0 and the crossing number cwv > 0.

For a contradiction, we now prove that either v or w can be moved in Γopt such that the

resulting drawing Γnew = (G,πA, πnew) satisfies cr(Γnew) < cr(Γopt).

Let i and j denote the positions of w and v, respectively, in πopt. Here i < j since v and

w appear in the order w < v in πopt.

If |j − i| = 1, we can interchange v and w without affecting any other pair of vertices in

Γopt. Equation (3.3) in Lemma 3.2 gives the number of crossings in the resulting drawing

Γnew:

cr(Γnew) = cr(Γopt)− cwv + cvw = cr(Γopt)− cwv + 0.

Since cwv > 0, we have cr(Γnew) < cr(Γopt), which contradicts the optimality of Γopt.

If |j − i| > 1, let ui+1, ui+2, . . . , uj−1 denote the vertices between w and v in πopt, listed

in order of appearance in πopt. Regard these vertices as a frozen block U inside which no

changes are made. Figure 3.4 illustrates this terminology.

According to Lemma 3.2, moving v or w from one side of block U to the other may only

affect the crossing number contributions of pairs of the form u,w and u, v for u ∈ U . Let

cUp denote the number of crossings that the edges incident to vertices in U have with the
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w v

lv rv

U

ui+1 uj−1ui+2

position i position j

A, πA fixed

B, πopt

FIGURE 3.4: Γopt for case |j − i| > 1 of Lemma 3.1

edges incident to a vertex p to the right of U : cUp = Σu∈U cup. Similarly, let cpU denote this

number of crossings when p lies to the left of U .

Since Γopt is optimal, we claim we have the strict inequality

cUv < cvU . (3.4)

Otherwise, we could move v to the left side of U and then interchange v with w to obtain a

drawing with the following total number of crossings: cr(Γnew) = Γopt− cUv + cvU − cwv +0.

Since cwv > 0, if cUv ≥ cvU , then cr(Γnew) < cr(Γopt), a contradiction.

Observation: To conclude the case |j − i| > 1, it suffices to show that cUv < cvU implies

cwU ≥ cUw, for this means we can move w to the right side of U without increasing the total

number of crossings in the resulting drawing and then interchange w and v to produce a

drawing with fewer crossings than Γopt. This gives a contradiction, and so proves that the

assumption that πopt contains a suited pair not ordered by its natural ordering cannot hold.

To establish the desired inequality cwU ≥ cUw, we first derive some intermediate inequal-

ities for cUv, cvU , cwU , and cUw in terms of sizes of the following sets: ER = the set of edges

in Γopt with one endpoint in U and the other endpoint strictly greater than rv in the vertex

ordering πA; EL = the set of edges with one endpoint in U and the other endpoint strictly

less than rv in the vertex ordering πA; Nv = the neighbors of v; and Nw = the neighbors of

w.

By the definition of ER, all the vertices in Nv occur in πA strictly before the A endpoint

of each edge in ER. By the definition of EL and by the fact that v,w is a suited pair with

the natural ordering v < w, the vertices in Nw occur in πA strictly after the A endpoints of

the edges in EL.

Fact 3.2 implies the following inequalities for crossing numbers:

cUv ≥ deg(v) · |ER| : The edges incident to v and the edges in ER all pairwise intersect,

creating deg(v) · |ER| crossings. Since ER is a subset of the edges incident to U ,

cUv ≥ deg(v) · |ER|.
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cvU ≤ deg(v) · |EL| : This holds because no edge incident to v crosses any edge incident to

U that is not in EL.

cwU ≥ deg(w) · |EL| : The edges incident to w and the edges in EL all pairwise intersect, so

cwU ≥ deg(w) · |EL|.

cUw ≤ deg(w) · |ER| : This holds because no edge incident to w intersects any edge incident

to U that is not in ER.

Recall inequality (3.4), that cUv < cvU . Since cUv ≥ deg(v) · |ER| and cvU ≤ deg(v) · |EL|,
we have deg(v) · |ER| ≤ cUv < cvU ≤ deg(v) · |EL|, which implies that |ER| < |EL|. This,

and the fact that cwU ≥ deg(w) · |EL|, and the fact that cUw ≤ deg(w) · |ER| together imply

that cwU > cUw. By the observation above, this completes the proof.

3.3 An efficient FPT algorithm

3.3.1 The bounded search tree approach for the algorithm

In this section we present an FPT algorithm for the 1-SIDED CROSSING MINIMIZATION prob-

lem based on the bounded search tree approach. The key observations for building a search

tree for this problem lie in Lemma 3.1 and Fact 3.4. Here is an overview of our algorithm.

Lemma 3.1 allows us, at the start, to fix the relative ordering of each non-trivial suited

pair of vertices in B according to its unique natural ordering. The remaining unordered

pairs of vertices in B are either trivial suited pairs, or unsuited pairs which will each, by

Fact 3.4, create a crossing no matter which relative ordering is chosen. We build a search

tree based on the unsuited pairs. (It turns out that the trivial pairs neighbours can be dealt

with later in the algorithm.) The input to every node of the search tree is a budget b giving

the remaining number of allowed edge crossings, and a relation D containing all pairs of B

ordered thus far. We will formally define relation D shortly. At each node of the search tree

some unordered pair (v,w) is chosen (i.e. a pair not in D) such that cvw 6= cwv. Then the

node branches to two recursive subproblems. In one branch, the ordering of (v,w) is fixed

to v < w and the budget b is reduced by cvw. In the other branch the ordering of (v,w) is

fixed to w < v and b is reduced by cwv. Since we only work with unsuited pairs in building

the tree, we know that cvw ≥ 1 and cwv ≥ 1. Therefore, since the initial budget b = k, the

height of the search tree is at most k.

As a matter a fact the situation is better than that, for two reasons. Firstly, since cvw 6=
cwv, then either cvw or cwv is at least 2, so one of the two branches of the search tree node

reduces b by at least 2. Secondly, since < is a transitive relation, fixing an ordering of

the pair (v,w) at a node of the search may in fact impose an ordering of another as yet
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unordered pair (p, q) in the relation D at that node. Hence b can be reduced not only by

cvw, but also by either cpq or cqp, depending on which relative ordering is imposed on (p, q).

3.3.2 The algorithm

The following definitions will be useful for the description of the algorithm.

Let D be a directed acyclic graph (DAG) that represents a binary relation < on the set

of vertices B. In particular, the vertices of B are represented by nodes of a DAG D and

an ordered pair of vertices v < w is represented by a directed edge from v to w (denoted

henceforth by vw) in D. The DAG D is stored as an |B|×|B|matrix. We use D to denote both

the set of pairs in the current binary relation “ < ” and the associated DAG that represents

these pairs as directed edges. The algorithm labels nodes in the search tree with DAGs.

The DAG associated with the root will be transitively closed. As the algorithm progresses, it

computes a DAG label for each child node it generates in the search by choosing a directed

edge to add to the DAG of the parent and then taking the transitive closure of this. The

following algorithm solves the 1-SIDED CROSSING MINIMIZATION problem.

Algorithm: 1-Sided Crossing Minimization

Input: 〈G,πA, k〉
Output: πopt if 〈G,πA, k〉 is a YES instance, else NO

Step 0. Computing crossing numbers: Compute the crossing numbers cvw and cwv for all

pairs of vertices in B, stopping the computation of a particular crossing number as soon as

it is known to exceed k. (The algorithm for computing the crossing numbers cvw and cwv

efficiently can be found in Section 3.6.)

Step 1. Checking for extreme values: Compare k with the upper and lower bound as per

Fact 3.3.

if k < Σ(v,w) min(cvw, cwv) then output NO and HALT;

if k ≥ Σ(v,w) max(cvw, cwv) then output an arbitrary πB and HALT.

Step 2. Initialization: Precompute the following information required by the search tree.

C = {(v,w)|cvw = cwv};
D0 = a DAG (V,E), where V = B, and the directed edges vw ∈ E correspond to the

naturally ordered pairs (v,w) that satisfy cvw = 0 and cwv 6= 0. (It is easy to check that D0

is transitively closed.);

b0 = initial budget = k − Σvw∈D0 cvw − Σ(v,w)∈C cvw. Note that Σvw∈D0cvw = 0. Also

note that we reduce the budget k by the eventual cost of the pairs in C even though these

pairs do not appear in D0.
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Step 3. Building and exploring the search tree: This step simultaneously builds and

explores the search tree. A node of the search tree has at most two children. Each node has

a label (D, b). The label D of a node represents a “possible” partial solution, i.e. a partial

order of vertices of B. The label b represents the remaining budget for crossings.

We now build the search tree as follows. Label the root of the tree with (D, b) where D

= D0 and b = b0. In general, for a non-leaf node labeled (D, b), choose a pair (v,w) such

that D contains no edge joining v and w and such that cvw 6= cwv. A pair (v,w) is thus an

unordered pair not in C. In any vertex ordering πB , the pair (v,w) is ordered as either vw

or wv, so we create at most two children (D1, b1) and (D2, b2) of the non-leaf node (D, b)

corresponding to these two possibilities. No child is created if its budget would be negative.

Thus a node labeled (D, b) is a leaf if and only if, either it does not have an unordered pair

(v,w) 6∈ C; or it has an unordered pair (v,w) for which both b1 and b2 are negative.

For a non-leaf node (D, b), we label one of its two children by (D1, b1) where:

D1 = transitive closure of D ∪ vw, and b1 = b− cvw −
∑

pq cpq.

Here D ∪ vw represents the addition of directed edge vw to D. The summation in b1 is over

the directed edges that are added to D∪vw by the transitive closure and that have cpq 6= cqp.

That is, the sum is over pq s.t. pq ∈ D1 and pq 6∈ D ∪ vw and cpq 6= cqp.

Similarly, we label the other child of node (D, b) with (D2, b2), where:

D2 = transitive closure of D ∪ wv, and b2 = b− cwv −
∑

pq cpq.

These concepts are illustrated in Figure 3.5.

If a leaf is created whose label D has the property that

∀(v,w) if vw 6∈ D and wv 6∈ D then (v,w) ∈ C,

then output pit as topological sort of D. Also, update the minimum number of crossings

found so far to k − b, where b is the budget of the leaf, and update the best vertex ordering

so far to πB . We call such a node a solution leaf.

If, after exploring the entire tree, no solution leaf is found, output NO and HALT; otherwise,

output the best vertex ordering found, which is πopt, and HALT.

In Step 0, we stop computing cvw as soon as it becomes k + 1, even though cvw may be

bigger than that. This is because a child with v < w would have a negative budget. Hence

it suffices to know that cvw ≥ k + 1.

Step 3 of the algorithm effectively creates and explores the search tree simultaneously.

This can be done by depth-first search, or by breath-first search. The depth-first way requires

less space and is thus the preferred choice.

Also notice that, when creating a child by choosing, say, to order v and w as vw, we

reduce the budget for the child by an amount computed not only for the ordered pair vw,

but also for the pairs that are newly ordered by the transitive closure of D ∪ vw. However,

we only do this for newly ordered pairs whose two crossing numbers are not the same.
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(v, w) : vw, wv 6∈ E(D) and cvw 6= cwv

D1 = trans. clos. of D ∪ vw ,

b1 = b − cvw − . . .

D2 = trans. clos. of D ∪ wv ,

b2 = b − cwv − . . .

w < vv < w

D, b

FIGURE 3.5: Illustration for step 3 of the algorithm.

Those whose crossing numbers are the same have already been accounted for in b0.

Theorem 3.1. Given a bipartite graph G = (A,B;E), a fixed vertex ordering πA of A, and an

integer k, algorithm 1-Sided Crossing Minimization(G,πA, k) determines inO(φk ·|B|2+|A||B|)
time if cr(G,πA, πopt) ≤ k and if yes produces a 2-layer drawing (G,πA, πB) with the optimal

number of crossings. The constant φ in the running time is the golden ratio φ = 1+
√

5
2 ≈ 1.618.

Proof. Step 3 simultaneously creates and explores the search tree. For every node (D, b)

of the search tree we maintain the following two invariants: (i) D is a transitively closed,

directed, acyclic graph; (ii) The budget b at node (D, b) is

b = k −
∑

vw∈C

cvw −
∑

vw∈D&vw 6∈C

cvw .

This is true for the root node (D0, b0). Suppose this is true for a node labeled (D, b). At this

node, the algorithm chooses an unordered pair (v,w) with cvw 6= cwv. This pair is used to

create up to two child nodes. We claim that both D ∪ vw and D ∪ wv are acyclic. Suppose,

on the contrary, that D∪ vw contains a directed cycle. Then D must contain a directed path

from w to v. Since D is transitively closed, it contains edge wv, contradicting the fact that

(v,w) is unordered in D. Similarly for D ∪ wv. Since the transitive closure of a directed

acyclic graph is again acyclic, the graph labels D1,D2 for any child nodes created at a node

labeled D are again transitive and acyclic. Thus all the graph labels in the search tree are

directed, acyclic, and transitively closed. The fact that labels b1 and b2 agree with formula

(ii), follows directly from the formulas used to compute these two labels from the parent

label b in Step 3 of the algorithm.

As the tree is built, either a solution leaf is found, or the tree is completely explored

without finding such a leaf. A solution leaf (D, b) has, by definition, a non-negative budget

b. By the invariant (ii), the cost of all the crossings arising from the ordered pairs in D has
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been taken into account. Furthermore, all pairs (v,w) not ordered by directed edges in D

are in C and satisfy cvw = cwv; hence the total cost directly attributable to them has already

been deducted from the initial budget k. Hence any topological sort of D produces a vertex

ordering consistent with D and having total cost k − b, where 0 ≤ b ≤ k. By the invariant

(i), the label D of every node of the search tree is an acyclic graph and it necessarily has a

topological sort. Based on this argument, a solution leaf (D, b) encodes a vertex ordering

πB such that cr(G,πA, πB) ≤ k.

It is not difficult to verify that the solution leaves of the search tree implicitly store all

the vertex orderings πB for which cr(G,πA, πB) ≤ k and in which all the suited pairs are

ordered by their natural ordering. Lemma 3.1 implies that in order to decide if 〈G,πA, k〉 is

a YES or NO instance it is enough to consider only such vertex orderings πB. Therefore, if

there is a vertex ordering πB such that cr(G,πA, πB) ≤ k the algorithm finds one. In fact,

since the algorithm updates the best solution found so far, when it terminates it outputs an

optimal vertex ordering πopt.

We now discuss the running time of the algorithm.

Only for an unordered unsuited pair v,w that has cvw 6= cwv are child nodes created,

of which there are at most two. Therefore, in one child node the budget is reduced by at

least 1 and in the other by at least 2. A node with b = 0 must be a leaf node, because

any child of such a node would have a negative budget. Therefore, no further branching

is allowed. At a node for which budget b = 1, at most one child can have a budget b1 that

is non-negative, and in this case, b1 = 0 and the child must be a leaf. Thus a recurrence

relation that generates an upper bound for the number of nodes in this search tree is:

sb = sb−1 + sb−2 + 1 for b ≥ 2; s0 = 1, s1 = 2 .

It can be verified by induction that for b ≥ 0, sb = Fb+2 + Fb+1 − 1 where Fb is the

b-th Fibonacci number. From the bound on Fibonacci numbers with b0 ≤ k, it follows that

sb0 < φk+2
√

5
+ φk+1√

5
− 1 < 1.2 · φk+1. Thus the search tree has O(φk) nodes.

The time taken at each node of the search tree is dominated by updating a transitive

closure of its label D after insertion of one ordered pair v < w (or w < v). Updating

the transitive closure after one insertion can be done in O(|B|2) time (see problem 25-1,

page 641 in [27]). These updates are needed to generate the labels for the children, of

which there are at most two. Thus the time taken in the third step of the 1-Sided Crossing

Minimization algorithm is O(φk · |B|2).
It can be shown that the time taken in steps 0 - 2 of the algorithm is O(k · |B|2 + |A||B|).

(For details see Section 3.6.) Thus the total running time of the algorithm is O(φk · |B|2 +

|A||B|).
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Corollary 3.1. Given a bipartite graph G = (A,B;E), and a fixed vertex ordering πA of A,

algorithm 1-Sided Crossing Minimization(G,πA, ⌈1.47 lb(G,πA)⌉) produces a 2-layer drawing

(G,πA, πB) with the optimal number of crossings in O(φcr(G,πA,πopt) · |B|2 + |A||B|) time.

Proof. By the results of [152] and Fact 3.3, lb(G,πA) ≤ cr(G,πA, πopt) ≤ 1.47 lb(G,πA).

Therefore, by Theorem 3.1, the algorithm 1-Sided Crossing Minimization(G,πA,

⌈1.47 lb(G,πA)⌉) finds the optimal solution.

Since parameter k is not given as a part of the input, and is instead set to the value k =

⌈1.47 lb(G,πA)⌉ we need to consider the time it takes to compute lb(G,πA). To determine

this lower bound, we need to compute the smaller of the two crossing numbers, cvw and

cwv, for each pair of vertices v,w. This can be easily achieved by slightly modifying the

algorithm in Section 3.6. In particular, the while loop needs to compute both crossing

numbers simultaneously until one of them, say cvw, is completed. If at that moment cvw ≤
cwv, then the while loop terminates, otherwise it continues computing cwv until either cwv

becomes greater than cvw or, until the computation of cvw terminates. For the same reasons

as those presented in the proof of Lemma 3.3, the running time of this modified algorithm is

O(lb(G,πA)|B|2 + |A||B|) ∈ O(cr(G,πA, πopt)|B|2 + |A||B|). This together with Theorem 3.1

implies the running time claimed in this corollary.

3.4 Two generalizations

In this section we show how to deal with multiple edges and extend the algorithm to allow

drawing edges within single layers.

3.4.1 Multiple edges

We now briefly discuss how to deal with instances of the 1-SIDED CROSSING MINIMIZATION

problem that have multiple edges. For every pair of vertices connected by s edges, replace

the edges by one edge with weight s. Thus, we obtain a variant of the 1-SIDED CROSSING

MINIMIZATION problem where each edge has a positive weight. If two edges weighted s1

and s2 cross in a drawing, their contribution to the total number of crossings is s1 · s2.

Having this in mind the Definition 3.1 of crossing numbers cvw and cwv for a pair of vertices

v,w remains the same. All the other definitions, facts and lemmas, except for Fact 3.5 and

Lemma 3.1, follow through without any changes. We now modify the definition of deg(v)

to mean the sum of the weights of all the edges incident to a vertex v. Then case (iii) of

Fact 3.5 becomes cwv = deg(v) ·deg(w)− svrv · swlw where svrv and swlw denote the weights

of the two edges vrv and wlw. In the proof of Lemma 3.1, we also modify the definition

of |EL| and |ER| to mean the sum of the weights of all the edges in the sets EL and ER,
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respectively. The correctness of the lemma, and hence the whole algorithm, follows through

without any other changes.

3.4.2 Improper 2-layer drawings

Our 1-Sided Crossing Minimization algorithm can easily be extended to manage the version

of 2-layer drawings called improper 2-layer drawings. Here, as in improper track layouts,

edges are allowed between consecutive vertices in the same layer (see [80]).

Let G[A] and G[B] be the graphs induced by the vertex sets A and B, respectively, and

suppose that G[A] and G[B] are forests of paths. Let P be a path in G[B] with vertices

p1, p2, . . . pj. Furthermore, let cP be the minimum number of crossings amongst the edges

incident to a path P in one of the two possible ways to draw that path P in πB ( one way

is to have p1p2 . . . pj consecutively in πB, and the other it to have pjpj−1 . . . p1 consecutively

in πB).

The algorithm is now modified by adding the following preprocessing step. For each path

P in G[B], all the edges (pi, pi+1) of P in G[B] are contracted into one vertex. Consequently,

the parameter k is reduced by cP for each path P (as illustrated in Figure 3.6). Contracting

all the paths in G[B] gives an instance of 1-SIDED CROSSING MINIMIZATION problem that

may have multiple edges, which our algorithm can deal with as described earlier in this

section. This completes the description of the modifications to the original algorithm.

p, cp = 1

pbpa

p, cp = 3

pb pa p

(a) (b) (c)

FIGURE 3.6: Edges of P are depicted in bold. (a)(b) The two ways to draw P . The first creates 1

crossing, the second creates 3 crossings; (c) After P is contracted, k is reduced by cP = min{1, 3} =

1.

3.5 Conclusion and bibliographic notes

In this chapter, we have studied the 1-SIDED CROSSING MINIMIZATION problem and pre-

sented an efficient FPT algorithm for its solution. Moreover, the algorithm finds a draw-

ing with the smallest possible number of crossings in the case that this number does not
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exceed k. In case an optimal solution is desired no matter how many crossings it has,

as Corollary 3.1 points out, our algorithm finds it by setting k to 1.47 lb(G,πA), in time

O(φlb(G,πA) · n2) ∈ O(φcr(G,πA,πopt) · n2).

The exponential part of the running time of the algorithm is 1.618k . In many instances

the base of this exponent will be even smaller. The reason is that a pair of vertices v,w will

often have both crossing numbers cvw and cwv bigger than 1, or at least one of them bigger

than 2; thus each time a node of the search tree branches on such a pair of vertices, the

resulting search tree will be even smaller. Furthermore, in a branch of the search tree, the

ordering of more than one pair v,w will often be fixed due to the transitivity property.

In fact, the author together with Henning Fernau and Michael Kaufmann, has recently

improved the results presented in this chapter and obtained an O(1.466k + kn2) algorithm

for the 1-SIDED CROSSING MINIMIZATION problem [51]. Instrumental to this improvement

is the exploitation of transitivity, and a study of the structural properties of pairs v,w with

cvw = 1 and cwv = 2. In addition to improving the bounded search tree algorithm, these

authors also derived a set of reduction operations that reduce each problem instance to

an equivalent instance of size at most 1.5 k, thus obtaining a small problem kernel for the

problem.

From the practical standpoint, an interesting investigation would be to compare ex-

perimentally the performance of the other known method for optimal 1-SIDED CROSSING

MINIMIZATION, namely, integer linear programming [122], with our FPT algorithm. In the

case of the related 2-layer planarization problem, recent experimental comparisons carried

out by Suderman and Whitesides [182] suggest that the FPT method is competitive with

the ILP method. Hence an experimental study of 1-SIDED CROSSING MINIMIZATION would

be worthwhile. 1

From the theoretical standpoint, investigating parameters other than the total number of

crossings for the 1-SIDED CROSSING MINIMIZATION problem could be advantageous. Hen-

ning Fernau [private communication, 2003] suggested the following interesting problem.

Open Problem 3.1. [H. Fernau (2003)] Is the 1-SIDED CROSSING MINIMIZATION problem

in the class FPT when parameterized by the number of crossings by which a 2-layer draw-

ing is allowed to exceed the lower bound?

The results of this chapter have appeared in [54].

1In fact, my colleague Matthew Suderman has already begun this study.



CHAPTER 3. CROSSING MINIMIZATION 36

3.6 Computing crossing numbers

For completeness, to justify the correctness of the running time claimed in Theorem 3.1, we

give here an O(k|B|2 + |A||B|) time algorithm for Step 0 of the 1-Sided Crossing Minimiza-

tion algorithm. The algorithm computes the crossing numbers cvw and cwv for all pairs of

vertices. Although the algorithm is simple, some care needs to be taken not to exceed the

claimed running time. For instance, we must stop the computation of a particular crossing

number as soon as it is known to exceed k. In place of crossing numbers that do exceed k

we record some number strictly bigger than k.

Let the graph G in the input instance 〈G,πA, k〉 be given as an |B|×|A| adjacency matrix

A = [ai,j]. The columns are labeled by the vertices of A in the order of their appearance in

πA. The rows are labeled by the vertices of B. An element ai,j = 1 if vertex i of B is adjacent

to vertex j of A; otherwise ai,j = 0. We augment every element ai,j of the adjacency matrix

A with the following information:

pi,j : the index of the first neighbor of vertex i that is to the right of j. More precisely, if

∃j′ > j s.t. ai,j′ = 1 and ai,j′′ = 0,∀j < j′′ < j′ then pi,j = j′; otherwise pi,j = |A|+ 1.

ri,j : the number of neighbors of i that are to the right of j. More precisely, ri,j =

|A|
∑

j′=j+1

ai,j′.

In addition, for every row i, we store the following information:

li : the left-most neighbor of vertex i. More precisely li = j where ai,j = 1 and ai,j′ =

0,∀j′ < j

ri : the right-most neighbor of vertex i. More precisely, ri = j where ai,j = 1 and ai,j′ =

0,∀j′ > j.

The following algorithm commutes an |B| × |B| matrix C = [cv,w]. At the end of the

algorithm, the matrix entry cv,w equals the crossing number cvw provided this is equal or

less than k; otherwise, the entry cv,w equals some number greater than k.

Algorithm: Pair Crossing Numbers

Input: |A| × |B| adjacency matrix A of G

Output: |B| × |B| matrix C

1. Augment adjacency matrix A as described above.

2. for v = 1 to |B| do

3. for w = 1 to |B| do

4. if v 6= w then

5. cv,w = 0 /* initialize cv,w */
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6. w′ = lw /* start examining the neighbours w′ of w

starting with the left-most neighbour, lw */

7. while w′ ≤ rw and w′ < rv and cv,w ≤ k do

8. cv,w = cv,w + rv,w′ /* increment cv,w by the number

of crossing points on edge (w,w′)

created by edges incident to v */

9. w′ = pw,w′ /* advance to the next neighbour of w */

Lemma 3.3. The Pair Crossing Numbers algorithm computes the exact values of all the crossing

numbers that do not exceed k in time O(k|B|2 + |A||B|).

Proof. Lines 5 − 9 of the algorithm compute the crossing number cvw for a pair of vertices

v,w ordered v < w. The correctness of the computation follows from the next observation.

By Fact 3.1, for an ordered pair v < w, the number of edges incident to v that cross an

edge (w,w′) incident to w is precisely the number of neighbours of v strictly to the right

of w′. By definition that number is rv,w′ . Thus cvw =
∑

rv,w′ where the sum is over all w′

adjacent to w. This formula is still correct if the sum is taken only over {w ′ | w′ < rv}, since

otherwise rv,w′ = 0 by Fact 3.1.

Now consider the complexity of this algorithm. It is simple to verify that the original

matrix A can be augmented by traversing each of its rows once from right to left. Per one

iteration of the inner for-loop, the while-loop is executed at most k + 1 times, since each

execution of the while loop increases cvw by at least one. Given that the inner for-loop is

executed |B|2 times, the total running time of the algorithm is O(k|B|2 + |A||B|).



Chapter 4

Planarization

In this chapter we study a parameterized analogue of the 1- and 2-LAYER PLANARIZATION

problems, where the parameter k is the number of allowed edge deletions. In particular,

the 2-LAYER PLANARIZATION problem asks if k edges can be deleted from a given graph G

so that the remaining graph is biplanar. If the vertex ordering in one layer is fixed, then

we speak of the 1-LAYER PLANARIZATION (or 1-SIDED PLANARIZATION) problem. We prove

that these problems are fixed-parameter tractable. Specifically, by the kernelization method

we obtain an O(
√

k · 17k + |G|) time algorithm for the 2-LAYER PLANARIZATION problem,

which we improve to O(k · 6k + |G|) using the bounded search tree method combined with

kernelization. Furthermore, we solve the 1-LAYER PLANARIZATION problem in O(3k · |G|)
time using the bounded search tree method. As a by-product of this study, we derive a

polynomial-time 3-approximation algorithm for the optimization version of the problem.

As noted in the introduction, in the companion work [49], we proved using bounded

pathwidth techniques that the h-layer generalizations of the 1-and 2-LAYER PLANARIZATION

problems are in FPT , where the number of layers h is also considered a parameter of the

problem. The running time of the algorithm is O(232(h+2k)3n).

This chapter is organized as follows. After definitions and preliminary results in Sec-

tion 4.1, we apply kernelization and bounded search tree methods to the 2-LAYER PLA-

NARIZATION problem in Section 4.2. In Section 4.3 we consider the 1-LAYER PLANARIZA-

TION problem, and present a bounded search tree algorithm for its solution. Section 4.4

describes constant approximation algorithms for the optimization versions of the 1- and

2-LAYER PLANARIZATION problems. We give final remarks in Section 4.5.
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4.1 Preliminaries

In this section we introduce notation, recall a characterization of biplanar graphs and for-

malize the problem statements.

A vertex with degree one is a leaf. If vw is the edge incident to a leaf w, then we say w

is a leaf at v and vw is a leaf-edge at v. The non-leaf degree of a vertex v in graph G is the

number of non-leaf edges at v in G, and is denoted by deg’G(v) , or deg’(v) if the graph G

is clear from the context.

4.1.1 Biplanar graphs

A graph is a caterpillar if deleting all the leaves produces a (possibly empty) path, as illus-

trated in Figure 4.1(a). This path is the spine of the caterpillar. A 2-claw is a graph consisting

of one degree-3 vertex, the centre, coloured black in Figure 4.1(b), which is adjacent to three

degree-2 vertices, coloured gray in Figure 4.1(b), each of which is adjacent to the centre

and one leaf. The edges of a 2-claw C that are incident to its center are called primary edges

of C. The edges of C that are incident to the leaves of C are called secondary edges of C.

�✂✁ �☎✄ ✆✝✆✞✆ �✠✟☛✡ ✁ �✠✟
☞✍✌✠✎

�

☞✑✏✒✎

FIGURE 4.1: (a) caterpillar with spine v1, . . . , vp, (b) 2-claw centred at v.

As described in Lemma 2.4, biplanar graphs are easily characterized, and there is a

simple linear-time algorithm to recognize biplanar graphs. The next lemma recalls and

augments the characterization given in Lemma 2.4.

Lemma 4.1 ([66, 103, 188]). Let G be a graph. The following are equivalent:

(a) G is biplanar.

(b) G is a forest of caterpillars (see Figure 4.2).

(c) G is acyclic and contains no 2-claw.

(d) The graph obtained from G by deleting all leaves is a forest and contains no vertex of

degree three or greater.

Lemma 4.1 implies that any planarization algorithm must destroy all cycles and 2-claws.

Hence the vertices with non-leaf degree at least three are of particular interest since each

such vertex lies on a cycle or a 2-claw, as demonstrated in the next lemma.
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FIGURE 4.2: A biplanar graph is a forest of caterpillars. Spine edges are dark.

Lemma 4.2. If there exists a vertex v in a graph G such that deg’G(v) ≥ 3 then G contains a

2-claw or a 3- or 4-cycle containing v.

Proof. Let w1, w2, w3 be three distinct non-leaf neighbours of v. If some pair of these neigh-

bours is adjacent then there is a 3-cycle containing v. Otherwise, let xi be a neighbour of wi

such that xi 6= v, 1 ≤ i ≤ 3. Such an xi exists since wi is not a leaf. If all xi are distinct then

{v,w1, w2, w3, x1, x2, x3} forms a 2-claw, otherwise G contains a 4-cycle through v.

We define V3 = {v ∈ V : deg’(v) ≥ 3} and V ′
3 = {w ∈ V \ V3 : deg(w) ≥ 2, and ∃ v ∈

V3 s.t. vw ∈ E}. That is, V3 is the set of vertices with at least three non-leaf neighbours, and

V ′
3 is the set of non-leaf neighbours of vertices in V3 that are not themselves in V3. Observe

that the centre of a 2-claw is in V3. In Figure 4.1 and subsequent illustrations, vertices in V3

are black, vertices in V ′
3 are gray and vertices that belong to neither V3 nor V ′

3 are white.

4.1.2 Problem statements

A set T of edges of a (not necessarily bipartite) graph G is called a biplanarizing set if G \ T

is biplanar. The bipartite planarization number of a graph G, denoted by bpr(G), is the size

of a minimum biplanarizing set for G. Thus the 2-LAYER PLANARIZATION problem is: given

a graph G and an integer k, is bpr(G) ≤ k? For a given bipartite graph G = (A,B;E)

and a vertex ordering π of A, the 1-layer biplanarization number of G and π, denoted by

bpr(G,π), is the minimum number of edges in G whose deletion produces a graph that

admits a biplanar drawing with π as the vertex ordering of the vertices in A. The 1-LAYER

PLANARIZATION problem asks if bpr(G,π) ≤ k.

4.1.3 Terminology

To describe our kernelization algorithm we introduce some terminology. A component cater-

pillar of a graph is a connected component that is a caterpillar. Let P = (v1, v2, . . . , vp) be

a path in G with p ≥ 3 vertices. If deg’G(v1) ≥ 3, deg’G(vi) = 2 for all i, 1 < i < p, and

deg’G(vp) = 1, then P together with all the leaves at vertices v2, . . . , vp comprises a pen-

dant caterpillar. A pendant caterpillar is said to be connected at v1, its connection point. If

deg’G(v1) ≥ 3, deg’G(vi) = 2 for all i, 1 < i < p, and deg’G(vp) = 3, then P together with all

the leaves at vertices v2, . . . , vp−1 comprises an internal caterpillar. An internal caterpillar is



CHAPTER 4. PLANARIZATION 41

said to be connected at v1 and vp, its connection points. An internal caterpillar where p = 4,

degG(v2) = 2 and degG(v3) = 2 is called an internal 3-path. Edge v2v3 in an internal 3-path

is called its middle edge. The size of a pendant (or internal) caterpillar is equal to the total

number of its edges.

These graphs are illustrated in Figure 4.3.
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FIGURE 4.3: (a) pendant caterpillar, (b) internal caterpillar.

A graph consisting of a cycle and possibly some leaf-edges attached to the cycle is a sun.

A component sun of a graph is a connected component that is a sun. Let C = (v1, v2, . . . , vp)

denote a cycle in G, where v1 = vp. If deg’G(v1 = vp) ≥ 3, and deg’G(vi) = 2 for all i,

1 < i < p, then C together with all the leaves at vertices v2, . . . , vp−1 comprises a pendant

sun. A pendant sun is said to be connected at v1. The size of a pendant sun is equal to the

total number of its edges. A pendant sun of size three is called a pendant triangle. Edge v2v3

in a pendant triangle is called its middle edge. Edges that lie on C are called cycle edges of a

(pendant) sun, and C is called a sun cycle. These graphs are illustrated in Figure 4.4.

✕✎✖✠✗ ✕✓✘✙✗

FIGURE 4.4: (a) sun, (b) pendant sun.

Notice that a connected graph that does not have a vertex v with deg’(v) ≥ 3 is either a

caterpillar or a sun, and that any two of the structures defined above are edge-disjoint. For

example, an edge of G cannot belong to two internal caterpillars, or to a pendant caterpillar

and an internal caterpillar. In particular, these structures are maximal: for example an

internal caterpillar cannot contain another internal caterpillar.

4.2 2-Layer planarization

We now give an overview of our approach to the 2-LAYER PLANARIZATION problem. In

the next section, we show that to solve the 2-LAYER PLANARIZATION problem, it suffices

to search through a subset of the edges in the given input graph. In particular, for an

input graph G = (V,E), we define a candidate set of edges K ⊆ E, and prove that K
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contains a minimum biplanarizing set of G. Moreover, as established in Section 4.2.2, the

size of the candidate set and the biplanarization number of G are tied, specifically, bpr(G) ≤
|K| ≤ 6 bpr(G). This automatically gives rise to an FPT algorithm that runs in O(17k|G|)
time. By devising appropriate reduction rules in Section 4.2.3, we obtain a problem kernel

for the 2-LAYER PLANARIZATION problem, and consequently improve the running time to

O(
√

k 17k + |G|). All this in combination with the bounded search tree method applied in

Section 4.2.4, gives rise to our final FPT algorithm for the 2-LAYER PLANARIZATION problem

that runs in O(
√

k 6k + |G|).

4.2.1 The candidate set

We define a candidate set K to be a set of edges K ⊆ E that contains

• any one edge from the cycle of each component sun,

• every edge vw such that v ∈ V3, w ∈ V3 ∪ V ′
3 , and vw is neither in an internal 3-path

nor in a pendant triangle,

• every middle edge.

An edge e ∈ E is good if e ∈ K, and bad otherwise. When convenient, we will refer to

vertices of G in V3 as black, those in V ′
3 as gray, and vertices that are neither in V3 nor in

V ′
3 as white. The following theorem is the basis for our kernelization algorithm (see Section

4.2.3).

Theorem 4.1. Let T be a biplanarizing set of G. There exists a biplanarizing set T ∗ of G such

that T ∗ ⊆ K and |T ∗| ≤ |T |.

The remainder of this section is dedicated to proving Theorem 4.1. We do this by demon-

strating that every bad edge in a biplanarizing set can be replaced by a good edge. In order

to simplify the proof we first rule out the trivial cases in the next lemma. We say that a bi-

planarizing set is normal if it contains neither leaf-edges of G nor bad edges that belong to

component suns of G. We will use the following simple observations which follow directly

from the definitions.

Fact 4.1. Every cycle of G has at least one good edge. Every 2-claw of G has at least one good

edge.

Fact 4.2. Let vw be an edge in G such that v ∈ V3 and w ∈ V ′
3 . If w has a neighbour u 6= v

such that edge wu is not a middle edge, then vw is a good edge of G.

Lemma 4.3. Let T be a biplanarizing set of G. There exists a normal biplanarizing set T ′ of G

such that |T ′| ≤ |T |.
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Proof. To prove this lemma we first obtain a biplanarizing set T ′′ that contains no leaf-edges

of G and has |T ′′| ≤ |T |. Suppose T contains a leaf edge vw, where w is its leaf. Let

F denote G \ T . Then F is a forest of caterpillars that contains a component Fw = {w}
and a component Fv such that v ∈ Fv. To prove that T ′′ exists, it suffices to show that if

F ′ = Fv∪Fw∪{vw} is not a caterpillar, then there exists a non-leaf edge e such that F ′ \{e}
is a forest of caterpillars. Since w is isolated in Fv ∪Fw, therefore F ′ is a tree. Now suppose

there is a 2-claw C in F ′. Since w is a leaf, neither v nor w may be centers of any 2-claw

in F ′. Let x be the center of C. Since vw is contained in all 2-claws in F ′, it must be a

secondary edge of C. Since Fv is a caterpillar and thus has no 2-claws, it follows that v has

no neighbours other than x and w in F ′. Therefore F ′ \ {xv} is biplanar since it consists of

two components, one component is vw and the other component is a subgraph of Fv . This

shows that T ′′ exists since xv is not a leaf-edge in G.

Now let vw ∈ T ′′ be a bad edge that belongs to a component sun W . If (G\T ′′)∪{vw} is

not a forest of caterpillars then (G\T ′′)∪{vw} consists of W and a forest of caterpillars. By

Fact 4.1, the sun-cycle of W contains a good edge e; thus ((G\T ′′)∪{vw})\{e} is biplanar.

Repeating this for every edge of T ′′ that is bad and belongs to some component sun gives

the normal biplanarizing set T ′ that has |T ′| ≤ |T |.

There are two possible types of bad edges that may appear in a normal biplanarizing

set:

type-1: edges vw such that neither v nor w is black and vw is not a middle edge,

type-2: edges vw such that v is black and w is gray and vw belongs to some internal 3-path

or pendant triangle in G.

Lemmas 4.4 and 4.5 below prove that every bad edge of type-1 and type-2 respectively, can

be replaced by a good edge in a normal biplanarizing set.

Lemma 4.4. Let T be a normal biplanarizing set of G. Let vw ∈ T be a bad edge such that

v,w 6∈ V3. Then either T \ {vw} is a biplanarizing set for G, or there exists a good edge e ∈ E

such that T ′ = (T \ {vw}) ∪ {e} is a biplanarizing set for G.

Proof. Let F denote G \ T . Then F is a forest of caterpillars. Let F1, F2, . . . , Fs be the

component caterpillars of F . Every vertex of G belongs to exactly one component of F .

Since T contains no leaf-edge of G, every leaf-edge of G belongs to exactly one component

of F . We prove the lemma by considering two possible scenarios, depending on whether v

and w belong to the same component caterpillar of F or not.

Case 1: v ∈ Fi and w ∈ Fj where i 6= j.

F ∪{vw} is a forest comprised of s− 2 component caterpillars and a tree Fij = Fi∪Fj ∪
{vw}. Suppose now that there is a 2-claw in Fij . Neither v nor w is black in G; thus neither
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vertex is the center of any 2-claw in Fij . Thus at least one of Fi ∪ {vw} and Fj ∪ {vw}
contains a 2-claw.

Assume first that both Fi ∪ {vw} and Fj ∪ {vw} contain a 2-claw. Let x be a center

of a 2-claw in Fi ∪ {vw}; and let y be a center of a 2-claw in Fj ∪ {vw}, as illustrated in

Figure 4.5(a). Both of these 2-claws must contain vw, so there is an edge xv ∈ Fi ∪ {vw}
and an edge yw ∈ Fj ∪ {vw}. Thus there is path P = {x, v,w, y} in G that is potentially

an internal 3-path in G with middle edge vw. By our assumption, vw is not a middle edge.

Hence at least one of v or w, say v, has a neighbour v ′ in G that is not in P . That neighbour

v′ is a leaf in G, since by the assumption, deg’(v) = 2 in both G and Fij . Since vv′ is a

leaf-edge in G and since T has no leaf-edges then vv ′ is also in Fi. However that implies

that there is a 2-claw in Fi, which is a contradiction.

Assume now, without loss of generality, that only Fi ∪ {vw} contains a 2-claw, and that

Fj ∪ {vw} is a caterpillar. Let x be a center of a 2-claw in Fi ∪ {vw}, as illustrated in

Figure 4.5(b). This 2-claw must contain edge vw, so there is an edge xv ∈ Fi ∪ {vw}.
Vertex v can have no other neighbours in Fi as otherwise there would be 2-claw in Fi.

Thus Fij \ {xv} consists of two components Fi \ {xv} and Fj ∪ {vw} that are both biplanar.

Therefore, Fij \ {xv} is biplanar as well. This completes the proof for this case since by

assumption vw is not a middle edge and thus xv must be a good edge.
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FIGURE 4.5: Illustration for the proof of Lemma 4.4 — Case 1: (a) Fi ∪ {vw} and Fj ∪ {vw} both

contain a 2-claw, (b) Fi ∪ {vw} contains a 2-claw, Fj ∪ {vw} is biplanar.

Case 2: v,w ∈ Fi.

F ∪{vw} is comprised of s− 1 component caterpillars and a component F ′
i = Fi ∪ {vw}

that contains exactly one cycle. That cycle contains edge vw. Let P = (v1, v2, . . . , vp) denote

the spine of caterpillar Fi. Since v,w 6∈ V3, neither v nor w can be equal to any vertex

v2, v3, . . . vp−1. Having that in mind together with the assumption that vw is not a middle

edge in G, it is simple to verify that either F ′
i is a sun, or nearly-sun. Nearly-sun is comprised

of a vertex x, one pendant sun and one pendant caterpillar both connected at x and possibly

some leaves at x, as illustrated in Fig. 4.6(b).

If F ′
i is a sun then by Fact 4.1 there is a good cycle edge e ∈ F ′

i . Clearly F ′
i \ {e} is a
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x1 = v

x2 = w

xl−1
xl

x
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FIGURE 4.6: Illustration for the proof of Lemma 4.4 — Case 2 : (a) sun, (b) nearly-sun.

caterpillar. Otherwise let F ′
i be a nearly-sun, and let x, x1, x2, . . . , xl−1, xl denote the vertices

on the pendant sun cycle. Since every 2-claw and the cycle in F ′
i must contain edge vw and

since neither v nor w is black, it follows that vw is either x1x2 or xl−1, xl (notice that x1x2

and xl−1, xl may in fact be the same edge). Let, without loss of generality, vw be x1x2. Since

F ′
i is a nearly-sun, it is easy to see that F ′

i \ {xx1} is a caterpillar. This completes the proof

for this case since vw is not a middle edge and thus by Fact 4.2 xx1 is a good edge.

Lemma 4.5. Let T be a normal biplanarizing set of G. Let vw ∈ T be a bad edge such that

v ∈ V3 and w ∈ V ′
3 . Then either T \ {vw} is a biplanarizing set of G, or there exists a good

edge e ∈ E such that T ′ = (T \ {vw}) ∪ {e} is a biplanarizing set of G.

Proof. Suppose that T contains a bad edge vw such that v ∈ V3 and w ∈ V ′
3 . Then vw

belongs to either an internal 3-path or a pendant triangle I in G. Let wx ∈ K be the middle

edge of I. Let F denote (G \ T ) ∪ {vw}. To prove the lemma it suffices to show that if F is

not biplanar then there exists a good edge e ∈ F such that F \ {e} is a biplanar.

If F is not biplanar then every cycle and 2-claw in F must contain vw. Since w has

degree two, every cycle in F also contains wx. Thus F \ {wx} is a forest. If F \ {wx} is

biplanar we are done; otherwise, there is at least one 2-claw, C, in F \ {wx}. Since w is a

leaf in F \ {wx}, vw must be a secondary edge of C. Thus C is centered at some neighbour

u 6= w of v, and therefore u ∈ V3 and uv ∈ K. Thus degF (v) = 2 (as otherwise G \ T has a

2-claw), and therefore in F , vertices v,w and x have degree at most two. Thus every cycle

in F contains uv. Hence F \ {uv} is a forest. Furthermore, degF\{uv}(v) = 1 and all the

vertices in the distance two neighbourhood of v in F \ {uv} have degree in F at most two,

and thus F \ {uv} is biplanar, which completes the proof since uv ∈ K.

Proof of Theorem 4.1. Let T be a biplanarizing set for G. By Lemma 4.3 there is a normal

biplanarizing set T ′ for G such that |T ′| ≤ |T |. Lemmas 4.4 and 4.5 imply that T ′ can be

transformed into biplanarizing set T ∗ for G such that all the edges in T ∗ are good, that is

T ∗ ∈ K, and |T ∗| ≤ |T |.

Guided by Theorem 4.1, we now identify a set of edges SG of G that may be assumed

without loss of generality to be in a minimum biplanarizing set. More precisely, there exists
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a minimum biplanarizing set that contains SG. For each vertex v ∈ V3, let α(v) be the

number of pendant caterpillars connected at v in G. We define SG to be the set of edges

SG ⊂ E that contains:

• the good edge from each component sun,

• the good edge (that is, middle edge) from each pendant triangle,

• one of the two good edges from each pendant sun,

• for each vertex v, the good edges from max{α(v)−2, 0} pendant caterpillars connected

at v.

Lemma 4.6. There exists a minimum biplanarizing set T of G that contains SG

Proof. Exactly one edge of each component sun and pendant triangle is in K and that is their

good edge. Since they contain a cycle, each component sun and pendant triangle needs to

have one of their edges in any biplanarizing set. Thus by Theorem 4.1, the lemma is true

for component suns and pendant triangles.

Now consider the third bullet and let W be a (non-triangle) pendant sun connected at

v1. Only two edges of W , v1v2 and v1vp, are in K. Thus there exists minimum biplanarizing

set T that contains at least one of them. Say T contains v1vp and we placed v1v2 ∈ SG. If T

also contains v1v2 we are done. Otherwise the subgraph of W that is in G \ T , is comprised

of a pendant caterpillar at v1. The subgraph of W that is in G\((T ∪{v1v2})\{v1vp}) is also

comprised of one pendant caterpillar at v1. Thus (T ∪ {v1v2}) \ {v1vp} is a biplanarizing set

of G.

Now consider the last bullet and let Q be a subgraph of G containing v and α(v) ≥ 3

pendant caterpillars at v. Exactly one edge from each pendant caterpillar at v is in K. At

least α(v) − 2 of these edges has to be in any biplanarizing set of G, as otherwise G has a

2-claw. Let T be a minimum biplanarizing set of G containing α(v) − 2 ≤ p ≤ α(v) good

edges of Q. Then the subgraph of Q that is in G \ T , is comprised of α(v) − p pendant

caterpillars at v. Which α(v) − p pendant caterpillars at v does G \ T contain is irrelevant,

thus we can chose arbitrary α(v)− 2 good edges of Q to put in SG.

4.2.2 Size of the candidate set

The next lemma demonstrates that the size of the candidate set of graph G is tied to bipla-

narization number of G. Let d be the average non-leaf degree of vertices in V3.

Lemma 4.7. bpr(G) ≤ |K| ≤ 2 d
d−2bpr(G) ≤ 6 bpr(G).

Before proving this lemma we show that Theorem 4.1 and Lemma 4.7 give an FPT

algorithm for 2-LAYER PLANARIZATION as demonstrated in the next corollary.
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Corollary 4.1. Let k′ = k − |SG| and e be the base of the natural logarithm. There is a

O(( 2e d
d−2 )k

′ |G|
)

∈ O(17k′ |G|) algorithm for the 2-LAYER PLANARIZATION problem.

Proof. Consider the following algorithm. Remove all edges in SG from G to obtain graph

G′ = G\SG. Compute the candidate set K′ of G′. If k′ < d−2
2d |K′| return NO. Else if k′ ≥ |K′|

then return YES. Else for every subset S ⊆ K′ such that |S| = k′, test if S is a biplanarizing

set for G′. If no such set S is found return NO, otherwise return YES and biplanarizing set

T = SG ∪ S. The correctness of this algorithm follows from Theorem 4.1 and Lemmas 4.6

and 4.7.

Consider now the running time of this algorithm. Computing SG for G and K′ for G′

takes O(|G|) time. Testing whether some set S is biplanarizing set for G′ takes O(|G′|) time.

The algorithm performs that test at most
(|K′|

k′

)

times. Since the testing is performed only if

|K′| ≤ 2 d
d−2k′,

(|K′|
k′

)

≤
(2 d

d−2
k′

k′

)

< (2k′ d/(d−2))k′

k′! < (2e d/(d−2))k′

√
k′

by Stirling’s Formula. Since

d ≥ 3, in the worst case the running time of the algorithm is O((6e)k′ |G|) ∈ O(17k′ |G|).

To enable us to prove Lemma 4.7, we introduce the following potential function, whose

definition is suggested by Lemma 4.1(d). For a graph G = (V,E), define

∀v ∈ V, ΦG(v) = max{deg’G(v)− 2, 0}, and Φ(G) =
∑

v∈V

Φ(v) .

Intuitively, Φ(v) approximates the number of edges in the distance-2 neighbourhood of

v that must be included in a biplanarizing set of G.

Lemma 4.8. Φ(G) = 0 if and only if G is a collection of caterpillars and suns.

Proof. Since neither caterpillars nor suns have vertices with non-leaf degree greater than

two, their potential function is clearly equal to zero. For the other direction, suppose Φ(G) =

0 and consider a graph G′ obtained from G by deleting all its leaves. G′ does not have a

vertex of degree three or more, so G′ is a collection of paths and cycles. Therefore, G is a

collection of caterpillars and suns.

Notice that Lemma 4.8 proves another characterization of biplanar graphs. Namely, G is

biplanar if and only if G is acyclic and Φ(G) = 0. For graphs G with Φ(G) = 0, a minimum

biplanarizing set of G consists of one cycle edge from each component sun. For graphs with

Φ(G) > 0 the following observation will be useful.

Lemma 4.9. Let G be a graph with Φ(G) > 0 (that is, V3 6= ∅). If d is the average non-leaf

degree of vertices in V3 then |V3| = Φ(G)
d−2 .
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Proof. By definition,

d|V3| =
∑

v∈V3

deg’(v) =
∑

v∈V3

(ΦG(v) + 2) = Φ(G) + 2|V3| .

Thus, (d− 2)|V3| = Φ(G), and the result follows.

We now prove that Φ(G) provides a lower bound for bpr(G).

Lemma 4.10. For every graph G, bpr(G) ≥ 1
2Φ(G).

Proof. The result follows from Lemma 4.8 if we prove that deleting one edge vw from G

with Φ(G) > 0 reduces Φ(G) by at most two.

If at least one of v and w (say v) is a leaf, then Φ(v) = 0 and Φ(w) does not change by

deleting vw. If w becomes a leaf by deleting vw, then w has one neighbour x for which Φ is

reduced by at most one.

If neither v nor w are leaves in G, then there are three possible outcomes when the edge

vw is deleted.

Case 1. Φ(v) and Φ(w) both decrease: Then before deleting vw, deg’(v) ≥ 3 and

deg’(w) ≥ 3. Thus, v and w do not become leaves by deleting vw, and Φ does not de-

crease for any other vertices.

Case 2. Exactly one of Φ(v) and Φ(w), say Φ(v), decreases: Then deg’(v) ≥ 3 and

deg’(w) ≤ 2 before deleting vw. Thus, w has at most one neighbour x (6= v) such that Φ(x)

decreases. Furthermore Φ(x) decreases by at most one. Thus for no neighbour of v, except

possibly x, is Φ reduced.

Case 3. Neither Φ(v) nor Φ(w) decreases: Thus, deg’(v) ≤ 2 and deg’(w) ≤ 2 before

deleting vw. Each of v and w has at most one neighbour for which Φ may decrease. If these

neighbours are distinct, then Φ may decrease by at most one for each neighbour; if they are

the same then Φ may decrease by at most two for the common neighbour.

Proof of Lemma 4.7. By Theorem 4.1 there exists a minimum biplanarizing set T of G such

that T ⊆ K. Therefore |K| ≥ bpr(G). To prove that |K| ≤ 2 d
d−2bpr(G) we count the number

of edges in K with respect to the vertices in V3.

|K| ≤
∑

v∈V3

deg’G(v) =
∑

v∈V3

(ΦG(v) + 2) = 2|V3|+ Φ(G) .

By Lemma 4.9, |K| ≤ Φ(G)(1 + 2/(d − 2)) = Φ(G) d/(d − 2). Since Φ(G) ≤ 2bpr(G),

|K| ≤ 2bpr(G) d/(d − 2). Since d ≥ 3, |K| ≤ 6bpr(G).

The graph illustrated in Figure 4.7(a) has biplanarization number one, and its candidate

set of six edges is shown in Figure 4.7(b). Thus our analysis for the size of the candidate set
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is tight.

�✂✁☎✄ �✝✆✞✄

FIGURE 4.7: A graph with biplanarization number one and with a candidate set of 6 edges.

In the example of Figure 4.7, it is not necessary to include the edges contained in the

pendant caterpillars in any biplanarizing set. This observation suggests the following meth-

ods for further reducing the size of the candidate set.

Observation 4.1. Let G be a graph with SG=0. Let 0 ≤ α(v) ≤ 2 be the number of pendant

caterpillars connected at v in G. For each vertex v ∈ V ,

1. if α(v) = 2 and deg’G(v) = 3 then none of the edges in these two pendant caterpillars

need be in the candidate set K for G;

2. if α(v) = 1, then none of the edges in the pendant caterpillar need be in K.

Proof. Consider the first observation and let T ⊆ K be a biplanarizing set of G. Let x, y and

z be the non-leaf neighbours of v where vx and vy belong to the two pendant caterpillars

connected at v. By Theorem 4.1, no edge of the two pendant caterpillars other than vx and

vy may belong to T . If z is an endpoint of a middle edge in G, let w 6= v be the neighbour

of z and let T ′ = (T \ {vx, vy}) ∪ {zw}. Otherwise, let T ′ = (T \ {vx, vy}) ∪ {vz}. G \ T ′ is

clearly biplanar. Since both vz and zw are good and since neither vz nor zw belong to any

pendant caterpillars in G, the correctness of the first observation follows.

Consider now the second observation. Let x denote the non-leaf neighbour of v that

belongs to the pendant caterpillar connected at v. Let T ⊆ K be a minimum biplanarizing

set of G. If T contains no edge of the pendant caterpillar we are done; otherwise, by The-

orem 4.1, we may assume that T contains vx and no other edge of the pendant caterpillar.

(G \ T ) ∪ {vx} is acyclic and by minimality of T it contains a 2-claw C. C must contain vx.

Thus v has a non-leaf neighbour z 6= x. If z is an endpoint of a middle edge in G let w 6= v

be the neighbour of z and let T ′ = (T \{vx})∪{zw}. Otherwise, let T ′ = (T \{vx})∪{vz}.
G\T ′ is clearly biplanar. Since both vz and zw are good and since neither vz nor zw belong

to any pendant caterpillars in G, the correctness of the second observation follows.

While in many cases arising in practice the above observations could lead to improved

running time for our algorithm, we now describe a pathological family of graphs for which

our analysis in Lemma 4.7 for the size of the candidate set is tight even with the above

improvements. Consider the graph Gp,q (p, q ∈ N) consisting of an inner cycle (v1, . . . , v2p)
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and an outer cycle (w1, . . . , w2p) with v2i connected by q 2-paths to w2i for all i, 1 ≤ i ≤ p,

as illustrated in Figure 4.8(a) in the case of G8,3. All vertices in V3 have non-leaf degree

d = q + 2. Gp,q has (d + 2)p vertices and 2dp edges. It is easily verified that the candidate

set of Gp,q is the whole graph. As shown in Figure 4.8(b), Gp,q has a spanning caterpillar

with p(d + 2) − 1 edges. There is no larger biplanar subgraph than a spanning caterpillar.

Thus bpr(Gp,q) = 2dp − (p(d + 2) − 1) = p(d − 2) + 1. The ratio of the number of edges in

the candidate set of Gp,q to bpr(Gp,q) is 2dp
p(d−2)+1 → 2d

d−2 as p→∞. Thus the analysis of the

size of the candidate set in Lemma 4.7 is tight for all d.

�✂✁☎✄ �✝✆✞✄

FIGURE 4.8: The graph G8,3 and a spanning caterpillar of G8,3.

4.2.3 The kernelization algorithm

The algorithm in Corollary 4.1 tests for every subset S of K such that |K| = k, if S is a

biplanarizing set for G, thus giving rise to the running time of the form O(f(k) |G|). In this

section we describe how to reduce the input graph G to graph Gkr of size O(k) such that

the testing if S is a biplanarizing set for G can be performed on Gkr. Consequently, the cost

of testing becomes O(k), thus giving the final running time of the from O(k f(k) + |G|).
By Lemma 4.6, instead of working with a problem instance G′ with parameter k′ where

SG′ 6= ∅, we can work with G = G′ \ SG′ and parameter k = k′ − |SG′ |. Therefore, without

loss of generality, we may now assume that the input graph G has SG = ∅, and thus has no

component suns.

The graph induced by the white vertices in any graph is comprised of component suns

and a forest of caterpillars. Since G has no suns by the assumption, the induced graph

is a forest of caterpillars. This motivates the following construction. Let a kernel graph

Gkr = (Vkr, Ekr) be a graph obtained from G by performing the following reduction opera-

tions on G in the order in which there are given below.

Reduction operations:

1. For each vertex v ∈ V , replace a set of leaf-edges at v by a single leaf-edge at v.
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2. While there is an edge vw ∈ E with both v and w white in G, contract vw.

3. Delete isolated vertices.

Since the graph induced by the white vertices of G is a forest of caterpillars, the above

operations create neither loops nor multiple edges. Therefore, the cycle structure of G is not

affected by the reduction operations as there is a bijection between the cycles of G before

and after these operations. Similarly, the set of non-leaf edges of G with at least one non-

white endpoint, is also preserved by the reduction operations. The only good edges that

have both endpoints white are the good edges that belong to component suns. Since G has

no component suns by assumption, the candidate set of G and the candidate set of Gkr are

identical sets.

Lemma 4.11. Let G be a graph with SG = 0. Let K be the candidate set of G and its kernel

graph Gkr. A set T ⊆ K is a biplanarizing set of G if and only if T is a biplanarizing set of Gkr.

Proof. Let G′ be a graph obtained from G after completing reduction operation 1. Since T

contains no leaves, it is simple to verify that T is a biplanarizing set of G if and only if T is

a biplanarizing set of Gkr. Therefore we need only prove that T is a biplanarizing set of G′

if and only if T is a biplanarizing set of Gkr.

Since, by the assumption, G′ has no component suns, and as previously pointed out, the

cycle structure of G′ is not affected by the reduction operations. Thus the existence of a

cycle in G \ T implies that there is a cycle in Gkr \ T and equivalently, the existence of a

cycle in G \ T implies that there is a cycle in Gkr \ T . Furthermore, since no 2-claw contains

an edge with both endpoints white, there is a bijection between the 2-claws in G′ and the

2-claws in Gkr. Therefore, the existence of a 2-claw in G \ T implies that there is a 2-claw

in Gkr \ T and equivalently, the existence of a 2-claw in G \ T implies that there is a 2-claw

in Gkr \ T .

Lemma 4.12. Let G be a graph with SG = 0. The kernel graph Gkr of G has |Ekr| ≤ 20 bpr(G)

and |Gkr| ∈ O(bpr(G)).

Proof. If |V3| = 0, then Φ(G) = 0. In that case, since G has no component suns, G is biplanar

and bpr(G) = 0. Furthermore, since all the vertices of G are white, Gkr is the empty graph

and thus |Gkr| ≤ bpr(G) = 0.

Consider now the case that |V3| > 0. We count the edges in Gkr with respect to the

black vertices, that is, vertices in V3. Since each gray vertex in Gkr has at most two non-

leaf neighbours, at least one of which is black, the number of non-leaf edges in Gkr is at

most 2
∑

v∈V3
deg’Gkr

(v). Furthermore, since every leaf vertex is white, only black and gray

vertices may be incident to leaf-edges. Therefore the total number of leaf-edges in Gkr is at
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most |V3|+ |V ′
3 |. Since the number of vertices in V ′

3 is at most
∑

v∈V3
deg’Gkr

(v), we have

|Ekr| ≤ |V3|+
∑

v∈V3

3deg’Gkr
(v) = |V3|+

∑

v∈V3

(3ΦGkr
(v) + 6) = 3Φ(Gkr) + 7|V3| .

By Lemma 4.9 applied to Gkr and since d ≥ 3, we have |V3| ≤ Φ(Gkr). Therefore |Ekr| ≤
10Φ(Gkr). Since by Lemmas 4.10 and 4.11 Φ(Gkr) ≤ 2bpr(Gkr) = 2bpr(G), |Ekr| ≤
20 bpr(G), and since Gkr has no isolated vertices, |Gkr| ∈ O(bpr(G)).

Algorithm 2-Layer Kernelization

input: graph G = (V,E)

parameter: non-negative integer k

output: NO if bpr(G) > k; otherwise, YES and a biplanarizing set of G

1. compute SG and let k′ = k − |SG|

2. compute K of G \ SG

3. if k′ < d−2
2d |K| then return NO

4. else if k′ ≥ |K| then return YES and biplanarizing set K ∪ SG

5. else compute the kernel graph Gkr = (Vkr, Ekr) of G \ SG and

if ∃T ⊆ K such that |T | = k′, Gkr \ T is acyclic, and Φ(Gkr \ T ) = 0 return YES

and biplanarizing set SG ∪ T

else return NO

Theorem 4.2. Given a graph G = (V,E) and integer k, the algorithm 2-Layer Kernelization

(G, k) determines if bpr(G) ≤ k and if so, returns a biplanarizing set of size at most k. The

running time is O(
√

k · ( 2e d
d−2 )k + |G|) ∈ O(

√
k · 17k + |G|), where d is the average non-leaf

degree of vertices in V3, and e is the base of the natural logarithm.

Proof. The correctness of the algorithm follows from Theorem 4.1, Lemma 4.6, Lemma 4.7

and Lemma 4.11. Consider now the running time of the algorithm.

Computing SG, K and Gkr takes O(|G|) time. Testing whether T ⊆ K is a biplanarizing

set of Gkr can be carried out in O(|Gkr|) ∈ O(bpr(G)) ∈ O(k) time, 1 by Lemma 4.12. The

number of times the algorithm performs this test is at most the number of k ′-edge subsets of

1bpr(G) is bounded by O(k) in step 5, since d−2
2d

|K| ≤ bpr(G) ≤ |K| and d−2
2d

|K| ≤ k ≤ |K|.
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K; and that is
(|K|

k′

)

≤
(2k′ d/(d−2)

k′

)

< (2k d/(d−2))k′

k′! < (2e d/(d−2))k′

√
k′

, by Stirling’s Formula. Thus

the total running time of the algorithm is O(
√

k′ ·( 2e d
d−2 )k

′
+ |G|) which is O(

√
k ·( 2e d

d−2 )k + |G|)
as k′ ≤ k. Furthermore, since d ≥ 3, in the worst case the running time of algorithm 2-Layer

Kernelization is O(
√

k · (6e)k + |G|) ∈ O(
√

k · 17k + |G|).

4.2.4 The bounded search tree algorithm

In this section we present an algorithm for the 2-LAYER PLANARIZATION problem based on

a bounded search tree method. Each node of the search tree corresponds to a subproblem

(G′, k′), where G′ ⊆ G and k′ ≤ k. At each node we find, if possible, a subgraph C that is a

2-claw or a small cycle. Since every biplanarizing set must contain at least one of the edges

in C, our algorithm recursively solves |C| subproblems with one of the edges in C deleted

from the graph in each subproblem. Recall that Lemma 4.2 provided a sufficient condition

for the existence of such a set C.

Algorithm 2-Layer Bounded Search Tree

input: graph G0 = (V0, E0);

parameter: non-negative integer k0

output: NO if bpr(G0) > k0 otherwise, YES.

1. compute K of G0

2. if k0 < d−2
2d |K| then return NO

3. else if k0 ≥ |K| then return YES

4. else (∃ v ∈ V0 such that deg’G0
(v) ≥ 3)

if k0 > 0

(a) find a 2-claw, 3-cycle or 4-cycle C in G0 containing v

as described in Lemma 4.2;

(b) for each edge xy ∈ C ∩ K do

if 2-Layer Bounded Search Tree(G0 \ {xy}, k0 − 1) returns YES then

return YES.

return NO.

Note that the algorithm can be easily modified to return a biplanarizing set for YES

instances of the 2-LAYER PLANARIZATION problem. We could solve 2-LAYER PLANARIZATION



CHAPTER 4. PLANARIZATION 54

by running 2-Layer Bounded Search Tree (G, k). Instead, we apply 2-Layer Bounded Search

Tree to the kernel of G so that the running time at each node of the search tree is O(k)

rather than O(|G|).
The above description of our algorithm is recursive and we do not explicitly build a

search tree. However, as is standard practice when analyzing recursive algorithms, we

associated a recursion tree [27], also called search tree, with our algorithm.

Theorem 4.3. Given a graph G and integer k, let Gkr be the kernel graph of G \ SG. The

algorithm 2-Layer Bounded Search Tree (Gkr, k− |SG|) determines if bpr(G) ≤ k in O(k · 6k +

|G|) time.

Proof. The correctness of Steps 1, 2, and 3 follows immediately from Theorem 4.1, Lemma 4.7

and Lemma 4.11. The correctness of Step 4 follows from Lemma 4.2 and Theorem 4.1.

In each recursive call k is reduced by one. Thus the height of the search tree is at most

k. At each node of the search tree, there are |C| branches. Since |C| ≤ 6, the search tree has

at most 6k nodes. At any given node of the search tree, the algorithm takes O(|G0|) time.

Each G0 is a subgraph of Gkr. Since the algorithm immediately terminates if k0 < d−2
2d |K| or

k0 ≥ |K|, then d−2
2d |K| ≤ k0 ≤ |K| and thus by Lemma 4.7, bpr(G) ∈ O(k). By Lemma 4.12,

that further implies that O(|Gkr|) ∈ O(k). Hence the time taken at each node of the search

tree is O(k). Therefore, the running time of the algorithm is O(k · 6k + |G|).

We now compare the exponential terms of the time bounds for the 2-Layer Kernelization

and 2-Layer Bounded Search Tree algorithms. The exponential term for 2-Layer Kernelization

is ( 2e d
d−2 )k, while the exponential term for 2-Layer Bounded Search Tree is 6k. In the worst case,

when d = 3, the 2-Layer Kernelization term is approximately 17k, which is considerably more

than 6k. However, for d ≥ 22, 2e d
d−2 < 6, and the 2-Layer Kernelization algorithm provides an

exponential term with a smaller base than the 2-Layer Bounded Search Tree algorithm.

4.3 1-Layer planarization

We now consider the 1-LAYER PLANARIZATION problem defined in Section 4.1.2: given a

bipartite graph G = (A,B;E) and a vertex ordering π of A, is bpr(G,π) ≤ k? If bpr(G,π) =

0 we say that G is π-biplanar. The figures in this section show vertices in A as gray and

vertices in B as white. We found it elusive to design an algorithm for this problem based on

the kernelization method. However we did find an algorithm based on the bounded search

tree method.

The following result characterizes π-biplanar graphs.
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Lemma 4.13. A bipartite graph G = (A,B;E) with a fixed vertex ordering π of A is π-

biplanar if and only if G is acyclic and the following condition holds.

For every path (x, v, y) of G with x, y ∈ A, and for every vertex u ∈ A

between x and y in π, the only edge incident to u (if any) is uv.
(⋆)

Proof. (=⇒) The fact that every biplanar drawing is a forest of caterpillars implies the ne-

cessity for G to be acyclic. The necessity of condition (⋆) is also easily verified by observing

that if (⋆) does not hold for some path (x, v, y) and vertex u, then u has a neighbour w 6= v.

Regardless of the relative positions of w and v in the vertex ordering of B, uw must cross

xv or yv, as illustrated in Figure 4.9(a). This observation was also made by Mutzel and

Weiskircher [151].
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✂ ✄

☎

✆✞✝✠✟

✂
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✄
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�

✄ ✂

☎ ✁
✆☛✌✍✟

FIGURE 4.9: Forbidden structures for π-biplanarity.

(⇐=) Suppose G is acyclic and condition (⋆) holds. We now prove that these two con-

ditions are sufficient for the π-biplanarity of G. To construct a 2-layer drawing of G, we

describe the vertex ordering of B. Let (1, 2, . . . , |A|) be the vertex ordering of A defined by

π. For each vertex v ∈ B, define lv = min{i : iv ∈ E}; that is, lv is the leftmost neighbour

of v in the fixed vertex ordering of A. We say a vertex v ∈ B belongs to i if lv = i. Order the

vertices v ∈ B by increasing value of lv, breaking ties as follows. For each i, 1 ≤ i ≤ |A|,
there is at most one non-leaf vertex belonging to i, as otherwise condition (⋆) is violated

(see Figure 4.10(a)). Therefore, if i has a non-leaf neighbour, place all the leaf neighbours

of i to the left of its non-leaf neighbour. This defines a 2-layer drawing.

✎☛✏

✑ ✒

✓✕✔ ✎☛✖

✗✞✘✚✙

✎☛✖ ✛

✒ ✑

✓

✗☛✜✢✙

FIGURE 4.10: Construction of the vertex ordering of B.

Suppose there is a crossing between some edges iw and jv with i, j ∈ A (i < j) and

v,w ∈ B. Then v is to the left of w in the vertex ordering of B, and thus lv ≤ lw ≤ i. If

lv < i then the condition (⋆) is violated for the path (lv , v, j) and vertex i, as illustrated in

Figure 4.10(b). Otherwise, if lv = i then vertex w cannot be a leaf as otherwise w would be
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to the left of v. If w is not a leaf, then let l be another neighbour of w. We know that l 6= j

as otherwise there would be a cycle in G. Then the condition (⋆) is violated either for the

path (i, w, l) and vertex j, or for the path (lv, v, j) and vertex l. Thus there is no crossing in

the 2-layer drawing of G.

Lemma 4.14. If G = (A,B;E) is a bipartite graph and π is a vertex ordering of A that satisfies

condition (⋆), then all the cycles of G are 4-cycles and any two non-edge-disjoint cycles share

exactly two edges. Moreover, the degree of any vertex in B that appears in a cycle is exactly

two.

Proof. Suppose G contains a cycle C with 2k edges with k ≥ 3. Let C = (v1, v2, . . . , v2k, v2k+1)

with v1 = v2k+1 ∈ A. Suppose without loss of generality that v1 is to the left of v3 in π. If v5

is between v1 and v3 then condition (⋆) is not satisfied for the path (v1, v2, v3) and vertex v5.

If v5 is to the left of v1, then condition (⋆) is not satisfied for the path (v3, v4, v5) and vertex

v1. Thus v5 is to the right of v3. Continuing this argument, v2i+1 is to the right of v2i−1 for

all i, 1 ≤ i ≤ k. Thus v2k+1(= v1) is to the right of v1, which is a contradiction. Thus every

cycle in G has four edges.

If G contains two distinct 4-cycles C1 and C2 that share exactly one edge vw, then

(C1 ∪ C2) \ {vw} is a 6-cycle, which is a contradiction. No two distinct 4-cycles in a simple

graph can share more than two edges. Thus, any two non-edge-disjoint cycles share exactly

two edges.

Let (x, a, y, b) be a 4-cycle of G with x to the left of y in π. Suppose there is an edge aw

in G with x 6= w 6= y. If w is between x and y in π, then condition (⋆) is not satisfied for

the path (x, b, y) and vertex w. Otherwise, without loss of generality, say y is between x and

w in π. Then condition (⋆) is not satisfied for the path (x, a,w) and vertex y. Thus there

is no such edge aw. Hence, the degree of all vertices in B that appear in a cycle is exactly

two.

Let G = (A,B;E) be a bipartite graph with a fixed vertex ordering of A that satisfies

condition (⋆). Let H = K2,p be a complete bipartite subgraph of G with H ∩ A = {x, y},
and H ∩B = {v ∈ B : vx ∈ E, vy ∈ E, degG(v) = 2}, and |H ∩B| = p. Then H is called a

p-diamond (see Figure 4.11).

It follows from Lemma 4.14 that every cycle of G is in some p-diamond with p ≥ 2.

The next lemma gives the 1-layer biplanarization number bpr(G,π) of G in terms of its

p-diamonds, where G is a graph with vertex ordering π satisfying condition (⋆).

Lemma 4.15. If G = (A,B;E) is a bipartite graph and π is a vertex ordering of A satisfying

condition (⋆) then

bpr(G,π) =
∑

maximal p-diamonds of G

(p− 1) .
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FIGURE 4.11: (a) 5-diamond, (b) 2-layer drawing of a 5-diamond.

Proof. For each maximal p-diamond H of G, delete p − 1 of the edges incident to one of

the vertices in H ∩ A. The resulting graph is acyclic and satisfies condition (⋆), and thus,

by Lemma 4.13, is π-biplanar. To remove all cycles from G requires the deletion of at least

p−1 edges from each maximal p-diamond since maximal p-diamonds are edge-disjoint. The

result follows.

We now have the following bounded search tree algorithm for the 1-LAYER PLANARIZA-

TION problem. Our recursive description of the algorithm assumes that a bipartite graph

G = (A,B;E) and vertex ordering π of A are given.

Algorithm 1-Layer Bounded Search Tree

input: graph G0 = (A0, B0, E0); vertex ordering π0 of A0

parameter: non-negative integer k0

output: NO if bpr(G0, π0) > k otherwise, YES.

1. if (⋆) fails for some path (x, v, y) and vertex u of G0 then

if k0 > 0

for each edge e ∈ {xv, yv, uw} do

if 1-Layer Bounded Search Tree (G0 \ {e},π0, k − 1) returns YES then

return YES.

return NO.

2. else if k ≥
∑

maximal p-diamonds of G0

(p− 1) ; return YES.

3. else return NO.

As in Section 4.2.4 we associate the search (recursion) tree with the recursive description

of our algorithm.
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Theorem 4.4. Given a bipartite graph G = (A,B;E), a fixed vertex ordering π of A, and

integer k, the algorithm 1-Layer Bounded Search Tree (G,π, k) determines if bpr(G,π) ≤ k in

O(3k · |G|) time.

Proof. The correctness of the algorithm follows from Lemmas 4.13 and 4.15. We now ana-

lyze the running time of the algorithm. First we reorder the adjacency lists of vertices in B by

π in O(|G|)-time. For each vertex v ∈ B, let lv = min{i : iv ∈ E}; and rv = max{i : iv ∈ E},
that is, lv and rv are the leftmost and rightmost neighbours of v in the fixed vertex ordering

of A. We now check if condition (⋆) holds in O(|A|) time as follows. For every non-leaf

vertex v ∈ B we test if (⋆) is satisfied for a 2-path lv, v, rv and all the vertices of A in the

open interval (lv , rv). This procedure stops when a 2-path and a vertex are found that vio-

late condition (⋆) or when all non-leaf vertices v ∈ B are considered. The procedure runs

in O(|A|) time since it stops the first time it encounters two intervals (lv, rv) and (lw, rw)

for v 6= w with non-empty intersection; otherwise all the intervals (lv , rv) and (lw, rw) for

v 6= w have empty intersection. To count the number and size of the diamonds in G takes

O(|G|) time. Thus, the algorithm takes O(|G|) time at each node of the search tree. Since

each node of the search tree has three children, and the height of the tree is at most k, the

algorithm runs in O(3k · |G|) time.

4.4 Approximations for 1- and 2-LAYER PLANARIZATION

As a by-product of Lemma 4.7, we immediately have that the 2-LAYER PLANARIZATION prob-

lem has a linear-time 2d
d−2 -approximation, where d ≥ 3 is the average non-leaf degree of

vertices in V3. However, it is easy to do better. The following observation seems to have

gone unnoticed in the literature.

Lemma 4.16. There is a linear-time 2-approximation algorithm for the optimization version

of the 2-LAYER PLANARIZATION problem.

Proof. Let G = (V,E) be a connected graph with n vertices and m edges. Let r = m−(n−1).

Then bpr(G) ≥ r. Consider the following algorithm. Let S be a set of edges of G such that

G \ S is a spanning tree T . Then |S| = r. Apply the linear-time algorithm of Shahrokhi

et al. [179] to obtain a minimum set of edges ST ⊆ E(T ) such that T \ ST is biplanar. The

number of edges deleted from G is r + |ST | = r + bpr(T ) ≤ r + bpr(G) ≤ 2 bpr(G). Thus

this algorithm is a 2-approximation, and it clearly runs in O(n + m) time.

We now show that there is a constant approximation algorithm for the 1-LAYER PLA-

NARIZATION problem.

Lemma 4.17. There is a polynomial-time 3-approximation algorithm for the optimization

version of the 1-LAYER PLANARIZATION problem.
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Proof. Consider an instance (G,π) of the 1-LAYER PLANARIZATION problem with a bipartite

graph G = (A,B;E) and a fixed permutation π of A. A path (x, v, y) with x, y ∈ A and an

edge uw with w 6= v, u ∈ A and x < u < y is called a forbidden structure in (G,π).

Consider the following algorithm. While condition (⋆) is violated by some forbidden

structure (x, v, y), uw delete all three edges xv, vy and uw. Let S be the set of deleted

edges The instance (G \ S, π) satisfies the constraints imposed by Lemma 4.15. Therefore,

(G \ S, π) can be solved optimally.

The number of edge-disjoint forbidden structures in the instance (G,π) is at least
|S|
3 .

By Lemma 4.13, at least one of the edges from each of the forbidden structures has to be

deleted. Therefore, bpr(G,π) = |S|
3 + bpr(G \R, π), for some R ⊂ S and |R| = |S|

3 . The

number of edges deleted from G by the algorithm is |S| + bpr(G \ S, π). Since G \ S is a

spanning subgraph of G \R, bpr(G \R, π) ≥ bpr(G \ S, π). Therefore |S|+ bpr(G \ S, π) ≤
3
( |S|

3 +bpr(G \R, π)
)

= 3 bpr(G,π) and thus the algorithm is a 3-approximation. A running

time analysis, similar to the one presented in the proof of Theorem 4.4, reveals that the

algorithm can be implemented to run in O(|A||B|2) time.

4.5 Conclusion and bibliographic notes

In this chapter we have presented two methods for producing FPT algorithms in the context

of 2-layer and 1-layer planarization. In particular, for fixed k, we have linear-time algo-

rithms to determine if bpr(G) ≤ k and bpr(G,π) ≤ k. For small values of k our algorithms

provide a feasible method for the solution of these NP-complete problems.

The results in this chapter suggest the following open problems.

Open Problem 4.1. Is there a c-approximation algorithm for the optimization version of

the 2-LAYER PLANARIZATION problem with c < 2? Is there an FPT algorithm for the 2-

LAYER PLANARIZATION problem parameterized by the number of edge deletions k, with the

exponential part of the running time better than 6k?

Open Problem 4.2. Is there a c-approximation algorithm for the optimization version of

the 1-LAYER PLANARIZATION problem with c < 3? Is there an FPT algorithm for the 1-

LAYER PLANARIZATION problem parameterized by the number of edge deletions k, with the

exponential part of the running time better than 3k? Is there a problem kernel of size f(k)

for the problem?

Notice that the exact values for bpr(G) or bpr(G,π) can be determined by running our

algorithms for each k = 0, 1, 2 . . . , until the first value of k is reached that returns “YES”.

Clearly that value is equal to bpr(G) (or bpr(G,π)). Therefore, our algorithms can be used

to compute optimal solutions for 1- and 2-LAYER PLANARIZATION in time O(3bpr(G, π) · |G|)
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and O(bpr(G)(6bpr(G) + |G|)), respectively. An initial experimental study, carried out by

Suderman and Whitesides [182], compares these algorithms with the other known method

for optimal 1- and 2-layer planarization, namely integer linear programming [149, 151].

The results of this study suggest that the FPT method is competitive with the ILP method

Note that there can be many ways of formulating a parameterized version of an op-

timization problem. For example, in the case of 2-layer planarization, consider the prob-

lem of determining whether a given graph G = (V,E) has a spanning forest with at most

ℓ component caterpillars (the SPANNING CATERPILLAR FOREST problem). G has a bipla-

narizing set with k edges if and only if G has a spanning forest with ℓ = k − (|E| − |V |)
component caterpillars. Thus, from a traditional complexity point of view, the SPANNING

CATERPILLAR FOREST problem is equivalent to the 2-LAYER PLANARIZATION problem. In par-

ticular, both are NP-complete. In fact, the SPANNING CATERPILLAR FOREST problem with

ℓ = 1 is NP-complete by a simple reduction from HAMILTONIAN PATH. Therefore, unless

P=NP, SPANNING CATERPILLAR FOREST is not in FPT , as a polynomial time algorithm

for ℓ = 1 would imply P=NP. Thus, from the perspective of parameterized complexity,

unless P=NP, the complexities of the SPANNING CATERPILLAR FOREST and the 2-LAYER

PLANARIZATION problems are different. In this sense, parameterized complexity provides a

more fine-grained classification of the complexity of problems compared to the traditional

complexity approach.

The results of this chapter have appeared in [50].



Chapter 5

Basics of Track Layouts

In this chapter, we first study various fundamental questions regarding track layouts in

Section 5.1. In particular, we consider how to colour the edges in a track assignment so that

no monochromatic edges form an X-crossing. Furthermore, we prove that every n-vertex

(k, t)-track graph has at most k
(

n(t − 1) − k
(t
2

))

edges, and that for every k ≥ 1, t ≥ 2

and n ≥ kt, there is a graph with exactly that many edges. This result provides a lower

bound for the track number of every graph. In Section 5.2, several results describing how

to convert one type of layout of a graph G into another type of layout of G are presented.

These manipulations are critical for a number of results in Chapters 6 and 7. In Section 5.3

we explore the relationship between track layouts and a graph parameter called geometric

thickness. Specifically, we show that geometric thickness is bounded by track-number and

queue-number. In Section 5.4, we consider stack, queue, mixed and track layouts of trees.

5.1 Basics

5.1.1 Fixed track assignment

Consider how to colour the edges in a track assignment so that no monochromatic edges

form an X-crossing. The corresponding problems of assigning the edges of a graph G to the

minimum number of stacks or queues given a fixed vertex ordering of G, have been studied

in the literature. Details can be found in Section 2.2.1.

A track assignment with k pairwise X-crossing edges needs at least k edge colours to be

a track layout. The following converse result is a generalization of the fact that permutation

graphs are perfect.

Lemma 5.1. A t-track assignment {Vi : 1 ≤ i ≤ t} of a graph G can be extended into a

(k, t)-track layout, where k is the maximum number of pairwise X-crossing edges.
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Proof. Clearly we can consider each pair of tracks Vi and Vj separately. Consider the vertex

ordering σ = (Vi, Vj) of G[Vi, Vj ]. Two edges in G[Vi, Vj ] form an X-crossing in the track

assignment if and only if they are nested in σ. Thus there at most k edges in a rainbow in σ.

By Lemmas 2.2 and 5.10, there is an edge k-colouring of G[Vi, Vj ] with no monochromatic

X-crossing.

5.1.2 An extremal question

We now consider the maximum number of edges in a track layout. The corresponding

problems for stack and queue layouts of graphs have been investigated in the literature.

Every s-stack n-vertex graph has at most (s+1)n−3s edges. This bound is tight for all even

n ≥ 4 and all 1 ≤ s ≤ n
2 . These bounds are due to Bernhart and Kainen [7] and Cottafava

and D’Antona [29]. Pemmaraju [160] proved that every q-queue graph with n vertices has

at most 2qn − q(2q + 1) edges. That this bound is tight for all values of n and q has been

demonstrated in [55].

It follows from Lemma 2.4 that an n-vertex 2-track graph has at most n−1 edges, which

generalizes to (k, 2)-track graphs as follows.

Lemma 5.2. Let {A,B} be a (k, 2)-track layout of a graph G. Then G has at most k(|A| +
|B| − k) edges. Moreover, for all k ≥ 1 and n1, n2 ≥ k, there exists a (k, 2)-track layout with

k(n1 + n2− k) edges, and with n1 vertices in the first track and n2 vertices in the second track.

Proof. First we prove the upper bound. Suppose A = (v1, v2, . . . , v|A|), and

B = (w1, w2, . . . , w|B|). For each edge viwj , let λ(viwj) = i + j. Observe that 2 ≤ λ(e) ≤
|A| + |B| for each edge e. If distinct edges e and f have λ(e) = λ(f) then e and f form an

X-crossing. Thus at most k edges have the same λ value. Moreover, for all 1 ≤ i ≤ k − 1, at

most i edges e have λ(e) = i + 1, and at most i edges e have λ(e) = |A| + |B|+ 1− i. Thus

the number of edges is at most

2

k−1
∑

i=1

i +
(

|A|+ |B| − 1− 2(k − 1)
)

k = k
(

|A|+ |B| − k
)

.

Now we prove the lower bound. Let A = (v1, v2, . . . , vn1) and B = (w1, w2, . . . , wn2). Con-

struct a graph G with V (G) = A ∪B. For each 1 ≤ ℓ ≤ k, let Eℓ be the set of edges

{

vℓ, wj : 1 ≤ j ≤ n2 + 1− ℓ
}

⋃

{

vi, wn2+1−ℓ : ℓ + 1 ≤ i ≤ n1

}

.

Observe that Eℓ1 ∩Eℓ2 = ∅ for distinct ℓ1 and ℓ2. Let E(G) =
⋃

ℓ Eℓ. Clearly no two edges in

each Eℓ form an X-crossing (see Figure 5.1). Thus G has a (k, 2)-track layout. The number
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of edges is

k
∑

ℓ=1

(

(n2 + 1− ℓ) + (n1 − ℓ)
)

= k(n1 + n2)−
k

∑

ℓ=1

(2ℓ− 1) = k(n1 + n2 − k) .

FIGURE 5.1: An edge-maximal (3, 2)-track layout.

Lemma 5.2 generalizes to (k, t)-track layouts as follows.

Lemma 5.3. Every n-vertex (k, t)-track graph has at most k
(

n(t − 1) − k
(

t
2

))

edges, and

for every k ≥ 1, t ≥ 2 and n ≥ kt there exists a (k, t)-track graph with n vertices and

k
(

n(t− 1)− k
(

t
2

))

edges.

Proof. First we prove the upper bound. Let ni denote the number of vertices in the ith track.

By Lemma 5.2, the number of edges between the ith and jth tracks is at most k(ni + nj − k).

Hence the total number of edges is at most

∑

1≤i<j≤t

k(ni + nj − k) = k
(

∑

1≤i<j≤t

(ni + nj) − k
(t
2

) )

= k
(

(t− 1)n − k
(t
2

) )

.

Now we prove the lower bound. Given any k ≥ 1, t ≥ 2 and n ≥ kt, arbitrarily partition n

into t integers n = n1 + n2 + · · · + nt with each ni ≥ k. Construct a (k, t)-track layout with

ni vertices in the ith track, and k(ni + nj − k) edges between the ith and jth tracks, as in

Lemma 5.2. By the above analysis, the total number of edges is k
(

(t− 1)n − k
(t
2

))

.

5.1.3 A lower bound on track number

Since
(t
2

)

≥ 1, Lemma 5.3 implies the following lower bound on tnk(G).

Corollary 5.1. For all k ≥ 1, every graph G with n vertices and m ≥ 1 edges has tnk(G) ≥
k2+m

kn + 1.
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5.1.4 Computational complexity

We have seen in the introduction that it is NP-complete to recognizing 2-stack and 1-queue

graphs. As indicated in Section 2.2.4 graphs admitting 2-track layouts are forest of caterpil-

lars and such graphs can be recognized in linear time.

Open Problem 5.1. What is the computational complexity of recognizing track graphs? Is

it NP-complete to recognize (2, 2)-track graphs? Is it NP-complete to recognize 3-track

graphs?

5.2 Manipulation of layouts

We first prove two results that show how track layouts can be manipulated without intro-

ducing an X-crossing. The first result shows that the number of vertices in different tracks

of a track layout can be balanced without introducing an X-crossing. The proof is based on

an idea due to Pach et al. [158] for balancing the size of the colour classes in a colouring.

Lemma 5.4. If a graph G has a t-track layout, then for every t′ > 0, G has an ⌊t + t′⌋-track

layout with at most ⌈ n
t′ ⌉ vertices in each track.

Proof. For each track with q > ⌈ n
t′ ⌉ vertices, replace it by ⌈q/⌈ n

t′ ⌉⌉ ‘sub-tracks’ each with

exactly ⌈n
t′ ⌉ vertices except for at most one sub-track with q mod ⌈ n

t′ ⌉ vertices, such that

the vertices in each sub-track are consecutive in the original track, and the original order

is maintained. There is no X-crossing between sub-tracks from the same original track as

there are no edges between such sub-tracks. There is no X-crossing between sub-tracks from

different original tracks as otherwise there would be an X-crossing in the original. There are

at most ⌊t′⌋ tracks with ⌈n
t′ ⌉ vertices. Since there are at most t tracks with less than ⌈ n

t′ ⌉
vertices, one for each of the original tracks, there is a total of at most ⌊t + t ′⌋ tracks.

5.2.1 The wrapping lemma

The following lemma describes how to ‘wrap’ a track layout. The proof is a generalization

of the ‘wrapping’ algorithm of Felsner et al. [80], who implicitly proved the case when the

(non-partial) span is one.

Lemma 5.5. Let {Vi,j : i ≥ 0, 1 ≤ j ≤ bi} be a (k, t)-track layout of a graph G with maximum

partial span s (for some irrelevant value t). For each 0 ≤ α ≤ s, let tα = max{bi : i ≡ α

(mod s + 1)}. For each 0 ≤ α ≤ 2s, let t′α = max{bi : i ≡ α (mod 2s + 1)}. Then

(a) tn2k(G) ≤
s

∑

α=0

tα , and (b) tnk(G) ≤
2s

∑

α=0

t′α .
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Proof. Let {Eℓ : 1 ≤ ℓ ≤ k} be the edge colouring in the given track layout. First we prove

(a). By adding extra empty tracks where necessary, we can assume that the track layout is

indexed {Vi,j : i ≥ 0, 1 ≤ j ≤ tα, α = i mod (s + 1)}. For each 0 ≤ α ≤ s and 1 ≤ j ≤ tα, let

Wα,j =
⋃

{Vi,j : i ≡ α (mod s + 1), i ≥ 0} .

Order Wα,j by

(Vα,j , Vα+(s+1),j , Vα+2(s+1),j , . . . ) .

Since every edge vw ∈ E(G) has partial span at most s, if v ∈ Wα1,j1 and w ∈ Wα2,j2

then α1 6= α2 or j1 6= j2. Hence {Wα,j : 0 ≤ α ≤ s, 1 ≤ j ≤ tα} is a track assignment of G.

For each 1 ≤ ℓ ≤ k, let

E′
ℓ = {vw ∈ Eℓ : v ∈ Vi1,j1 ∩Wα1,j1, w ∈ Vi2,j2 ∩Wα2,j2, i1 ≤ i2, α1 ≤ α2}, and

E′′
ℓ = {vw ∈ Eℓ : v ∈ Vi1,j1 ∩Wα1,j1, w ∈ Vi2,j2 ∩Wα2,j2, i1 < i2, α2 < α1} .

An X-crossing between edges both from some E ′
ℓ (or both from some E ′′

ℓ ) implies that the

same edges form an X-crossing in the original track layout. Thus {E ′
ℓ, E

′′
ℓ : 1 ≤ ℓ ≤ k} defines

an edge 2k-colouring with no monochromatic X-crossing. Thus we have a (2k,
∑s

α=0 tα)-

track layout of G.

We now prove (b). Again by adding extra empty tracks where necessary, we can assume

that the track layout is indexed {Vi,j : i ≥ 0, 1 ≤ j ≤ t′α, α = i mod (2s + 1)}. For each

0 ≤ α ≤ 2s and 1 ≤ j ≤ t′α, let

Wα,j =
⋃

{Vi,j : i ≡ α (mod 2s + 1), i ≥ 0} .

Order Wα,j by

(Vα,j , Vα+(2s+1),j , Vα+2(2s+1),j , . . . ) .

Clearly {Wα,j : 0 ≤ α ≤ 2s, 1 ≤ j ≤ t′α} is a track assignment of G. It remains to prove

that there is no monochromatic X-crossing, where edge colours are inherited from the given

track layout. Notice that each Eℓ = E′
ℓ ∪ E′′

ℓ . As in part (a), edges in E ′
ℓ or in E′′

ℓ do not

form an X-crossing. In the track layout defined for part (b), edges in E ′
ℓ have partial span at

most s, and edges in E ′′
ℓ have partial span at least s + 1. Thus an edge from E ′

ℓ and an edge

from E′′
ℓ do not form an X-crossing. Hence we have a (k,

∑2s
α=0 t′α)-track layout of G.

The full generality of Lemma 5.5 will be used in Section 7.3.6. For other applications

the following two special cases will suffice. By Lemma 5.5 with bi = b for all i ≥ 0, we have:

Lemma 5.6. Let {Vi,j : i ≥ 0, 1 ≤ j ≤ b} be a (k, t)-track layout of a graph G with maximum

partial span s. Then (a) tn2k(G) ≤ (s + 1)b, and (b) tnk(G) ≤ (2s + 1)b.
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The next special case is with b = 1.

Lemma 5.7. Let G be a (k, t)-track graph with maximum span s. Then (a) tn2k(G) ≤ s + 1,

and (b) tnk(G) ≤ 2s + 1.

5.2.2 Track layouts into track layouts

We now show how to reduce the number of tracks in a track layout, at the expense of

increasing the number of edge colours.

Lemma 5.8. Let G be a (k, t)-track graph with maximum span s (≤ t − 1). For every vertex

colouring {Vi : 1 ≤ i ≤ c} of G, there is a (2sk, c)-track layout of G with tracks {Vi : 1 ≤ i ≤
c}.

Proof. Let {Tj : 1 ≤ j ≤ t} be a (k, t)-track layout of G with maximum span s and edge

colouring {Eℓ : 1 ≤ ℓ ≤ k}. Given a vertex colouring {Vi : 1 ≤ i ≤ c} of G, order each Vi by

(Vi ∩ T1, Vi ∩ T2, . . . , Vi ∩ Tt). Thus {Vi : 1 ≤ i ≤ c} is a c-track assignment of G. Now we

define an edge 2sk-colouring. For each ℓ and α such that 1 ≤ ℓ ≤ k and 1 ≤ |α| ≤ s, let

Eℓ,α = {vw ∈ Eℓ : v ∈ Vi1 ∩ Tj1, w ∈ Vi2 ∩ Tj2 , i1 < i2, j1 − j2 = α} .

Consider two edges vw and xy in some Eℓ,α between a pair of tracks Vi1 and Vi2 . Without

loss of generality i1 < i2, v ∈ Vi1 ∩ Tj1 , w ∈ Vi2 ∩ Tj1+α, x ∈ Vi1 ∩ Tj2 , y ∈ Vi2 ∩ Tj2+α,

and j1 ≤ j2. If j1 = j2 then vw and xy are between the same pair of tracks in the given

track layout, and the relative order of the vertices is preserved. Thus if vw and xy form

an X-crossing in the c-track assignment then they are coloured differently. If j1 < j2 then

v <i1 x and w <i2 y, and the edges do not form an X-crossing. Hence vw and xy do not

form a monochromatic X-crossing, and we have a (2sk, c)-track layout of G.

Wood [204] showed how to reduce the number of edge colours in a track layout, at the

expense of increasing the number of tracks. Recall the definition of star colouring given in

Section 2.1.

Lemma 5.9. [204] Let G be a (k, t)-track graph in which the underlying vertex t-colouring is

a star colouring. Then G has track-number tn(G) ≤ t(k + 1)t−1.

Lemmas 5.8 and 5.9 imply:

Corollary 5.2. Let G be a (k, t)-track graph with maximum span s (≤ t − 1). If G has star

chromatic number χst(G) ≤ c then G has track-number tn(G) ≤ c(2sk + 1)c−1.
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5.2.3 Queue layouts into track layouts

The following lemma highlights the fundamental relationship between track layouts, and

queue and stack layouts. Its proof follows immediately from the definitions, and is illus-

trated in Figure 5.2 for k = 1.

Lemma 5.10. Let {A,B} be a track assignment of a bipartite graph G. Then the following

are equivalent:

(a) {A,B} admits a (k, 2)-track layout of G,

(b) the vertex ordering (A,B) admits a k-queue layout of G, and

(c) the vertex ordering (A,
←−
B ) admits a k-stack layout of G.

�✂✁☎✄ �✝✆✞✄ �✂✟✠✄

FIGURE 5.2: Layouts of a caterpillar: (a) 2-track, (b) 1-queue, (c) 1-stack.

We now consider how to convert a queue layout into a track layout. The proof of the

next result follows immediately from the definitions (see Figure 5.3).

Lemma 5.11. Let σ be a vertex ordering of a graph G. Let {Vi : 1 ≤ i ≤ c} be a vertex

colouring of G. For all 1 ≤ i, j ≤ c, a pair of edges vw, xy ∈ E(G[Vi, Vj ]) form an X-crossing

in the track assignment {(Vi, σ) : 1 ≤ i ≤ c} if and only if:

• vw and xy are nested in σ (see Figures 5.3(a)-(b)), or

• vw and xy cross in σ with v <σ y <σ w <σ x, and v, x ∈ Vi and w, y ∈ Vj (see

Figure 5.3(d)).

✡

(a)

✡

(b)

✡

(c)

✡

(d)

✡

(e)

FIGURE 5.3: From a vertex ordering to a track layout: (a)-(b) nested, (c) disjoint, (d)-(e) crossing.
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Lemma 5.12. For every vertex colouring {Vi : 1 ≤ i ≤ c} of a q-queue graph G, there is a

(2q, c)-track layout of G with tracks {Vi : 1 ≤ i ≤ c}.
Proof. Let σ be the vertex ordering in a q-queue layout of G with queues {Eℓ : 1 ≤ ℓ ≤ q}.
Let {(Vi, σ) : 1 ≤ i ≤ c} be a c-track assignment of G, and for each 1 ≤ ℓ ≤ q, let

E′
ℓ = {vw ∈ Eℓ : v ∈ Vi, w ∈ Vj, i < j, v <σ w}, and

E′′
ℓ = {vw ∈ Eℓ : v ∈ Vi, w ∈ Vj, i < j,w <σ v} .

By Lemma 5.11, an X-crossing in the track assignment between edges both from some E ′
ℓ

(or both from some E ′′
ℓ ) implies that these edges are nested in σ. Since no two edges in

Eℓ are nested in σ, the set {E ′
ℓ, E

′′
ℓ : 1 ≤ ℓ ≤ q} defines an edge 2q-colouring with no

monochromatic X-crossing in the track assignment. Thus we have a (2q, c)-track layout of

G.

Lemma 5.12 is similar to a result by Pemmaraju [160] which says that a queue layout can

be ‘separated’ by a vertex colouring, although the proof by Pemmaraju, which is based on

the characterization of 1-queue graphs as arched levelled planar, is much longer. Pemmaraju

used separated queue layouts to prove the next result, which follows from Lemmas 5.10 and

5.12, and implies an affirmative solution to Open Problem 1.1 for bipartite graphs.

Theorem 5.1. [160] Stack-number is bounded by queue-number for bipartite graphs. In par-

ticular, sn(G) ≤ 2 qn(G) for every bipartite graph G.

Dujmović and Wood [55] proved that every q-queue graph is 4q-colourable. Thus

Lemma 5.12 implies:

Corollary 5.3. Every q-queue graph has a (2q, 4q)-track layout.

The next corollary of Lemmas 5.9 and 5.12 slightly improves an analogous result by

Wood [204].

Lemma 5.13. Every q-queue graph G with χst(G) ≤ c has track-number tn(G) ≤ c(2q +

1)c−1.

In the case of 1-queue graphs, much improved bounds can be obtained. Di Giacomo and

Meijer [40] proved that every 1-queue graph has a 5-track layout. An alternative proof was

found by Dujmović and Wood [55].

5.2.4 Track layouts into queue layouts

We now consider how to convert a track layout into a queue layout. First we give a simple

proof of a generalization of a result by Wood [204]. Note that Lemma 5.14 with t = 2 is

nothing more than Lemma 5.10(b).
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Lemma 5.14. Queue-number is bounded by track-number. In particular, every (k, t)-track

graph with maximum span s (≤ t− 1) has a ks-queue layout.

Proof. Let {Vi : 1 ≤ i ≤ t} be a (k, t)-track layout of G with maximum span s and edge

colouring {Eℓ : 1 ≤ ℓ ≤ k}. Let σ be the vertex ordering (V1, V2, . . . , Vt) of G. Let Eℓ,α be

the set of edges in Eℓ with span α in the given track layout. Two edges from the same pair

of tracks are nested in σ if and only if they form an X-crossing in the track layout. Since no

two edges in Eℓ form an X-crossing in the track layout, no two edges in Eℓ and between the

same pair of tracks are nested in σ. If two edges not from the same pair of tracks have the

same span then they are not nested in σ. (This idea is due to Heath and Rosenberg [114].)

Thus no two edges are nested in each Eℓ,α, and we have a ks-queue layout of G.

Note that Lemmas 5.8 and 5.10 imply an analogous result to Lemma 5.14 for stack

layouts of bipartite graphs.

Lemma 5.15. Every bipartite (k, t)-track graph with maximum span s (≤ t − 1) has a 2ks-

stack layout.

Observe that Lemmas 2.1, 5.13 and 5.14 prove the result of Wood [204] about the

following strong relationship between queue layouts and track layouts.

Theorem 5.2. [204] Queue-number and track-number are tied for any proper minor-closed

graph family.

An affirmative solution to the following open problem would imply that queue-number

and track-number are tied (for all graphs).

Open Problem 5.2. Is star chromatic number bounded by queue-number?

5.3 Geometric thickness

The geometric thickness of a graph G, denoted by θ(G), is the minimum number of colours

such that G can be drawn in the plane with edges as coloured straight-line segments, such

that monochromatic edges do not cross [42, 123]. Stack-number (when viewed as book-

thickness) is equivalent to geometric thickness with the additional requirement that the

vertices are in convex position [7]. Thus θ(G) ≤ sn(G) for every graph G. While it is an open

problem whether stack number is bounded by track-number or by queue-number, we will

prove the following two weaker results that geometric thickness is bounded by track-number

(Theorem 5.3), and geometric thickness is bounded by queue-number (Corollary 5.5).

Theorem 5.3. Geometric thickness is bounded by track-number. In particular, every (k, t)-track

graph G has geometric thickness θ(G) ≤ k⌈ t
2⌉⌊ t

2⌋.
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Proof. Let p ≥ t be a prime. Position the j th vertex in the ith track at (i, pj + (i2 mod p)).

Wood [206] proved that in this layout no three vertices are collinear, unless all three are in

a single track. Since a track is an independent set, the only vertices that an edge intersects

are its own endpoints. The vertices in each track are positioned on a line parallel to the

Y -axis, in the order defined by the track layout. Thus monochromatic edges between any

pair of tracks do not cross. If we let each pair of tracks use a distinct set of k edge colours,

then we obtain a drawing of G with k
(t
2

)

edge colours, such that monochromatic edges do

not cross. That is, θ(G) ≤ k
(t
2

)

.

This bound can be improved by partitioning the pairs of tracks into sets that can use the

same palette of k colours. This amounts to edge-colouring the complete graph Kt with a

fixed vertex ordering (v1, v2, . . . , vt), so that overlapping edges receive distinct colours. To

this end, define a partial order on E(Kt) as follows. For all edges vivj and vavb (with i < j

and a < b), let vivj ≺ vavb if j ≤ a. Clearly � is a partial order on E(Kt), such that distinct

edges are overlapping if and only if they are incomparable under �. By Dilworth’s Theorem

[43], there is a partition of E(Kt) into r sets, each pairwise non-overlapping, where r is the

largest set of pairwise overlapping edges. Clearly r = ⌈ t
2⌉⌊ t

2⌋. For each such set, assign a

distinct palette of k colours to the edges between pairs of tracks corresponding to edges of

Kt in this set. In total we have kr edge colours, and θ(G) ≤ kr = k⌈ t
2⌉⌊ t

2⌋.

Theorem 5.3 and Lemma 5.12 imply:

Corollary 5.4. Every q-queue c-colourable graph G has geometric thickness θ(G) ≤ 2q⌈ c
2⌉⌊ c

2⌋.

Dujmović and Wood [55] showed that every q-queue graph is 4q-colourable. Thus

Lemma 5.12 implies:

Corollary 5.5. Geometric thickness is bounded by queue-number. In particular, every graph G

has geometric thickness θ(G) ≤ 8 qn(G)3.

5.4 Layouts of trees

Let T be a rooted tree. A vertex ordering σ of T is breadth-first if for all nodes x, y ∈ V (T ),

x <σ y whenever depth(x) < depth(y), or depth(x) = depth(y) and ρ(x) <σ ρ(y).

Lemma 5.16. [114] A breadth-first vertex ordering of a tree T yields a 1-queue layout of T .

Proof. Since the depths of adjacent nodes differ by exactly one, and the nodes are ordered

by non-decreasing depth, the endpoints of a nested pair of edges must be at consecutive

depths. By construction, such a pair of edges are not nested, as illustrated in Figure 5.4.
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�
depth
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depth ✍

FIGURE 5.4: A 1-queue layout of a complete binary tree.

A depth-first vertex ordering σ of a tree T is defined recursively as follows. Let r be the

root node of T with child nodes x1, x2, . . . , xd. Let Ti be the subtree rooted at xi, 1 ≤ i ≤ d.

Then σ is defined by σ(T ) = (r, σ(T1), σ(T2), . . . , σ(Td)).

Lemma 5.17. [25] A depth-first vertex ordering σ of a tree T yields a 1-stack layout of T .

Proof. For the sake of contradiction, suppose that a pair of edges vw and xy cross in σ.

Without loss of generality v <σ x <σ w <σ y. Since w is a child of v and v <σ x <σ w,

we have that x (and y) are in some subtree Ti rooted at a child vi of v. Since x <σ w we

have vi 6= w and V (Ti) <σ w. Since y ∈ V (Ti), we have y <σ w, which is the desired

contradiction. Thus no two edges cross in σ, as illustrated in Figure 5.5.

FIGURE 5.5: A 1-stack layout of a complete binary tree.

The next lemma is the starting point for our results on mixed layouts in Section 7.3.5.

An edge 2-colouring of a rooted tree T with colours red and black is good, if for each node

x ∈ V (T ) with an incoming red edge, no other edge incident to x is red. Recall that a vertex

ordering of a directed graph is topological if all edges are directed from left to right.

Lemma 5.18. Let T be a rooted tree with a good edge 2-colouring. Then T has a topological

vertex ordering in which the red edges form a stack, and the black edges form a queue.

Proof. Let h be the height of T . For each 0 ≤ d ≤ h, let Vd be the set of nodes of T at depth

d. For each 1 ≤ d ≤ h, let Rd and Bd denote the sets of nodes in Vd with an incoming red

and black edge, respectively. Let σ be the vertex ordering (V0, R1, B1, R2, B2, . . . , Rh, Bh)

of T , where for each 1 ≤ d ≤ h, the nodes in Bd are ordered with respect to the order of

their parents (in Vd−1), and the nodes in Rd are in reverse order to that of their parents (in

Vd−1). More precisely, for all v,w ∈ Bd we have v <σ w whenever ρ(v) <σ ρ(w), and for
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all v,w ∈ Rd we have v <σ w whenever ρ(w) <σ ρ(v). The resulting ordering is clearly

topological.

Since the depths of adjacent nodes differ by exactly one, and the nodes are ordered

by non-decreasing depth, the endpoints of a nested pair of edges must be at consecutive

depths. By construction, such a pair of black edges are not nested. Hence the black edges

form a queue.

Suppose, for the sake of contradiction, that the red edges vw and pq cross. Without

loss of generality v <σ p <σ w <σ q. Then depth(v) ≤ depth(p) ≤ depth(w). Since

depth(w) = depth(v) + 1, either depth(p) = depth(v) or depth(p) = depth(v) + 1. First

suppose that depth(p) = depth(v). Then depth(q) = depth(w). Since both q and w have

incoming red edges, q <σ w by construction. This is a contradiction. Now suppose that

depth(p) = depth(v) + 1. Then depth(p) = depth(w). Let d = depth(p). Since p has an

outgoing red edge pq, the incoming edge at p is black, and p ∈ Bd. Now w ∈ Rd since

w has an incoming red edge vw. Since Rd <σ Bd, we have w <σ p, which is the desired

contradiction. Thus no two red edges cross, and hence the red edges form a stack.

The next result and part (b) of Lemma 5.20 is implicit in the work of Felsner et al. [80].

Lemma 5.19. [80] Every rooted tree T has a (monochromatic) track layout in which every

edge has span one.

Proof. Let σ be a breadth-first vertex ordering of T starting at the root. Let Vd be the

set of nodes at depth d. It is easily seen that there are no X-crossings in the track layout

{(Vd, σ) : d ≥ 0}, and clearly every edge has span one, as illustrated in Figure 5.6.

FIGURE 5.6: A track layout of a complete binary tree with every edge having span 1.

Lemmas 5.19 and 5.7 imply the next result.

Lemma 5.20. Every tree has (a) a (2, 2)-track layout, and (b) a (1, 3)-track layout.
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5.5 Bibliographic notes

Lemma 5.4 has appeared in [53], together with a much less general form of Lemma 5.5.

The results of Sections 5.1, 5.2 and 5.3 are the subject of [57]. The results of Section 5.4

are a part of [56].



Chapter 6

Layouts of Bounded Treewidth

Graphs

The main result in this chapter is that the track-number of a graph is bounded by its

treewidth (Theorem 6.2), and consequently that the queue-number of a graph is bounded

by its treewidth (Corollary 6.2). Treewidth, first defined by Halin [100], although largely

unnoticed until independently rediscovered by Robertson and Seymour [169] and Arnborg

and Proskurowski [4], is a measure of the similarity of a graph to a tree (see Section 6.1.1

for the definition).

Many graphs arising in applications of graph drawing do have small treewidth. Out-

erplanar and series-parallel graphs are the obvious examples. Another example arises in

software engineering applications. Thorup [187] proved that the control-flow graphs of

go-to free programs in many programming languages have treewidth bounded by a small

constant; in particular, 3 for Pascal and 6 for C. Other families of graphs having bounded

treewidth include: graphs with a feedback vertex set of bounded size, bounded band-width

graphs, bounded cut-width graphs, and planar graphs of bounded radius. If the size of

a maximum clique is a constant then chordal, interval and circular arc graphs also have

bounded treewidth. Thus, by our result, all of these graphs (of bounded treewidth) have

O(1) queue-number, and as we will see in Chapter 8, 3D drawings with O(n) volume.

Tables 6.1 and 6.2 summarize some of the known bounds on the stack-number, queue-

number and track-number of various classes of graphs, including the bounds established

in this thesis. A blank entry indicates that a more general result provides the best known

bound.
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TABLE 6.1: Upper bounds on the stack-number and queue-number.

graph family stack-number reference queue-number reference

n vertices ⌈n
2 ⌉ [25] ⌊n

2 ⌋ [114]

m edges O(
√

m) [141] e

√
m [55]

complete bipartite Kn,m ⌈2n+m
4 ⌉ [146]

proper minor-closed bounded [11]

genus γ O(
√

γ) [140]

treewidth w w [138] O(64w
) Theorem 6.2

treewidth w, max. degree ∆ 36∆w [204]

pathwidth p p [204]

band-width b b− 1 [184] ⌈ b
2⌉ [114]

track-number t t− 1 Lemma 5.14, [204]

bipartite, track-number t 2(t− 1) Lemma 5.15

toroidal 7 [71]

planar 4 [207]

bipartite planar 2 [33, 157]

2-trees 2 [165] 3 [59, 165]

Halin 2 [84] 3 [84]

X-trees 2 [25] 2 [114]

outerplanar 1 [7] 2 [110]

arched levelled planar 2 [110] 1 [110]

trees 1 [25] 1 [114]

TABLE 6.2: Upper bounds on the track-number.

graph family track-number reference

n vertices n trivial

m edges 15m2/3 [58]

m edges, max. degree ∆ 14
√

∆m [58]

no Kh-minor O(h3/2n1/2) [58]

genus γ O(γ1/2n1/2) [58]

treewidth w 3w · 6(4w−3w−1)/9 Theorem 6.2

treewidth w, max. degree ∆ 72∆w Lemma 6.3

pathwidth p p + 1 Lemma 6.2

band-width b b + 1 Theorem 6.3(a)

2-trees 18 [59]

Halin4 8 [40]

outerplanar4 6 [80]

arched levelled planar 5 [40]

trees 3 [80]

4Felsner et al. [80] proved that outerplanar graphs have improper 3-track layouts and that Halin graphs have
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To prove our results for graphs of bounded treewidth, we employ a related structure

called a tree-partition, introduced independently by Seese [177] and Halin [101]. A tree-

partition of a graph is a partition of its vertices into ‘bags’ such that contracting each bag to

a single vertex gives a forest (after deleting loops and replacing parallel edges by a single

edge). It is well-known that a graph with treewidth k is a subgraph of a k-tree (see Sec-

tion 6.1.1 for the definition). In a result of independent interest, we prove that every k-tree

has a tree-partition such that each bag induces a connected (k − 1)-tree, amongst other

properties.

The remainder of the chapter is organized as follows. In Section 6.1 we introduce the re-

quired background material. Sections 6.2 and 6.3 bound the track-number of a graph by its

“pathwidth” and “tree-partition-width”. In Section 6.4 we prove the above-mentioned the-

orem for tree-partitions of k-trees, which is used in Section 6.5 to construct monochromatic

track layouts of graphs with bounded treewidth. The resulting bound on the track-number is

used in Section 6.6 to bound the queue-number of graphs by their treewidth. Final remarks

are given in Section 6.7.

In this chapter all track layouts are monochromatic. Recall the definition from Section 2.2.3.

6.1 Preliminaries

6.1.1 Treewidth

Let G be a graph and let T be a tree. An element of V (T ) is called a node. Let {Tx ⊆ V (G) :

x ∈ V (T )} be a set of subsets of V (G) indexed by the nodes of T . Each Tx is called a bag.

The pair (T, {Tx : x ∈ V (T )}) is a tree-decomposition of G if:

•
⋃

x∈V (T )

Tx = V (G) (that is, every vertex of G is in at least one bag),

• ∀ edge vw of G, ∃ node x of T such that v ∈ Tx and w ∈ Tx, and

• ∀ nodes x, y, z of T , if y is on the path from x to z in T , then Tx ∩ Tz ⊆ Ty.

The width of a tree-decomposition is one less than the maximum cardinality of a bag. A

path-decomposition is a tree-decomposition where the tree T is a path T = (x1, x2, . . . , xm),

which is simply identified by the sequence of bags T1, T2, . . . , Tm where each Ti = Txi
.

The pathwidth (respectively, treewidth) of a graph G, denoted by pw(G) (tw(G)), is the

minimum width of a path- (tree-) decomposition of G. Graphs with treewidth at most one

improper 4-track layouts. Thus by Observation 2.1, the bounds in the table follow.
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are precisely the forests. Graphs with treewidth at most two are called series-parallel1, and

are characterized as those graphs with no K4 minor (see [14]).

A k-tree for some k ∈ N is defined recursively as follows. The empty graph is a k-tree,

and the graph obtained from a k-tree by adding a new vertex adjacent to each vertex of a

clique with at most k vertices is also a k-tree. This definition of a k-tree is by Rautenbach

and Reed [164]. The following more restrictive definition of a k-tree, which we call ‘strict’,

was introduced by Arnborg and Proskurowski [4], and is more often used in the literature.

A k-clique is a strict k-tree, and the graph obtained from a strict k-tree by adding a new

vertex adjacent to each vertex of a k-clique is also a strict k-tree. Obviously the strict k-trees

are a proper sub-class of the k-trees. A subgraph of a k-tree is called a partial k-tree, and a

subgraph of a strict k-tree is called a partial strict k-tree. The following result is well-known

(see for example [14, 164]).

Lemma 6.1. Let G be a graph. The following are equivalent:

(a) G has treewidth tw(G) ≤ k,

(b) G is a partial k-tree,

(c) G is a partial strict k-tree,

(d) G is a subgraph of a chordal graph with no clique on k + 2 vertices.

Proof Outline. Scheffler [175] proved that (a) and (c) are equivalent. That (a) and (d) are

equivalent is due to Robertson and Seymour [169]. That (b) and (d) are equivalent is the

characterization of chordal graphs in terms of ‘perfect elimination’ vertex-orderings due to

Fulkerson and Gross [81].

6.1.2 Tree-partitions

As in the definition of a tree-decomposition, let G be graph and let {Tx ⊆ V (G) : x ∈ V (T )}
be a partition of V (G) into subsets (called bags) indexed by the nodes of a tree T . The pair

(T, {Tx : x ∈ V (T )}) is a tree-partition of G if

• ∀ distinct nodes x and y of T , Tx ∩ Ty = ∅, and

• ∀ edge vw of G, either

– ∃ node x of T with v ∈ Tx and w ∈ Tx (vw is called an intra-bag edge), or

– ∃ edge xy of T with v ∈ Tx and w ∈ Ty (vw is called an inter-bag edge).

1‘Series-parallel digraphs’ are often defined in terms of certain ‘series’ and ‘parallel’ composition operations.

Bodlaender [14] proved that the underlying undirected graph of such a digraph has treewidth at most two.
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The main property of tree-partitions which has been studied in the literature is the max-

imum size of a bag, called the width of the tree-partition [15, 44, 45, 101, 177]. The min-

imum width over all tree-partitions of a graph G is the tree-partition-width2 of G, denoted

by tpw(G). A graph with bounded degree has bounded tree-partition-width if and only if

it has bounded treewidth [45]. In particular, for every graph G, Ding and Oporowski [44]

proved that tpw(G) ≤ 24 tw(G)∆(G), and Seese [177] proved that tw(G) ≤ 2 tpw(G)− 1.

Theorem 6.1 in Section 6.4 provides a tree-partition of a k-tree G with additional fea-

tures besides small width. First, the subgraph induced by each bag is a connected (k − 1)-

tree. This allows us to perform induction on k. Second, in each non-root bag Tx the set

of vertices in the parent bag of x with a neighbour in Tx form a clique. This feature is

crucial in the intended application (Theorem 6.2). Finally the tree-partition has width at

most max{1, k(∆(G)− 1)}, which represents a constant-factor improvement over the above

result by Ding and Oporowski [44] in the case of k-trees.

6.2 Pathwidth bounds track-number

The following algorithm for constructing a track layout makes use of the so-called normal-

ized path-decompositions of Gupta et al. [96]. (The more general notion of normalized tree-

decompositions was developed earlier by Gupta and Nishimura [95].) A path-decomposition

T1, T2, . . . , Tm of width k is normalized if |Ti| = k + 1 for all odd i and |Ti| = k for all even

i, and Ti−1 ∩ Ti+1 = Ti for all even i. The algorithm of Gupta et al. [96] normalizes a

path-decomposition while maintaining the width in linear-time.

Lemma 6.2. Every graph G with pathwidth pw(G) has track-number tn(G) ≤ pw(G) + 1.

Proof. Let k = pw(G) + 1, and let T1, T2, . . . , Tm be a normalized path-decomposition of G

with width k − 1. For every vertex v ∈ V (G), let Tα(v) and Tβ(v) be the first and last bags

containing v. Construct a k-track assignment of G as follows. Let T1 = {v1, v2, . . . , vk}, and

position each vi as the leftmost vertex on track i, 1 ≤ i ≤ k. Since the path-decomposition

is normalized, for all bags Tj with j even, there is a unique vertex xj ∈ Tj−1 \ Tj; that is,

β(xj) = j−1. Similarly, for all bags Tj with j > 1 odd, there is a unique vertex yj ∈ Tj\Tj−1;

that is, α(yj) = j.

The remainder of the track assignment is constructed by sweeping through the bags of

the path-decomposition as follows (see Figure 6.1). For all odd j = 3, 5, . . . ,m, position yj

in the same track as the vertex xj−2 and immediately to the right of xj−2. Clearly, xj−2 was

the rightmost vertex in the track before inserting yj . Since j − 2 = β(xj−1) < α(yj) = j,

there is no bag containing both xj−2 and yj, and no edge xj−2yj ∈ E(G). Two vertices

2Tree-partition-width has also been called strong treewidth [15, 177].
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in the same track are not in a common bag and are not adjacent, hence we have a track

assignment of G.

Suppose there is an X-crossing between edges vw and xy. Without loss of generality,

v <i x and y <j w for some tracks i and j. Thus β(v) < α(x) and β(y) < α(w). Since vw

is an edge, v and w appear in some bag together; that is, α(w) ≤ β(v), which implies that

β(y) < α(x). This is the desired contradiction since x and y appear in some bag together.

FIGURE 6.1: A 5-track layout produced by Lemma 6.2.

6.3 Tree-partition-width bounds track-number

The next lemma uses a tree-partition to construct a track layout.

Lemma 6.3. Every graph G with maximum degree ∆(G), treewidth tw(G), and tree-partition-

width tpw(G), has track-number tn(G) ≤ 3 tpw(G) and tn(G) ≤ 72∆(G)tw(G).

Proof. Let (T, {Tx : x ∈ V (T )}) be a tree-partition of G with width tpw(G). By Lemma 5.20(b),

T has a 3-track layout. Replace each track by tpw(G) ‘sub-tracks’, and for each node x in

T , place the vertices in bag Tx on the sub-tracks replacing the track containing x, with at

most one vertex in Tx on a single track. The total order of each sub-track preserves the

total order in each track of the track-layout of T . There is no X-crossing, since in the track

layout of T , adjacent nodes are on distinct tracks and there is no X-crossing. Thus we have

a monochromatic track layout of G. The number of tracks is 3 tpw(G), which is at most

72∆(G)tw(G) by the theorem of Ding and Oporowski [44] discussed in Section 6.1.2.

6.4 Tree partitions

In this section we prove our theorem regarding tree-partitions of k-trees mentioned in Sec-

tion 6.1.2. This result forms the cornerstone of the main theorem in this chapter, Theo-

rem 6.2 in Section 6.5.
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The depth of a vertex vi in a vertex-ordering σ of graph a G is the graph-theoretic dis-

tance between v1 and vi in G. We say σ is a generic breadth-first vertex-ordering if for all

vertices v and w with v <σ w, the depth of v in σ is no more than the depth of w in σ.

Theorem 6.1. Let G be a k-tree with maximum degree ∆. Then G has a rooted tree-partition

(T, {Tx : x ∈ V (T )}) such that for all nodes x of T ,

(a) if x is a non-root node of T and y is the parent node of x, then the set of vertices in Ty

with a neighbour in Tx form a clique Cx of G, and

(b) the induced subgraph G[Tx] is a connected (k − 1)-tree.

Furthermore the width of (T, {Tx : x ∈ V (T )}) is at most max{1, k(∆ − 1)}.

Proof. We assume G is connected, since if G is not connected then a tree-partition of G

which satisfies the theorem can be determined by adding a new root node with an empty

bag which is adjacent to the root node of a tree-partition of each connected component of

G.

It is well-known that for every vertex r of the k-tree G, there is a vertex-ordering σ =

(v1, v2, . . . , vn) of G with v1 = r, such that for all i ∈ {1, 2, . . . , n},

(i) if Gi is the induced subgraph G[{v1, v2, . . . , vi}], then Gi is connected and the vertex-

ordering of Gi induced by σ is a generic breadth-first vertex-ordering of Gi, and

(ii) the neighbours of vi in Gi form a clique Ci = {vj : vivj ∈ E(G), j < i} with 1 ≤ |Ci| ≤
k (unless i = 1 in which case Ci = ∅).

In the language of chordal graphs, σ is a (reverse) ‘perfect elimination’ vertex-ordering

and can be determined, for example, by the Lex-BFS algorithm by Rose et al. [170] (also

see [92]).

Let r be a vertex of minimum degree3 in G. Then deg(r) ≤ k. Let σ = (v1, v2, . . . , vn)

be a vertex-ordering of G with v1 = r, and satisfying (i) and (ii). By (i), the depth of each

vertex vi in σ is the same as the depth of vi in the vertex-ordering of Gj induced by σ, for

all j ≥ i. We therefore simply speak of the depth of vi. Let Vd be the set of vertices of G at

depth d.

Claim: For all i ∈ {1, 2, . . . , n}, for all d ≥ 1, and for every connected component Z of

Gi[Vd], the set of vertices at depth d− 1 with a neighbour in Z form a clique of G.

3We choose r to have minimum degree simply to prove a slightly improved bound on the width of the tree-

partition. If we choose r to be an arbitrary vertex then the width is at most max{1, ∆, k(∆ − 1)}, and the

remainder of Theorem 6.1 holds.
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Proof. We proceed by induction on i. The result is trivially true for i = 1. Suppose it is true

for i− 1.

Let d be the depth of vi. Each vertex in Ci is at depth d − 1 or d. Let C ′
i be the set of

vertices in Ci at depth d, and let C ′′
i be the set of vertices in Ci at depth d− 1. Thus C ′

i and

C ′′
i are both cliques with Ci = C ′

i ∪C ′′
i . Furthermore, if i > 1 then vi must have a neighbour

at depth d− 1, and thus C ′′
i 6= ∅.

Let X be the vertex set of the connected component of Gi[Vd] such that vi ∈ X. By

induction, for all d′ ≤ d, the claim holds for all connected components Y of Gi[Vd′ ] with

Y 6= X, since such a Y is also a connected component of Gi−1[Vd′ ].

Case 1. C ′
i = ∅: Then vi has no neighbours in Gi at depth d; that is, X = {vi}. Thus the

set of vertices at depth d− 1 with a neighbour in X is precisely the clique Ci = C ′′
i .

Case 2. C ′
i 6= ∅: The neighbourhood of vi in X forms a non-empty clique (namely C ′

i).

Thus X \ vi is the vertex-set of a connected component of Gi−1[Vd]. Let Y be the set of

vertices at depth d− 1 with a neighbour in X \ vi. By induction, Y is a clique. Since C ′′
i ∪C ′

i

is a clique, C ′′
i ⊆ Y . Thus the set of vertices at depth d − 1 with a neighbour in X is the

clique Y .

This completes the proof of the claim.

Define a graph T and a partition {Tx : x ∈ V (T )} of V (G) indexed by the nodes of T

as follows. There is one node x in T for every connected component of each G[Vd], whose

bag Tx is the vertex-set of the corresponding connected component. We say x and Tx are at

depth d. Clearly a vertex in a depth-d bag is also at depth d. The (unique) node of T at depth

zero is called the root node. Let two nodes x and y of T be connected by an edge if there is

an edge vw of G with v ∈ Tx and w ∈ Ty. Thus (T, {Tx : x ∈ V (T )}) is a ‘graph-partition’.

We now prove that in fact T is a tree. First observe that T is connected since G is

connected. By definition, nodes of T at the same depth d are not adjacent. Moreover nodes

of T can be adjacent only if their depths differ by one. Thus T has a cycle only if there is a

node x in T at some depth d, such that x has at least two distinct neighbours in T at depth

d − 1. However this is impossible since by the above claim (with i = n), the set of vertices

at depth d− 1 with a neighbour in Tx form a clique (which we call Cx), and are hence in a

single bag at depth d− 1. Thus T is a tree and (T, {Tx : x ∈ V (T )}) is a tree-partition of G

(see Figure 6.2).

We now prove that each bag Tx induces a connected (k − 1)-tree. This is true for the

root node which only has one vertex. Suppose x is a non-root node of T at depth d. Each

vertex in Tx has at least one neighbour at depth d − 1. Thus in the vertex-ordering of Tx

induced by σ, each vertex vi ∈ Tx has at most k − 1 neighbours vj ∈ Tx with j < i. Thus

G[Tx] is a partial (k − 1)-tree. An induced subgraph of a k-tree is itself a k-tree. Thus G[Tx]

is a (k − 1)-tree. By definition each G[Tx] is connected.
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FIGURE 6.2: Illustration for Theorem 6.1 in the case of k = 3.

Finally, consider the size of a bag in T . We claim that each bag contains at most

max{1, k(∆ − 1)} vertices. The root bag has one vertex. Let x be a non-root node of T

with parent node y. Suppose y is the root node. Then Ty = {r}, and thus |Tx| ≤ deg(r) ≤
k ≤ k(∆ − 1) assuming ∆ ≥ 2. If ∆ ≤ 1 then all bags have one vertex. Now assume y is

a non-root node. The set of vertices in Ty with a neighbour in Tx forms the clique Cx. Let

k′ = |Cx|. Thus k′ ≥ 1, and since Cx ⊆ Ty and G[Ty ] is a (k−1)-tree, k′ ≤ k. A vertex v ∈ Cx

has k′ − 1 neighbours in Cx and at least one neighbour in the parent bag of y. Thus v has

at most ∆− k′ neighbours in Tx. Hence the number of edges between Cx and Tx is at most

k′(∆−k′). Every vertex in Tx is adjacent to a vertex in Cx. Thus |Tx| ≤ k′(∆−k′) ≤ k(∆−1).

This completes the proof.

6.5 Treewidth bounds track-number

In this section we prove that track-number is bounded by treewidth. Let {Vi : 1 ≤ i ≤ t} be a

a t-track layout of a graph G. We say a clique C of G covers the set of tracks {i : C ∩Vi 6= ∅}.
Let S be a set of cliques of G. Suppose there exists a total order � on S such that for all

cliques C1, C2 ∈ S, if there exists a track i, and vertices v ∈ Vi ∩ C1 and w ∈ Vi ∩ C2 with

v <i w, then C1 ≺ C2. In this case, we say � is nice, and S is nicely ordered by the track

layout.
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Lemma 6.4. Let L be a (sub)set of tracks in a t-track layout {Vi : 1 ≤ i ≤ t} of a graph G. If

S is a set of cliques, each of which covers L, then S is nicely ordered by the given track layout.

Proof. Define a relation � on S as follows. For every pair of cliques C1, C2 ∈ S, define

C1 � C2 if C1 = C2 or there exists a track i ∈ L and vertices v ∈ C1 and w ∈ C2 with

v <i w. Clearly all cliques in S are comparable.

Suppose that � is not antisymmetric; that is, there exists distinct cliques C1, C2 ∈ S,

distinct tracks i, j ∈ L, and distinct vertices v1, w1 ∈ C1 and v2, w2 ∈ C2, such that v1 <i v2

and w2 <j w1. Since C1 and C2 are cliques, the edges v1w1 and v2w2 form an X-crossing,

which is a contradiction. Thus � is antisymmetric.

We claim that � is transitive. Suppose there exist cliques C1, C2, C3 ∈ S such that

C1 � C2 and C2 � C3. We can assume that C1, C2 and C3 are pairwise distinct. Thus

there are vertices u1 ∈ C1, u2 ∈ C2, v2 ∈ C2 and v3 ∈ C3, such that u1 <i u2 and v2 <j v3

for some pair of (not necessarily distinct) tracks i, j ∈ L. Since C3 has a vertex in Vi and

since C3 6� C2, there is a vertex u3 ∈ C3 with u2 ≤i u3. Thus u1 <i u3, which implies that

C1 � C3. Thus � is transitive.

Hence � is a total order on S, which by definition is nice.

Consider the problem of partitioning the cliques of a graph into sets such that each set

is nicely ordered by a given track layout. The following immediate corollary of Lemma 6.4

says that there exists such a partition where the number of sets does not depend upon the

size of the graph.

Corollary 6.1. Let G be a graph with maximum clique size k. Given a t-track layout of G,

there is a partition of the cliques of G into
∑k

i=1

(t
i

)

sets, each of which is nicely ordered by the

given track layout.

We do not actually use Corollary 6.1 in the following result, but the idea of partitioning

the cliques into nicely ordered sets is central to its proof.

Theorem 6.2. For every integer k ≥ 0, there is a constant ck = 3k · 6(4k−3k−1)/9 such that

every graph G with treewidth tw(G) ≤ k has a ck-track layout.

Proof. If the input graph G is not a k-tree then add edges to G to obtain a k-tree containing

G as a subgraph. It is well-known that a graph with treewidth at most k is a spanning

subgraph of a k-tree. These extra edges can be deleted once we are done. We proceed by

induction on k with the following induction hypothesis.

For all k ∈ N, there exists constants sk and ck, and sets I and S such that

1. |I| = ck and |S| = sk,

2. each element of S is a subset of I, and
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3. every k-tree G has a ck-track layout with tracks indexed by I, such that for every clique

C of G, the set of tracks which C covers is in S.

Consider the base case with k = 0. A 0-tree G has no edges and thus has a 1-track layout.

Let I = {1} and order V1 = V (G) arbitrarily. Thus c0 = 1, s0 = 1, and S = {{1}} satisfy the

hypothesis for every 0-tree. Now suppose the result holds for k − 1, and G is a k-tree. Let

(T, {Tx : x ∈ V (T )}) be a tree-partition of G described in Theorem 6.1, where T is rooted

at r.

By Theorem 6.1 each induced subgraph G[Tx] is a (k − 1)-tree. By induction, there are

sets I and S with |I| = ck−1 and |S| = sk−1, such that for every node x of T , the induced

subgraph G[Tx] has a ck−1-track layout indexed by I. For every clique C of G[Tx], if C

covers L ⊆ I then L ∈ S. Assume I = {1, 2, . . . , ck−1} and S = {S1, S2, . . . , Ssk−1
}. By

Theorem 6.1, for each non-root node x of T and its parent node ρ(x), the set of vertices in

Tρ(x) with a neighbour in Tx form a clique Cx. Let α(x) = i where Cx covers Si. For the root

node r of T , let α(r) = 1.

Track layout of T

To construct a monochromatic track layout of G we first construct a monochromatic track

layout of the tree T indexed by the set {(d, i) : d ≥ 0, 1 ≤ i ≤ sk−1}, where the track Ld,i

consists of nodes x of T at depth d with α(x) = i. We order the nodes of T within the tracks

by increasing depth. There is only one node at depth d = 0. Suppose we have determined

the orders of the nodes up to depth d− 1 for some d ≥ 1.

Let i ∈ {1, 2, . . . , sk−1}. The nodes in Ld,i are ordered primarily with respect to the

relative positions of their parent nodes (at depth d− 1). More precisely, for all nodes x and

y in Ld,i, if their parents ρ(x) and ρ(y) are in the same track and ρ(x) < ρ(y) in that track,

then x < y in Ld,i. For x and y with ρ(x) and ρ(y) on distinct tracks, the relative order of

x and y is not important. It remains to specify the order of nodes in Ld,i with a common

parent.

Suppose P is a set of nodes in Ld,i with a common parent node p. By construction, for

every node x ∈ P , the parent clique Cx covers Si in the track layout of G[Tp]. By Lemma 6.4

the cliques {Cx : x ∈ P} are nicely ordered by the track layout of G[Tp]. Let the order of P

in track Ld,i be specified by a nice ordering of {Cx : x ∈ P}, as illustrated in Figure 6.3.

This construction defines a partial order on the nodes in track Ld,i, which can be arbi-

trarily extended to a total order. Hence we have a track assignment of T . Since the nodes in

each track are ordered primarily with respect to the relative positions of their parent nodes

in the previous tracks, there is no X-crossing, and hence we have a monochromatic track

layout of T .
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FIGURE 6.3: Track layout of nodes with a common parent p.

Track layout of G

To construct a track assignment of G from the track layout of T , replace each track Ld,i by

ck−1 ‘sub-tracks’, and for each node x of T , insert the track layout of G[Tx] in place of x on

the sub-tracks corresponding to the track containing x in the track layout of T (as illustrated

in Figure 6.4). More formally, the track layout of G is indexed by the set

{(d, i, j) : d ≥ 0, 1 ≤ i ≤ sk−1, 1 ≤ j ≤ ck−1} .

Each track Vd,i,j consists of those vertices v of G such that, if Tx is the bag containing

v, then x is at depth d in T , α(x) = i, and v is on track j in the track layout of G[Tx]. If x

and y are distinct nodes of T with x < y in Ld,i, then v < w in Vd,i,j, for all vertices v ∈ Tx

and w ∈ Ty on track j. If v and w are vertices of G on track j in bag Tx at depth d, then the

relative order of v and w in Vd,α(x),j is the same as in the track layout of G[Tx].

Clearly adjacent vertices of G are in distinct tracks. Thus we have defined a track as-

signment of G. We claim there is no X-crossing. Clearly an intra-bag edge of G is not in an

X-crossing with an edge not in the same bag. By induction, there is no X-crossing between

intra-bag edges in a common bag. Since there is no X-crossing in the track layout of T ,

inter-bag edges of G which are mapped to edges of T without a common parent node, are

not involved in an X-crossing.

Consider a parent node p in T . For each child node x of p, the set of vertices in Tp

adjacent to a vertex in Tx forms the clique Cx. Thus there is no X-crossing between a pair of

edges both from Cx to Tx, since the vertices of Cx are on distinct tracks. Consider two child

nodes x and y of p. For there to be an X-crossing between an edge from Tp to Tx and an

edge from Tp to Ty, the nodes x and y must be on the same track in the track layout of T .

Suppose x < y in this track. By construction, Cx and Cy cover the same set of tracks, and
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FIGURE 6.4: Track layout of G

Cx � Cy in the corresponding nice ordering. Thus for any track containing vertices v ∈ Cx

and w ∈ Cy, v ≤ w in that track. Since all the vertices in Tx are to the left of the vertices in

Ty (on a common track), there is no X-crossing between an edge from Tp to Tx and an edge

from Tp to Ty. Therefore there is no X-crossing, and hence we have a monochromatic track

layout of G.

Wrapped track layout of G

For every edge vw of G, the depths of the bags in T containing v and w differ by at most one.

Therefore, the obtained track layout of G indexed by {(d, i, j) : d ≥ 0, 1 ≤ i ≤ sk−1, 1 ≤
j ≤ ck−1} has partial span equal to one (considering d to be the first index and i and j

together to be the second index of the track layout). Therefore by Lemma 5.6 with s = 1

and b = sk−1 · ck−1, this track layout can be wrapped into the monochromatic track layout

of G with 3 · sk−1 · ck−1 tracks. In particular, we obtain the track layout of G indexed by

{

(d′, i, j) : d′ ∈ {0, 1, 2}, 1 ≤ i ≤ sk−1, 1 ≤ j ≤ ck−1

}

,

where each track

Wd′,i,j =
⋃

{Vd,i,j : d ≡ d′ (mod 3)} .

Every clique C of G is either contained in a single bag of the tree-partition or is contained
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in two adjacent bags. Let

S′ =
{

{(d′, i, h) : h ∈ Sj} : d′ ∈ {0, 1, 2}, 1 ≤ i, j ≤ sk−1

}

.

For every clique C of G contained in a single bag, the set of tracks containing C is in S ′. Let

S′′ =
{

{(d′, i, h) : h ∈ Sj} ∪ {((d′ + 1) mod 3, p, h) : h ∈ Sq} :

d′ ∈ {0, 1, 2}, 1 ≤ i, j, p, q ≤ sk−1

}

.

For every clique C of G contained in two bags, the set of tracks containing C is in S ′.

Observe that S ′ ∪ S′′ is independent of G. Hence S ′ ∪ S′′ satisfies the hypothesis for k.

Now |S′| = 3s2
k−1 and |S′′| = 3s4

k−1, and thus |S ′ ∪S′′| = 3s2
k−1(s

2
k−1 + 1). Therefore any

solution to the following set of recurrences satisfies the theorem:

s0 ≥ 1

c0 ≥ 1

sk ≥ 3s2
k−1(s

2
k−1 + 1)

ck ≥ 3sk−1 · ck−1 . (6.1)

We claim that

sk = 6(4k−1)/3 and ck = 3k · 6(4k−3k−1)/9

is a solution to (6.1). Observe that s0 = 1 and c0 = 1. Now

3s2
k−1(s

2
k−1 + 1) ≤ 6s4

k−1 ,

and

6(6(4k−1−1)/3)4 = 61+4(4k−1−1)/3 = 6(4k−1)/3 = sk .

Thus the recurrence for sk is satisfied. Now

3 · sk−1 · ck−1 = 3 · 6(4k−1−1)/3 · 3k−1 · 6(4k−1−3(k−1)−1)/9

= 3k · 6(3·4k−1−3+4k−1−3k+3−1)/9

= 3k · 6(4k−3k−1)/9

= ck .

Thus the recurrence for ck is satisfied. This completes the proof.

In the proof of Theorem 6.2 we have made little effort to reduce the bound on ck, beyond

that it is a doubly exponential function of k. In [59] we describe a number of refinements
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that result in improved bounds on ck. One such refinement uses strict k-trees. From an

algorithmic point of view, the disadvantage of using strict k-trees is that at each recursive

step, extra edges must be added to enlarge the graph from a partial strict k-tree into a

strict k-tree, whereas when using (non-strict) k-trees, extra edges need only be added at the

beginning of the algorithm.

The following theorem summarizes our bounds on the track-number of a graph. The

band-width of a vertex ordering σ of G is the maximum |i− j| of an edge vivj of G in σ. The

band-width of G, denoted by bw(G), is the minimum band-width over all vertex orderings

of G.

Theorem 6.3. Let G be a graph with maximum degree ∆(G), pathwidth pw(G), tree-partition-

width tpw(G), and treewidth tw(G). The track-number of G satisfies:

(a) tn(G) ≤ 1 + pw(G) ≤
{

1 + (tw(G) + 1) log n;

1 + bw(G).

(b) tn(G) ≤ 3 tpw(G) ≤ 72∆(G) tw(G),

(c) tn(G) ≤ 3 tw(G) · 6(4 tw(G)−3 tw(G)−1)/9.

Proof. Part (a) follows from Lemma 6.2, and since pw(G) ≤ (tw(G) + 1) log n and pw(G) ≤
bw(G) (see [14]). Note that tn(G) ≤ 1 + (tw(G) + 1) log n can be proved directly using a

separator-based approach similar to that used to prove pw(G) ≤ (tw(G) + 1) log n. Part (b)

follows from Lemma 6.3. Part (c) is Theorem 6.2.

6.6 Treewidth bounds queue-number

Applying Lemma 5.14 and Theorem 6.3 we have the following.

Theorem 6.4. Let G be a graph with maximum degree ∆(G), pathwidth pw(G), tree-partition-

width tpw(G), and treewidth tw(G). The queue-number qn(G) satisfies4:

(a) qn(G) ≤ pw(G)

(b) qn(G) ≤ 3 tpw(G)− 1 ≤ 72∆(G) tw(G)− 1,

(c) qn(G) ≤ 3 tw(G) · 6(4 tw(G)−3 tw(G)−1)/9 − 1.

4Wood [204] obtained an alternative proof that qn(G) ≤ pw(G) using the ‘vertex separation number’ of a

graph (which equals its pathwidth), and by applying Lemma 2.3 directly, he proved that qn(G) ≤ 3
2

tpw(G),
and thus qn(G) ≤ 36 ∆(G) tw(G).
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A similar upper bound to Theorem 6.4(a) is obtained by Heath and Rosenberg [114],

who proved that every graph G has qn(G) ≤ ⌈ 1
2bw(G)⌉, where bw(G) is the band-width of

G. In many cases this result is weaker than Theorem 6.4(a) since pw(G) ≤ bw(G). More

importantly, we have the following corollary of Theorem 6.4(c).

Corollary 6.2. Queue-number is bounded by treewidth, and hence graphs with bounded

treewidth have bounded queue-number.

6.7 Conclusion and bibliographic notes

Ganley and Heath [85] proved that for every graph G, the stack-number sn(G) ≤ tw(G) + 1

(using a depth-first traversal of a tree-decomposition), and asked whether queue-number is

bounded by treewidth. One of the principal results of this chapter is Theorem 6.4, which

solves this question in the affirmative.

The best known upper bound on the queue-number of a planar graph is O(
√

n). This

result can be proved using a variant of the randomized algorithm of Malitz [141] (see

[110]), or the derandomized algorithm of Shahrokhi and Shi [178]. The result also follows

from Theorem 6.4(a) since the pathwidth of a planar graph is O(
√

n) (see [14]). Heath

et al. [110] asked the following open problem.

Open Problem 6.1. [110] Do planar graphs have bounded queue-number?

Since planar graphs have stack-number at most four [207], this question is less general

than Open Problem 1.2. Heath et al. [110, 114] originally conjectured that both of these

questions have an affirmative answer. More recently however, Pemmaraju [160] conjectured

that the ‘stellated K3’, a planar 3-tree, has Θ(log n) queue-number, and provided evidence

to support this conjecture (also see [85]). This suggested that the answer to both Open

Problems 1.2 and 6.1 was negative. In particular, Pemmaraju [160] and Heath [private

communication, 2002] conjectured that planar graphs have O(log n) queue-number. How-

ever, our result provides a queue layout for any 3-tree, and thus in particular for the stellated

K3, with O(1) queues. Hence our result disproves the first conjecture of Pemmaraju [160]

mentioned above, and renews hope of an affirmative answer to Open Problems 1.2 and 6.1

.

The work presented in this chapter leaves the following open problem unanswered.

Open Problem 6.2. Is the queue-number of a graph bounded by a polynomial function of

its treewidth?

The result of Section 6.2 has appeared in [53]. The remainder of the material in this

chapter has appeared in [59].



Chapter 7

Layouts of Subdivisions

A subdivision of a graph G is a graph obtained from G by replacing each edge vw ∈ E(G)

by a path v, x1, x2, . . . , xp, w where p ≥ 0. Internal vertices on this path, x1, x2, . . . , xp,

are called division vertices, while v and w are called original vertices. Let G′ and G′′ be

the subdivisions of G with exactly one and two division vertices per edge, respectively.

Throughout this chapter, we implicitly use the fact that planarity and non-planarity are

preserved by subdividing edges.

Let α be a graph parameter. Let sub-α be the graph parameter defined by sub-α(G) =

α(G′) for every graph G. We say α is topological if α and sub-α are tied. (Recall the definition

of tied from Section 2.1.2.) For example, chromatic number is not topological since G ′ is

bipartite. On the other hand treewidth is topological. In fact, it is well-known that the

treewidth of a graph G equals the treewidth of every subdivision of G (see Diestel [41,

Exercise 13, p. 278]).

This chapter is organized as follows. In Section 7.1 we review known results concerning

layouts of graph subdivisions. In Section 7.2 we study the layouts of small subdivisions, G ′

and G′′. Section 7.3 presents most of our main results discussed below (see Table 7.1 on

page 92). Section 7.4 considers layouts of subdivisions of planar graphs. Final remarks are

given in Section 7.5.

7.1 Introduction and preliminaries

7.1.1 Stack, queue and track layouts of subdivisions

Stack, queue and track layouts of graph subdivisions are a central topic of this chapter. The

following fundamental result has been observed by many authors [10, 72, 73, 142]. The

well-known proof, which we include for completeness, can be traced to the seminal result

by Atneosen [5] that every graph has an embedding in a 3-page book. Kainen and Overbay
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[124] state that, according to Jozef Przytycki, this result was also discovered by Holtz, a

student of Reidemeister.

Theorem 7.1. [10, 72, 73, 142] Every graph has a 3-stack subdivision.

Proof. Let σ be an arbitrary vertex ordering of a given graph G. Consider the graph G′′

with each edge of G subdivided twice. For each vertex v ∈ V (G), insert into σ the vertices

{x : vx ∈ E(G′′)} immediately to the right of v, and assign the edges E∗ = {vx : v ∈
V (G), vx ∈ E(G′′)} to the first stack. Clearly no two edges in E∗ cross in σ. It remains to

assign a subdivision of the matching E(G′′) \E∗ to the remaining two stacks. This amounts

to drawing a matching in the plane with no edge crossings such that the vertices are fixed

to a line. Clearly this can be accomplished. An edge of E(G′′) \E∗ is subdivided every time

it crosses the line. Thus every graph has a 3-stack subdivision.

Note that 3-stack layouts are important in complexity theory [82, 83, 125], and 3-stack

layouts of knots and links, so called Dynnikov digrams, have also recently been considered

[31, 60–63, 132, 145].

The proof of Theorem 7.1 provides no bound on the number of division vertices. It is

interesting to determine the minimum number of division vertices in a 3-stack subdivision

of a given graph. The previously best bounds are due to Enomoto and Miyauchi [72], who

proved that every graph has a 3-stack subdivision with O(log n) division vertices per edge.

Moreover, a trade-off between the number of stacks and the number of division vertices per

edge was observed. In particular, Enomoto and Miyauchi [73] proved that for all s ≥ 3,

every graph has an s-stack subdivision with O(logs−1 n) division vertices per edge, and

Enomoto et al. [74] proved that this bound is tight up to a constant factor for Kn (and some

slightly more general families). Thus Enomoto et al. [74] claimed that the O(log n) upper

bound is ‘essentially best possible’.

We prove a refinement of the upper bound of Enomoto and Miyauchi [72], in which the

number of division vertices per edge depends on the stack-number or queue-number of the

given graph. In particular, every graph G has a 3-stack subdivision with

O(log min{sn(G), qn(G)}) division vertices per edge. Since sn(G) and qn(G) are both no

more than n, our bound is at most the O(log n) bound of Enomoto and Miyauchi [72] (ig-

noring constant factors). This result has a significant implication for Open Problem 1.2.

Namely that queue-number is bounded by stack-number if and only if 3-stack graphs have

bounded queue-number (Theorem 7.8). For this corollary to hold, it is essential that the

number of division vertices per edge is some function of sn(G), thus emphasizing the signif-

icance of our bound in comparison with the previous results. As described in Table 7.1 our

result for 3-stack subdivisions generalizes to s-stack subdivisions in a similar fashion to the

result of Enomoto and Miyauchi [73].
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We prove an analogous result for queue layouts. In particular, every graph G has a

2-queue subdivision with O(log qn(G)) division vertices per edge. Thus, at least for the rep-

resentation of graph subdivisions, two queues suffice rather than three stacks. In this sense,

queues are more powerful than stacks. Moreover, our bound on the number of division

vertices per edge is optimal up to a constant factor for all graphs. Unfortunately, no such

universal lower bound is known for stack layouts of subdivisions.

Stack and queue layouts are generalized through the notion of a mixed layout, as defined

in Section 2.2.2. Observe that the proof of Theorem 7.1 implies that every graph has a 2-

stack 1-queue subdivision, since the first stack is also a queue, whereas we prove that every

graph has a 1-stack 1-queue subdivision.

Our main result concerning track layouts highlights the trade-off between few tracks

and few edge colours. We prove that every graph G has a subdivision D with O(log qn(G))

division vertices per edge, such that (a) D has a (1, 4)-track layout, (b) D has a (2, 3)-

track layout, and (c) D has a (3, 2)-track layout. We shall see that all of these numeric

values are best possible for any non-planar graph G. Moreover, the number of division

vertices per edges is optimal, since any subdivision satisfying (a), (b) or (c) has an edge with

Ω(log qn(G)) division vertices. Note that for all d ≥ 2, the result generalizes to (1, d + 2)-,

(d, 3)-, and (d + 1, 2)-track layouts. Table 7.1 summarizes the bounds on stack-, queue-,

mixed- and track-layouts of graph subdivisions established in this chapter.

TABLE 7.1: Layouts of a subdivision of a graph G.

graph type of layout # division vertices reference

per edge

arbitrary s-stack (s ≥ 3) O(logs−1 sn(G)) Theorem 7.7

arbitrary s-stack (s ≥ 3) O(logs−1 qn(G)) Theorem 7.9

planar 2-stack 1 [38, 127], Lemma 7.20

arbitrary q-queue (q ≥ 2) Θ(logq qn(G)) Theorems 7.5 and 7.6

planar 1-queue n− 2 Theorem 7.19

arbitrary s-stack q-queue (s ≥ 1, q ≥ 1) O(log(s+q)q sn(G)) Theorem 7.10

arbitrary s-stack q-queue (s ≥ 1, q ≥ 1) O(log(s+q)q qn(G)) Theorem 7.11

planar 1-stack 1-queue 4 Lemma 7.23

arbitrary (d + 1, 2)-track (d ≥ 2) Θ(logd qn(G)) Theorems 7.13 and 7.16

arbitrary (d, 3)-track (d ≥ 2) Θ(logd qn(G)) Theorems 7.14 and 7.16

arbitrary (d + 2)-track (d ≥ 2) Θ(logd qn(G)) Theorems 7.15 and 7.16

planar 3-track n− 2 Theorem 7.19
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7.1.2 Thickness and topological parameters

The thickness of a graph G, denoted by θ(G), is the minimum number of subgraphs in a

partition of E(G) into planar subgraphs [123]. Thickness is not topological since θ(G ′) ≤ 2.

Beineke [6] attributes this observation to Tutte. The proof is straightforward. Let V (G) =

{v1, v2, . . . , vn}. Denote by xi,j the division vertex of each edge vivj with i < j. Then

{vixi,j : 1 ≤ i < j ≤ n} and {vixj,i : 1 ≤ j < i ≤ n} is a partition of E(G′) in two (planar)

forests.

The key difference between geometric thickness (as defined in Section 5.3) and (graph-

theoretic) thickness is that geometric thickness requires the edges to be drawn as straight

line-segments, whereas thickness allows edges to bend arbitrarily. Eppstein [75] proved

that θ(G′) ≤ 2 for every graph G. Thus geometric thickness is not topological.

Stack-number (or book-thickness) is equivalent to geometric thickness with the addi-

tional requirement that the vertices are in convex position [7]. Thus

∀ graph G, θ(G) ≤ θ(G) ≤ sn(G) . (7.1)

Blankenship and Oporowski [10], Enomoto and Miyauchi [72], and Eppstein [75] inde-

pendently proved that sn(Kn) is bounded by sn(K ′
n). The proofs by Blankenship and

Oporowski [10] and Eppstein [75] use essentially the same Ramsey-theoretic argument.

Since θ(K ′
n) = 2, Eppstein [75] observed that stack-number is not bounded by geometric

thickness. Using a more elaborate Ramsey-theoretic argument, Eppstein [75] proved that

geometric thickness is not bounded by thickness. In particular, for every t there exists a

graph with thickness three and geometric thickness at least t. Blankenship and Oporowski

[10] conjecture that their result for complete graphs extend to all graphs.

Conjecture 7.1. [10] There exists a function f such that for every subdivision D of a graph

G with at most one division vertex per edge, sn(G) ≤ f(sn(D)).

In Lemma 7.11 we prove that sub-sn is bounded by sn. Thus the truth of Conjecture 7.1

would imply that stack-number is topological, and as we now show, would also imply an

affirmative solution to Open Problem 1.1.

Theorem 7.2. If Conjecture 7.1 is true then stack-number is bounded by queue-number.

Proof. Conjecture 7.1 implies that there exists a function f ∗ such that for any s-stack subdi-

vision of a graph G with at most k division vertices per edge, G has a f ∗(s, k)-stack layout.

In Theorem 7.9 we prove that every graph G has a 3-stack subdivision with O(log qn(G))

division vertices per edge. Thus sn(G) ≤ f ∗(3, c · log qn(G)) for some constant c, and stack-

number is bounded by queue-number.
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In Section 7.2.2 we prove that queue-number is topological (for all graphs), and that

track-number is topological for any proper minor-closed graph family. We now relate queue-

number to a new thickness parameter. Let the 2-track thickness of a bipartite graph G,

denoted by θ2(G), be the minimum k such that G has a (k, 2)-track layout. By (7.1) and

Lemma 5.10(c),

∀ bipartite graphs G, θ(G) ≤ θ(G) ≤ sn(G) ≤ θ2(G) .

Note that Theorem 7.13 implies that for all d ≥ 2, every graph G has a subdivision D

with O(logd qn(G)) division vertices per edge, such that D has 2-track thickness θ2(D) ≤
d + 1. Let the 2-track sub-thickness of a graph G, denoted by sub-θ2(G), be the 2-track

thickness of G′. This is well-defined since G′ is bipartite. The first part of the next theorem

follows from Lemmas 5.10 and 5.12, while we prove the second part in Section 7.2.1.

Theorem 7.3. (Section 7.2.1) Queue-number is tied to 2-track thickness for bipartite graphs,

and queue-number is tied to 2-track sub-thickness (for all graphs).

The immediate implication of Theorem 7.3 for Open Problem 1.1 is that stack-number is

bounded by queue-number if and only if stack-number is bounded by 2-track sub-thickness.

7.2 Small subdivisions

In this section we consider layouts of G′ and G′′, the subdivisions of a graph G with one and

two division vertices per edge, respectively.

7.2.1 Track layouts

Lemma 7.1. For every q-queue graph G, the subdivision G′ has a (q + 1, 2)-track layout. That

is, 2-track sub-thickness is bounded by queue-number. In particular, sub-θ2(G) ≤ qn(G) + 1.

Proof. Let σ be the vertex ordering in a q-queue layout of G with queues {Eℓ : 1 ≤ ℓ ≤ q}.
Recall that L(e) and R(e) denote the left and right endpoints in σ of each edge e. Let

X(e) denote the division vertex of e in G′. Let ≺ be the total order on {X(e) : e ∈ E(G)}
such that X(e) ≺ X(f) whenever L(e) <σ L(f), or L(e) = L(f) and R(e) <σ R(f).

(V (G), σ) and ({X(e) : e ∈ E(G)},≺) define a 2-track assignment of G′. Colour the edges

of G′ as follows. For all edges e ∈ Eℓ, let col(L(e)X(e)) = 0 and col(X(e)R(e)) = ℓ.

Since in ≺, division vertices are ordered primarily by the left endpoint of the corresponding

edge, no two edges L(e)X(e) and L(f)X(f) form an X-crossing. Suppose e′ = X(e)R(e)

and f ′ = X(f)R(f) form an X-crossing. Without loss of generality R(e) <σ R(f) and

X(f) ≺ X(e). By construction L(f) <σ L(e), and e is nested inside f in σ. Thus e and f are
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in distinct queues, and col(e′) 6= col(f ′). Hence there is no monochromatic X-crossing. The

number of edge colours is q + 1. Therefore we have a (q + 1, 2)-track layout of G′.

Lemma 7.1 is best possible in the following (weak) sense. Let G be a 2-queue subdivision

of a non-planar graph, which exists by Theorem 7.5. If G′ has a (k, 2)-track layout, then

k ≥ 3 since G′ is non-planar, and by Theorem 7.21, only planar graphs have (2, 2)-track

layouts.

Open Problem 7.1. Is 2-track sub-thickness sub-θ2(G) ∈ o(qn(G))?

We have the following complimentary result to Lemma 7.1.

Lemma 7.2. Queue-number is bounded by 2-track sub-thickness. In particular, qn(G) ≤
sub-θ2(G)2 for every graph G.

Proof. Let k = sub-θ2(G). Clearly we can assume that G is connected. Thus in the given

(k, 2)-track layout of G′, the vertices of G are on one track and the division vertices are

on the other track. Let σ be the ordering of the vertices of G on the first track. Let

{e1, e2, . . . , eq} be a maximum rainbow in σ, where ei is nested inside ei+1 for all i < q.

Let xi be the division vertex of G′ corresponding to each edge ei. By the Erdös-Szekeres

Theorem [77], the permutation of {x1, . . . , xq} in the second track has an increasing or

decreasing subsequence (with respect to the indices) of at least
√

q vertices. Depending

on whether it is increasing or decreasing, the left or right endpoints of e1, . . . , eq along with

x1, . . . , xq determine a set of at least
√

q edges that are pairwise X-crossing in the (k, 2)-track

of G′. Thus
√

q ≤ k and q ≤ k2. By Lemma 2.2, σ admits a k2-queue layout of G. Hence

qn(G) ≤ k2.

Lemmas 7.1 and 7.2 imply that queue-number and bipartite sub-thickness are tied (the

second part of Theorem 7.3 in Section 7.1).

Lemma 7.3. Every c-colourable q-queue graph G has:

(a) tn2(G
′) ≤ q + 1, (b) tn(G′) ≤ c(q + 1), and (c) tn(G′′) ≤ q + 2.

Proof. Let σ be the vertex ordering in a q-queue layout of G with queues {Eℓ : 1 ≤ ℓ ≤ q}.
Let X(e) denote the division vertex of e in G′. Let Xℓ = {X(e) : e ∈ Eℓ} for each 1 ≤ ℓ ≤ q.

Let <ℓ denote the queue order of each Eℓ. Consider <ℓ to also order Xℓ. That is, for all

edges e, f ∈ Eℓ,

X(e) ≤ℓ X(f) ⇐⇒ L(e) ≤σ L(f) and R(e) ≤σ R(f) . (7.2)

First we prove (a). The set {(Xℓ, <ℓ) : 1 ≤ ℓ ≤ q} ∪ {(V (G), σ)} defines a (q + 1)-track

assignment of G′. Colour edges L(e)X(e) of G′ blue, and colour edges R(e)X(e) of G′ red.
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We claim that there is no monochromatic X-crossing. All edges of G′ are between a vertex

of G and a division vertex. Thus an X-crossing must involve two division vertices on the

same track. Consider two edges e and f with X(e) <ℓ X(f) for some 1 ≤ ℓ ≤ q. By (7.2),

each of the pairs of edges {L(e)X(e), L(f)X(f)} and {R(e)X(e), R(f)X(f)} do not form

an X-crossing. For each pair of edges {L(e)X(e), R(f)X(f)} and {R(e)X(e), L(f)X(f)} the

edges are coloured differently. Thus there is no monochromatic X-crossing and we have a

(2, q + 1)-track layout of G′.

Now we prove (b). Let {Vi : 1 ≤ i ≤ c} be a vertex c-colouring of G. Let Xi,ℓ = {X(e) :

e ∈ Eℓ, L(e) ∈ Vi} for all 1 ≤ ℓ ≤ q and 1 ≤ i ≤ c. Thus {(Xi,ℓ, <ℓ) : 1 ≤ i ≤ c, 1 ≤ ℓ ≤
q}∪{(Vi, <σ) : 1 ≤ i ≤ c} defines a (qc+c)-track assignment of G′. Consider division vertices

X(e),X(f) ∈ Xi,ℓ such that X(e) <ℓ X(f). By (7.2), L(e) ≤ L(f) in the ordering on Vi.

Thus the pair of edges {L(e)X(e), L(f)X(f)} do not form an X-crossing. Since neither R(e)

and R(f) are in Vi, the pairs of edges {L(e)X(e), R(f)X(f)} and {R(e)X(e), L(f)X(f)}
do not form an X-crossing. If both R(e) and R(f) are in the same colour class Vj , then

R(e) ≤j R(f) by (7.2), and the pair of edges {R(e)X(e), R(f)X(f)} do not form an X-

crossing. Thus we have a (qc + c)-track layout of G′.

Finally we prove (c). Let (L(e),X(e), Y (e), R(e)) be the path replacing each edge e in

G′′. The first track consists of {(V (G), σ)}. The second track consists of {X(e) : e ∈ E(G)},
ordered so that X(e) < X(f) whenever L(e) <σ L(f), or L(e) = L(f) and R(e) <σ R(f).

Edges between the first and the second track are of the form L(e)X(e). Since vertices X(e)

in the second track are primarily ordered by L(e), there is no X-crossing between the first

and second track. Now define and order Yℓ as with Xℓ. Then {(Yℓ, <ℓ) : 1 ≤ ℓ ≤ q}
comprises the final q tracks. An X-crossing involving vertices on these tracks can only be

between pairs of edges {X(e)Y (e),X(f)Y (f)} and {Y (e)R(e), Y (f)R(f)}, where e and f

are in the same queue. By (7.2), such pairs of edges do not form an X-crossing. Thus we

have (q + 2)-track layout of G′′.

We now describe how to produce a track layout of G′ given a track layout of a graph G.

Lemma 7.4. Let G be a (k, t)-track graph with maximum span s (≤ t − 1). Then G′ has:

(a) tnks+1(G
′) ≤ 2, (b) tnk(G

′) ≤ 2t− 1, and (c) tn(G′) ≤ k(t− 1) + t .

Proof. Let {Vi : 1 ≤ i ≤ t} be a (k, t)-track layout of G with span s. Let {Eℓ : 1 ≤ ℓ ≤
k} be the corresponding edge-colouring. By Lemma 5.14, G has a ks-queue layout. By

Lemma 7.3(a), G′ has a (ks + 1, 2)-track layout. This proves part (a).

For each edge vw of G, let both edges in G′ corresponding to vw be coloured by the

colour assigned to vw. Now we prove part (b). For each 1 ≤ i ≤ t−1, let Xi ⊆ V (G′)\V (G)

be the set consisting of the division vertices of edges vw ∈ E(G) such that v ∈ Vi, w ∈
Vj, and i < j. Order the vertices in Xi with respect to the order of the corresponding
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vertices in Vi, breaking ties by the order in some Vj where applicable. Clearly there is no

monochromatic X-crossing, where vertices of G \ G′ remain in the given track layout. The

number of tracks is 2t− 1.

Finally we prove part (c). For each 1 ≤ i ≤ t − 1 and 1 ≤ ℓ ≤ k, let Xi,ℓ ⊆ Xi be

the set consisting of the division vertices of edges vw ∈ Eℓ such that v ∈ Vi, w ∈ Vj,

and i < j. Order each Xi,ℓ as in Xi. All edges of G′ incident to a vertex in Xi,ℓ are

monochromatic. Thus there is no X-crossing regardless of the edge colours. The number of

tracks is t + k(t− 1).

We now describe how to produce a track layout of a graph G given a track layout of G′.

Lemma 7.5. If a graph G is vertex c-colourable and tnk(G
′) ≤ t then tntk2(G) ≤ ct.

Proof. Let {Vi : 1 ≤ i ≤ c} be a vertex c-colouring of G, and for each vertex v ∈ V (G), let

col(v) = i where v ∈ Vi. Let {(Wj , <j) : 1 ≤ j ≤ t} be a (k, t)-track layout of G′ with edge

colouring {Eℓ : 1 ≤ ℓ ≤ k}. Let Vi,j = Vi ∩Wj for each 1 ≤ i ≤ c and 1 ≤ j ≤ t. Then

{(Vi,j , <j) : 1 ≤ i ≤ c, 1 ≤ j ≤ t} is a track assignment of G. We now colour each edge vw

of G. Without loss of generality col(v) < col(w). Let x be the division vertex of vw in G ′,

and say x ∈ Wj , vx ∈ Eℓ1 , and wx ∈ Eℓ2 . Then colour vw by the ordered triple (j, ℓ1, ℓ2).

Note that the number of edge colours is tk2. We claim that there is no monochromatic X-

crossing in the track assignment of G. Suppose for the sake of contradiction, that there are

monochromatic edges vw and pq in G that form an X-crossing. Without loss of generality,

col(v) = col(p) < col(w) = col(q), and in the given track layout of G′, v <j1 p and q <j2 w

for some 1 ≤ j1, j2 ≤ t. Let x and y be the division vertices of vw and pq, respectively. Since

vw and pq are monochromatic, x and y are in the same track Wj3. If x <j3 y then wx and

qy form a monochromatic X-crossing in the given track layout, and if y <j3 x then vx and

py form a monochromatic X-crossing in the given track layout. In both cases we have the

desired contradiction. Thus there is no monochromatic X-crossing in the track assignment

of G, and we have a (tk2, ct)-track layout of G.

Lemma 7.6. Let G be a graph with chromatic number χ(G) ≤ c and star chromatic number

χst(G) ≤ d. If G′ has a (k, t)-track layout then G has track-number tn(G) ≤ d(2(ct − 1)tk2 +

1)d−1.

Proof. By Lemma 7.5, G has a (tk2, ct)-track layout. By Corollary 5.2 with span s = ct − 1,

G has track-number tn(G) ≤ d(2(ct − 1)tk2 + 1)d−1.

Lemmas 2.1, 7.6 and 7.4(c) imply:

Theorem 7.4. Track-number is topological for any proper minor-closed family.
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7.2.2 Queue layouts

In this section we study the relationship between the queue-number of a graph G and the

queue-number of G′. First note that Lemmas 5.14 and 7.1 imply:

Lemma 7.7. The subdivision G′ of a q-queue graph G has a (q + 1)-queue layout.

Lemmas 5.12 and 7.2 imply that if G′ has a q-queue layout then G has a 4q2-queue

layout. This bound can be improved as follows.

Lemma 7.8. For every graph G, if G′ has a q-queue layout with vertex ordering σ, then σ

restricted to V (G) admits a q(2q + 1)-queue layout of G.

Proof. Let X be the set of division vertices of G′. The vertex sets V (G) and X partition

V (G′) and define a vertex 2-colouring of G′. By Lemma 5.12, G′ has a (2q, 2)-track layout

with tracks (V (G), σ) and (X,σ). Let 1 ≤ col(e) ≤ 2q be the colour assigned to each edge

e of G′. Consider a layout of G in which the vertices are ordered by σ and the edges are

partitioned into queues as follows. For each edge vw ∈ E(G) divided by vertex x in G′, let

queue(vw) = {col(vx), col(wx)}. We now prove that this layout is a queue layout of G. Say

vw is nested inside ab in G and without loss of generality a <σ v <σ w <σ b. Let vw be

divided by x in G′, and let ab be divided by c in G′. First suppose that x <σ c. Then each

of xw and xv form an X-crossing with ac. Thus col(xw) 6= col(ac) and col(xv) 6= col(ac).

Hence queue(vw) 6= queue(ab). Now suppose c <σ x. Then bc forms an X-crossing with each

of xw and xv. Thus col(bc) 6= col(xw) and col(bc) 6= col(xv). Hence queue(vw) 6= queue(ab).

The number of queues in the queue layout of G is q(2q + 1).

Lemmas 7.7 and 7.8 imply that queue-number is topological, as mentioned in Sec-

tion 7.1.2. We now prove a slightly more general result than Lemma 7.8 that will be used

in Section 7.3.3. Here we start with a subdivision with at most one division vertex per edge

rather than exactly one division vertex per edge.

Lemma 7.9. Let D be a q-queue subdivision of a graph G with at most one division vertex per

edge. Then G has a 2q(q + 1)-queue layout.

Proof. Let σ be the vertex ordering in a q-queue layout of D. Let A be the set of edges of

G that are subdivided in D, and let B the set of edges of G that are not subdivided in D.

By Lemma 7.8, G[A] has a q(2q + 1)-queue layout with vertex ordering σ. By assumption,

G[B] has a q-queue layout with vertex ordering σ. Thus G has a 2q(q +1)-queue layout with

vertex ordering σ.
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7.2.3 Stack layouts

We now describe how to produce a stack layout of G′ from a queue, stack or track layout of

G. By Lemmas 7.1 and 5.10(c) we have:

Lemma 7.10. The subdivision G′ of a q-queue graph G has a (q + 1)-stack layout. That is,

sn(G′) ≤ qn(G) + 1.

Lemma 7.11. The subdivision G′ of an s-stack graph G has an (s + 1)-stack layout. That is,

sn(G′) ≤ sn(G) + 1.

Proof. Consider an s-stack layout of G with vertex ordering σ. Denote the division vertex of e

in G′ by X(e). We now create a stack layout of G′. For each vertex v of G, let e1, e2, . . . , ed be

all the edges incident to v such that each L(ei) = v, and R(ed) <σ R(ed−1) <σ · · · <σ R(e1).

Add the division vertices X(e1),X(e2), . . . ,X(ed) immediately to the right of v in this order.

Clearly for all edges e and f of G, the edges L(e)X(e) and L(f)X(f) of G′ do not cross.

Thus all these ‘left’ edges can be assigned to a single stack. Each ‘right’ edge X(e)R(e) of

G′ inherits the stack assigned to e in G. Clearly no two right edges in the same stack cross.

Thus G′ has a (s + 1)-stack layout.

Lemma 7.12. Let G be a (k, t)-track graph with maximum span s (≤ t − 1). Then the

subdivision G′ of G with one division vertex per edge has a s(k + 1)-stack layout.

Proof. Let {(Vi, <i) : 1 ≤ i ≤ t} be a (k, t)-track layout of G with maximum span s, and with

edge colouring {Eℓ : 1 ≤ ℓ ≤ k}. Denote by L(e) and R(e) the endpoints of each edge e of

G where L(e) ∈ Vi and R(e) ∈ Vj with i < j. Denote by X(e) the division vertex in G′ of e.

For each 1 ≤ i ≤ t− 1 and 1 ≤ α ≤ s, let

Xi,α = {X(e) : e ∈ E(G), L(e) ∈ Vi, R(e) ∈ Vi+α} .

Since the maximum span is s, every division vertex of G′ is in some Xi,α. Order each Xi,α

such that for all X(e),X(f) ∈ Xi,α, we have X(e) < X(f) whenever L(f) <i L(e), or

L(e) = L(f) and R(f) <i+α R(e). Let σ be the vertex ordering of G′ defined by

(

V1,X1,s,X1,s−1, . . . ,X1,1; V2,X2,s,X2,s−1, . . . ,X2,1; . . . ; Vt

)

.

Note that L(e) <σ X(e) <σ R(e) for every edge e of G. For all 1 ≤ α ≤ s let

Eα = {L(e)X(e) : L(e) ∈ Vi, X(e) ∈ Xi,α} .

For all 1 ≤ ℓ ≤ k and 0 ≤ β ≤ s− 1, let

Eℓ,β = {X(e)R(e) : e ∈ Eℓ, L(e) ∈ Vi, i ≡ β (mod s)} .
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This partitions the edges of G′ into s(k + 1) sets. We claim that no two edges in a single set

cross in σ. Consider two edges e and f of G. Say L(e) ∈ Vi1 and L(f) ∈ Vi2 .

Consider edges L(e)X(e) and L(f)X(f) both in some Eα. Without loss of generality

i1 ≤ i2, and if L(e) = L(f) then R(e) <σ R(f). If i1 < i2 then L(e) <σ X(e) <σ L(f) <σ

X(f), and L(e)X(e) and L(f)X(f) do not cross. If i1 = i2 then without loss of generality

L(e) ≤σ L(f). Since L(e)X(e) and L(f)X(f) are in Eα, both X(e) and X(f) are in Xi1,α.

Thus L(e) ≤σ L(f) <σ X(f) <σ X(e), and L(f)X(f) does not cross L(e)X(e). Thus each

set Eα is a valid stack in σ.

Now suppose the edges X(e)R(e) and X(f)R(f) cross in σ. Without loss of generality

X(e) <σ X(f) <σ R(e) <σ R(f). Say R(e) ∈ Vi3 and R(f) ∈ Vi4 . Then i1 ≤ i2 < i3 ≤ i4.

If i1 < i2 then i2 − i1 < i3 − i1 ≤ s. Thus i1 6≡ i2 (mod s), and X(e)R(e) and X(f)R(f)

are not in the same Eℓ,β. Now suppose i1 = i2. Since X(e) <σ X(f), we have i3 = i4 and

L(f) ≤i1 L(e). If L(f) = L(e) then, since X(e) <σ X(f) we have R(f) <i3 R(e), and thus

R(f) <σ R(e), a contradiction. If L(f) <i1 L(e) then R(e) <i3 R(f) since R(e) <σ R(f).

That is, e and f form an X-crossing in the track layout, and are thus coloured differently.

Hence X(e)R(e) and X(f)R(f) are not in the same Eℓ,β.

Thus each Eα and each Eℓ,β is a valid stack, and G′ has a s(k + 1)-stack layout.

7.3 Big subdivisions

In this section we prove the main results summarized in Table 7.1. That is, every graph G

has a 3-stack subdivision, a 2-queue subdivision, a mixed 1-stack 1-queue subdivision, and

a 4-track subdivision. In each case the number of division vertices per edge is O(log sn(G))

or O(log qn(G)). First of all we introduce the notion of a (k,H)-layout.

Let G and H be graphs. H is called a host graph, and its vertices are called nodes. An

H-partition of G is a partition {Hx ⊆ V (G) : x ∈ V (H)} of V (G) into bags indexed by the

nodes of H such that for all edges vw ∈ E(G) either:

- ∃ node x ∈ V (H) such that both v,w ∈ Hx (vw is called an intrabag edge mapped to

x), or

- ∃ edge xy ∈ E(H) such that v ∈ Hx and w ∈ Hy (vw is called an interbag edge mapped

to xy).

Recall that tree-partitions, that is a T -partition for some tree T , were instrumental

in the results presented in Chapter 6. To obtain our main results for layouts of subdi-

visions we employ the following very general structure. A (k,H)-layout of G is a pair

({E1, E2, . . . , Ek}, {(Hx, <x) : x ∈ V (H)}) such that:

- {Hx ⊆ V (G) : x ∈ V (H)} is an H-partition of G.
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- ∀ nodes x ∈ V (H), <x is a total order on Hx.

- {E1, . . . , Ek} is a colouring of the interbag edges such that there is no monochromatic

X-crossing, where an X-crossing consists of a pair of interbag edges vw and pq such

that for some edge xy ∈ E(H), v <x p and q <y w.

For each edge xy ∈ E(H), let kxy denote the number of colours used in the edge colour-

ing of the interbag edges of G that are mapped to xy. For each node x ∈ V (H), let sx denote

the minimum number of stacks such that <x admits an sx-stack layout of G[Hx], and let qx

denote the minimum number of queues such that <x admits a qx-queue layout of G[Hx].

We say a (k, T )-layout of G is simple if T is a rooted tree, and for every non-leaf node

x ∈ V (T ), the set Tx is an independent set of G. Thus for simple layouts, qx = sx = 0 for

all non-leaf nodes. A (k,H)-layout with no intrabag edges is called a (k,H)-track layout. A

(1,H)-track layout is called an H-track layout. Observe that a (k,Kt)-track layout is simply

a (k, t)-track layout as defined in Section 2.2.3.

Our main results are proved using the following strategy. First a particular host tree

T (or tree-like graph T ) is defined. The vertices of our graph G are mapped to the root

of T , and each edge vw of G is mapped to some node of T . At each non-root node of T

on the path from the root to the node that vw is mapped to, we add two division vertices

to vw. This process produces a (k, T )-layout of a subdivision D of G, as is described in

Section 7.3.1. Then a stack, queue, mixed or track-layout of T is determined, as described

in Section 5.4. Then in Section 7.3.2 we describe how to transform a given layout of T into

the desired layout of D. This process is then carried out for queue, stack, mixed, and track

layouts in Sections 7.3.3–7.3.6.

7.3.1 (k, T )-Layouts

Recall that we assume that rooted trees are oriented away from the root node and that when

referring to the edges of a directed graph, xy means an edge oriented from x to y.

Lemma 7.13. Let T be the tree comprised of a root node r and d ≥ 1 leaves v1, v2, . . . , vd adja-

cent to r. Suppose that the nodes of T are labeled with non-negative integers

l(r), l(v1), l(v2), . . . , l(vd). Let G be a graph with a k-queue (respectively, k-stack) layout with

vertex ordering σ, where k ≤ l(r) + l(v1) + l(v2) + · · · + l(vd). Then G has a subdivision D

with zero or two division vertices per edge such that D has a (1, T )-layout in which the division

vertices are mapped to the leaves of T , and the original vertices are mapped to the root r and

are ordered by σ. Furthermore, every node x ∈ V (T ) has qx ≤ l(x) (sx ≤ l(x)).

Proof. Say σ = (v1, v2, . . . , vn). Let l be an integer such that k− l ≤ l(v1)+ l(v2)+ · · ·+ l(vd).

Let F be the set of edges of G in an arbitrary set of l queues (stacks). Subdivide every
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edge e = vw ∈ E(G) \ F twice, and denote the resulting path (v, ev , ew, w). This defines a

subdivision D of G with zero or two division vertices per edge. For each vertex v ∈ V (G),

let N+(v) = {ev : e ∈ E(G) \ F, v = Lσ(e)} and N−(v) = {ev : e ∈ E(G) \ F, v = Rσ(e)}.
Order the vertices of N+(v) and N−(v) with respect to the order of the neighbours of v in

σ. In the case of a given queue layout, let π be the vertex ordering of V (D) \ V (G) defined

by

π =
(

N+(v1),N
−(v2),N

+(v2),N
−(v3),N

+(v3), . . . ,N
−(vn−1),N

+(vn−1),N
−(vn)

)

.

For a given stack layout, let π be the vertex ordering of V (D) \ V (G) defined by

π =
(←−−−−−

N+(v1),
←−−−−−
N−(v2),

←−−−−−
N+(v2),

←−−−−−
N−(v3),

←−−−−−
N+(v3), . . . ,

←−−−−−−
N−(vn−1),

←−−−−−−
N+(vn−1),

←−−−−−
N−(vn)

)

.

Partition the remaining k − l queues (stacks) of G into sets A1, A2, . . . , Ad so that each

Ai has at most l(vi) queues (stacks). Create (1, T )-layout of D as follows. Map the original

vertices ordered by σ to r. By construction, the intrabag edge F of D mapped to r form

l queues (stacks) with respect to σ. Thus qr ≤ l (sr ≤ l). For each edge vw ∈ E(G) \ F

that is in a queue (stack) in Ai, map ev and ew to vi. Order each bag Tvi
by π. Since π is

ordered primarily with respect to σ, there is no X-crossing in the layout. That is, we have

a (1, T )-layout of D. In this layout, the edges evew of D are intrabag edges mapped to the

leaves of T . Consider each such edge evew to be assigned to the same queue (stack) as vw

in the given layout of G. Consider two edges e = vw and f = xy in E(G) \ F that have no

common endpoint. Since π is ordered primarily with respect to σ, the edges evew and fxfy

nest/cross in π if and only if e and f nest/cross in σ. Now consider two edges e = vx and

f = vy in E(G) \ F (that have a common endpoint). In the case of queues, evex and fvfy

are either crossing or disjoint. For stacks, evex and fvfy are either nested or disjoint. Thus

the queue (stack) assignment for intrabag edges is valid, and qvi
≤ l(vi) (svi

≤ l(vi)) for

each 1 ≤ i ≤ d.

For the next result we will need the following construction. Let G be a graph with a

(k1, T1)-layout for some tree T1. Let x be a node of T1, and suppose that the subgraph

G[T1x ] has a subdivision Dx where Dx has a (k2, T2)-layout, for some tree T2 such that all

the original vertices of Dx are mapped to the root r of T2 ordered as per <x. Let merge-at-x

be a binary operation on the layouts (k2, T2) and (k1, T1) defined as follows. First replace

(Tx, <x) by (Tr, <r), and rename x to y. Delete r from T2 and make its children point to y.

Each node z 6= y in the new tree T3 inherits (Tz, <z) from the node it originated from. It

follows from the definition that merging (k2, T2) and (k1, T2) at x results in a (k3, T3)-layout

of the subdivision D of G where k3 ≤ max{k1, k2} and where qy = qr (sy = sr), and each

node z 6= y in V (T3) has qz (sz) equal to that of the node it originated from.
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Lemma 7.14. Let T be a rooted tree of height h. Suppose that each node x ∈ V (T ) is labeled

by a non-negative integer l(v) such that
∑

v∈V (T ) l(v) ≥ k. Let G be a k-queue (respectively,

k-stack) graph. Then G has a subdivision D with an even number of division vertices per edge,

such that D has a (1, T )-layout in which every node x ∈ V (T ) has qx ≤ l(x) (sx ≤ l(x)). Every

edge of G has at most 2h division vertices in D, and if all the non-leaf nodes of T are labeled 0

and if all its leaves are at depth h, then every edge of G has exactly 2h division vertices in D.

Proof. We proceed by induction on h. If h = 0 then the result follows trivially. Assume

the result holds for all trees with height less than h, and let T be a tree of height h rooted

at r. Let T ′ be the subtree of T induced by the nodes at depth at most h − 1. Define

a labeling on the nodes of T ′ as follows. For each node v ∈ V (T ′) at depth h − 1, let

l′(v) = l(v) + l(v1) + l(v2) + · · · + l(vd) where v1, v2, . . . , vd are the children of v in T . For

all remaining nodes v ∈ V (T ′), let l′(v) = l(v). Now
∑

v∈V (T ′) l′(v) =
∑

v∈V (T ) l(v) ≥ k.

Thus by induction, G has a subdivision D′ with at most 2(h − 1) division vertices per edge,

and D has a (1, T ′)-layout such that qx ≤ l′(x) (sx ≤ l′(x)) for all nodes x ∈ V (T ′). For

each node x ∈ V (T ) at depth h − 1, let T (x) denote the subtree of T induced by x and its

children, and let each node of T (x) inherit its label from T . For every leaf node x ∈ V (T ′) at

depth h−1, apply Lemma 7.13 to the l′(x)-queue (stack) layout (D′[T ′
x], <x) and the labeled

tree T (x). Merging(-at-x) the resulting (1, T (x))-layout of D ′[T ′
x] with the (1, T ′)-layout of

D′ (for every leaf node x) gives rise to the desired (1, T )-layout of a subdivision D of G.

Since only the intrabag edges in the leaf nodes of T ′ are subdivided and they are subdivided

either zero or two times, D is a subdivision of G with an even number of division vertices

per edge. Moreover, D has at most 2h division vertices per edge. The final claim of the

lemma is immediate from the construction. Figure 7.1 illustrates the main concepts of the

proof.

For all integers d1, d2 > 0, a complete (d1, d2)-ary tree is a rooted tree in which all the

leaves are at the same depth, every non-leaf node at even depth has outdegree d1 and every

non-leaf node at odd depth has outdegree d2. If d1 = d2 = d then we speak of a complete

d-ary tree. The following special case of Lemma 7.14 will be useful.

Lemma 7.15. Let T be a subdivision of the complete (d1, d2)-ary tree of height h. Let h′ be

the height of T . Let α = (d1)
⌈h/2⌉(d2)

⌊h/2⌋. Then every k-queue (respectively, k-stack) graph

G has a subdivision D with an even number of division vertices per edge, and D has a simple

(1, T )-layout in which qx ≤ ⌈k/α⌉ (sx ≤ ⌈k/α⌉)) for every node x ∈ V (T ). Moreover, the

number of division vertices per edge is at most 2h′, or exactly 2h′ if all the leaves of T are at

depth h′.

Proof. Let l(x) = 0 for each non-leaf node x ∈ V (T ). Let l(x) = ⌈k/α⌉ for each leaf

node x ∈ V (T ). The number of leaves in the complete (d1, d2)-ary tree of height h is α.
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FIGURE 7.1: Illustration for Lemma 7.14. Given (a) a labelled tree T and (b) a 4-stack layout of G

(that is also a 4-queue layout), the algorithm produces a (1, T )-layout of a subdivision of G with (c)

sx ≤ l(x) or (d) qx ≤ l(x).

Subdividing the edges of a tree does not change the number of leaves. Thus T also has α

leaves. Therefore
∑

x∈V (T ) l(x) ≥ k. Since the non-leaf nodes are labeled 0, by Lemma 7.14,

G has a subdivision D with a (1, T )-layout such that for each leaf node x ∈ V (T ), qx ≤
l(x) = ⌈k/α⌉ (sx ≤ l(x) = ⌈k/α⌉), and for each non-leaf node x ∈ V (T ), qx ≤ l(x) = 0

(sx ≤ l(x) = 0). Thus the (1, T )-layout is simple. The claim about the number of division

vertices per edge follows immediately from Lemma 7.14.
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7.3.2 (k, H)-Layout into layout of G

For a graph G with a (k,H)-layout, we now show how to convert a layout of H into a layout

of G. First consider a (k, T )-layout in which T is a rooted tree. We will often define a

2-colouring of the edges of T using colours red and black. The edges of G mapped to red

edges of T will be associated with stacks, and those mapped to black edges of T will be

associated with queues. Let Er(T ) and Eb(T ) denote the sets of red and black edges of T .

Lemma 7.16. Let G be a graph with a (k, T )-layout for some rooted tree T . Suppose that

each edge and node of T is coloured red or black such that T has a topological vertex ordering

σ where the red edges form a stack and the black edges form a queue. For each node x ∈ V (T ),

let s′x = sx if x is red, and s′x = 0 if x is black. Similarly, let q ′x = qx if x is black, and q′x = 0 if

x is red. Let

λs = max
x∈V (T )







s′x +
∑

xy∈Er(T )

kxy +
∑

yx∈Er(T )

kyx







,

and

λq = max
x∈V (T )







q′x + max
y∈V (T ) : y≤σx

∑

yz∈Eb(T ) : x≤σz

kyz







.

Then G has an λs-stack λq-queue mixed layout, such that the edges of G that are mapped to

red nodes or edges of T are in stacks, and the edges of G that are mapped to black nodes or

edges of T are in queues.

Proof. First we label the nodes of T as forward or backward. Consider the nodes of T in the

order of their appearance in σ. Label the root node as forward or backward arbitrarily. Now

consider a non-root node x with incoming edge yx. Since σ is topological, y has already

been labelled. If yx is black then label x with the same label as that given to y. If yx is red

then label x with the opposite label to that given to y. Now create a vertex ordering π of G

by replacing each node x in σ by Tx if x is forward, and by
←−
Tx if x is backward. (Recall that

←−
Tx denotes the reverse ordering of Tx to that in the given (k, T )-layout.)

Let Er(G) and Eb(G) denote the sets of edges of G that are mapped to red edges/nodes

and black edges/nodes of T , respectively. We first prove that there is an edge λq-colouring

of Eb(G) such that no two monochromatic edges in Eb(G) are nested in π.

Let R be a rainbow in π formed from by the edges of Eb(G) and with the maximum

number of edges. Let the set of intrabag edges in R be denoted by Rintra, and the set of

interbag edges be denoted by Rinter. Then |R| = |Rintra|+ |Rinter|. Suppose the left endpoint

of the innermost edge of R is mapped to node x. Then the right endpoint of each edge in

R is mapped to a node z such that x ≤σ z. Intrabag edges mapped to distinct nodes of T

are not nested (and not crossing). Thus all the edges in Rintra are mapped to the same node
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of T . Hence all the edges of Rintra (if any) are mapped to x. Thus |Rintra| ≤ q′x. At least

one of the endpoints of each edge in Rinter is not mapped to x. Thus by the construction of

π, such endpoints appear in π either before or after all the endpoints of the edges in R intra.

Therefore the edges of Rintra are all nested inside the innermost edge of Rinter. Since the

black edges in T are not nested in σ, all the edges of Rinter have an endpoint mapped to the

same node y ∈ T . Since the edges in Rintra are nested inside the edges of Rinter, y ≤σ x.

Furthermore, since σ is a topological vertex-ordering of T , each edge of Rinter is mapped to

some outgoing edge of y. If two edges of Rinter are mapped to the same edge incident to y,

then by Lemma 5.10(b) they may be nested only if their edge colours in the (k, T )-layout are

different. Therefore, |Rinter| ≤
∑

z∈V (T ) : x≤σz kyz and thus |R| ≤ q′x +
∑

z∈V (T ) : x≤σz kyz.

By considering all choices of x and y ≤σ x in V (T ), we conclude that a rainbow in π formed

by the edges of Eb(G) may have at most λq edges. By Lemma 2.2, the edges of Eb(G) can

be coloured with λq colours such that no two monochromatic edges are nested.

We now define an edge λs-colouring of Er(G). We then prove that no two monochro-

matic edges in Er(G) cross. Consider the nodes of T in the order of their appearance in σ.

For each node x, colour the edges of G that are mapped to the red edges incident to x as fol-

lows. Two interbag edges of G that are mapped to the same outgoing red edge of x receive

the same colour if and only if they belong to the same colour class Ei ∈ {E1, E2, . . . Ek} in

the (k, T )-layout of G. Two interbag edges of G mapped to two distinct red edges incident

to x always receive distinct colours (regardless of whether they are incoming or outgoing).

If x is red, colour the intrabag edges mapped to x with distinct colours to those used on the

interbag edges mapped to the red edges incident to x, and so that <x admits an sx-stack

layout of G[Tx]. We now show that λs colours suffices for such a colouring. If the incoming

edge yx of x is red the edges of G mapped to yx use kyx colours out of λs colours, other-

wise 0 out of λs colours are used. Thus we have either λs − kyx or λs colours available for

colouring the edges of G mapped to x and the red outgoing edges xy1, xy2, . . . , xyp incident

to x. Clearly we can colour the edges of G mapped to xy1, xy2, . . . , xyp and x as described

above with kxy1 + kxy2 + · · · + kxyp + s′x distinct colours. Thus the number of colours used

is at most λs.

We now show that no two monochromatic edges e1, e2 ∈ Er(G) cross in π. That is,

monochromatic edges in Er(G) can be in the same stack. From the description of the

edge colouring, it is clear that if either e1 or e2 is an intrabag edge then the pair does

not form a monochromatic crossing. Thus it suffices to consider pairs of interbag edges.

Since the red edges in T are not crossing in σ, the only pairs of interbag edges that can

create a monochromatic crossing are those with endpoints in the same bag Tx. In that case,

if e1 and e2 are mapped to the same edge incident to x then e1 and e2 do not cross by

Lemma 5.10(c). If e1 and e2 are mapped to two distinct edges incident to x then e1 and e2
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are not monochromatic.

Lemma 7.17. Let H be a graph with a t-track layout {Vi : 1 ≤ i ≤ t} such that each node

in track Vi, 1 ≤ i ≤ t, has at most one neighbour in each track Vj , 1 ≤ j ≤ i − 1. Let G be a

graph with a (k,H)-track layout. Let

p = max
x∈V (H)

max
1≤ℓ≤t

∑

xy∈E(H) : track(y)=ℓ

kxy. (7.3)

Then replacing each node x in the t-track layout of H by (Hx, <x) from the (k,H)-track layout

of G, gives a (p, t)-track layout of G.

Proof. Define an edge colouring of G as follows. For each node x of T in Vi, and for each

ℓ, i < ℓ ≤ t, consider the set of edges Eℓ incident to x that have their other endpoint in Vℓ.

Colour the edges of G that are mapped to the edges of Eℓ with p colours such that any two

edges e1, e2 ∈ E(G) receive the same colour if and only if they are mapped to the same edge

xy ∈ Eℓ and they belong to the same colour class in the (k,H)-layout of G. This is possible

with at most p colours by (7.3).

We now prove that there are no monochromatic X-crossings with this edge p-colouring.

Consider two monochromatic edges e1, e2 ∈ E(G). If e1 and e2 are mapped to the same edge

of H then by the above colouring procedure and by the properties of the edge colouring in

the (k,H)-track layout of G, edges e1 and e2 do not form a monochromatic X-crossing.

If e1 and e2 are mapped to two edges xy, zq ∈ E(H) that have no endpoint in common,

then e1 and e2 do not form a monochromatic X-crossing since xy and zq do not form a

monochromatic X-crossing in the t-track layout of H. Finally, if e1 and e2 are mapped

to two edges xy, xz ∈ E(H) that share an endpoint x, then e1 and e2 can only form a

monochromatic X-crossing if y and z are in the same track Vℓ. Say x ∈ Vi. Since x has

at most one neighbour in V1, V2, . . . , Vi−1, we have that ℓ > i. Therefore, by the above

colouring procedure e1 and e2 do not have the same colour.

Lemma 7.18. Let d ≥ 2 be an integer. Let G be a graph with a simple (1, T0)-layout for

some tree T0, such that every leaf node x has qx ≤ 1, and every non-leaf node x has qx = 0

and deg+(x) = d. Then there is a tree T , such that the subdivision D obtained from G by

subdividing each intrabag edge once has a (2, T )-track layout in which every node x ∈ V (T )

has
∑

xy∈E(T )

kxy +
∑

yx∈E(T )

kyx ≤ d + 1, and
∑

xy∈E(T )

kxy ≤ d . (7.4)

Proof. For every leaf node x ∈ V (T0), let Dx be the subdivision of G[T0x] obtained by

subdividing each edge of G[T0x] once. By the proof of Lemma 7.1, Dx has a (2, T ∗)-track

layout where T ∗ is a single edge comprised of a root node adjacent to one leaf, such that
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all the original vertices of G[T0x] are mapped to the root and are ordered by <x, and all

the division vertices are mapped to the leaf node in T ∗. For each leaf node x ∈ V (T0)

merge-at-x the (1, T0)-layout of G and the (2, T ∗)-track layout of G[T0x]. In the resulting

(2, T )-layout of D there are no intrabag edges. Thus we have a (2, T )-track layout where T

is the subdivision of T0 with each leaf-edge of T0 subdivided once. Let Vℓ be the set of leaves

in T . Let Eℓ be the set of edges of T with an endpoint in Vℓ. All the interbag edges of D

that are mapped to the edges in E \Eℓ are coloured with one colour. All the interbag edges

of D that are mapped to the edges in Eℓ are coloured with at most two colours. Thus, each

node x ∈ V (T ) that has no neighbour in Vℓ satisfies (7.4). Each node x ∈ V (T ) that has a

neighbour in Vℓ has degree at most 2. Since the incoming edge yx of x has kyx ≤ 1 and its

outgoing edge xv has kxv ≤ 2, x satisfies (7.4) since d ≥ 2. Finally, each leaf node x has

kyx ≤ 2 where yx is the incoming edge of x. Thus x satisfies (7.4) since d ≥ 2.

7.3.3 Queue layouts

Theorem 7.5. For every integer d ≥ 2, every graph G has a d-queue subdivision with

2⌈logd qn(G)⌉+ 1 division vertices per edge.

Proof. Let T0 be the complete d-ary tree of height h = ⌈logd qn(G)⌉. By Lemma 7.15 with

d1 = d2 = d, G has a subdivision D0 with 2h division vertices per edge, such that D0 has

a simple (1, T0)-layout in which every non-leaf node x ∈ V (T0) has qx = 0, and every leaf

node x ∈ V (T0) has qx ≤ 1. Let D be the subdivision of G obtained from D0 by subdividing

each intrabag edge (in the (1, T0)-layout of D0) once. Clearly D has 2⌈logd qn(G)⌉ + 1

division vertices per edge of G. By Lemma 7.18 applied to D0, there exists a tree T such

that D has a (2, T )-track layout in which every node x ∈ V (T ) has

∑

xy∈E(T )

kxy ≤ d . (7.5)

Let all the edges and nodes of T be coloured black. By Lemma 5.16, T has a topological

vertex ordering σ that admits a 1-queue layout. By (7.5) and since every node x in T has

qx = 0, we have

λq = max
x∈V (T )







qx + max
y∈V (T ) : y≤σx

∑

yz∈E(T ) : x≤σz

kyz







≤ max
x∈V (T )







∑

xv∈E(T )

kxv







≤ d .

(7.6)

Therefore, by Lemma 7.16, D has a d-queue layout, as illustrated in Figure 7.2 for

d = 2.

We now prove that the number of division vertices per edge in Theorem 7.5 is optimal
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FIGURE 7.2: 2-queue subdivision of an 8-queue graph.

up to a constant factor.

Lemma 7.19. Let D be a q-queue subdivision of a graph G with at most k division vertices per

edge. Then G has a ( 1
2(2q + 2)2k − 1)-queue layout.

Proof. Let qi = 1
2(2q + 2)2

i − 1, and ki = k/2i. We proceed by induction on i ≥ 0 with the

hypothesis: there exists a subdivision Di of G with at most ki division vertices per edge, and

Di has a qi-queue layout. Consider the base case with i = 0. Let D0 = D. Then D0 is a

subdivision of G with k0 = k division vertices per edge, and D0 has a q0-queue layout, since

q0 = q.

Suppose that there exists a subdivision Di of G with at most ki division vertices per

edge, and Di has a qi-queue layout. By contracting every second division vertex on the path

representing each edge of G in Di, we obtain a graph Di+1 such that Di is a subdivision of

Di+1 with at most one division vertex per edge, and Di+1 is a subdivision of G with at most

ki/2 division vertices per edge. By Lemma 7.9, Di+1 has a 2qi(qi + 1)-queue layout. Now

ki/2 = ki+1, and 2qi(qi + 1) ≤ 2(qi + 1)2 − 1 = 1
2 (2q + 2)2

i+1 − 1 = qi+1. Thus the inductive

hypothesis holds for all i.

With i∗ = ⌊log2 k⌋ + 1, we have ki∗ < 1. The only subdivision of G with less than

one division vertex per edge is G itself. Thus G has a qi∗-queue layout, and qi∗ = 1
2(2q +

2)(2
⌊log2 k⌋+1) − 1 ≤ 1

2(2q + 2)(2
1+log2 k) − 1 ≤ 1

2(2q + 2)2k − 1.

Theorem 7.6. Let D be a d-queue subdivision of a graph G for some d ≥ 2. Then there is an

edge of G with at least 1
6 logd qn(G) division vertices in D.

Proof. By Lemma 7.19, G has ( 1
2(2d + 2)2k − 1)-queue layout. Thus qn(G) ≤ 1

2(2d +

2)2k − 1, and qn(G) ≤ 1
2(3d)2k − 1 since d ≥ 2. That is, k ≥ 1

2 log3d 2(qn(G) + 1) =
1
2(log3d d)(logd 2(qn(G) + 1)) ≥ 1

6 logd 2(qn(G) + 1) since d ≥ 2. Therefore k ≥ 1
6 logd qn(G),

as claimed. Note that log3d d → 1 for large d, and the lower bound on k tends to
1
2 logd 2(qn(G) + 1).
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7.3.4 Stack layouts

Theorem 7.7. For every integer d ≥ 2, every graph G has a (d + 1)-stack subdivision with

2⌈logd sn(G)⌉ − 2 division vertices per edge.

Proof. Let k = sn(G). Apply Lemma 7.15 with T the complete d-ary tree of height h =

⌈logd k⌉ − 1. Then α = d⌊h/2⌋+⌈h/2⌉ = dh ≥ d(logd k)−1 = k/d. By Lemma 7.15, G has a

subdivision D with 2h division vertices per edge, such that D has a simple (1, T )-layout in

which every non-leaf node x ∈ V (T ) has deg+(x) = d and sx = 0, and every leaf node

x ∈ V (T ) has sx ≤ ⌈k/α⌉ ≤ d. Let all the edges and nodes of T be coloured red. Define λs

as in Lemma 7.16. That is, λs is the maximum, taken over all nodes x ∈ V (T ), of

sx +
∑

xy∈E(T )

kxy +
∑

yx∈E(T )

kyx (7.7)

For leaf nodes x, (7.7) is at most d+0+1 = d+1. For non-leaf nodes x, (7.7) is 0+ d+1 =

d + 1. Thus λs = d + 1. By Lemma 5.17, T has a topological ordering that admits a 1-stack

layout, and by Lemma 7.16, D has a (d+1)-stack layout. The stack layout of D is illustrated

in Figure 7.3 for d = 2.

FIGURE 7.3: 3-stack subdivision of a 16-stack graph.

Recall that Open Problem 1.2 asks whether queue-number is bounded by stack-number.

We make the following contribution to the study of this problem.

Theorem 7.8. The following are equivalent:

(1) queue-number is bounded by stack-number,

(2) bipartite 3-stack graphs have bounded queue-number,

(3) bipartite 3-stack graphs have bounded 2-track thickness.

Moreover, if queue-number is bounded by stack-number then queue-number is bounded by a

polynomial function of stack-number.
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Proof. That (1) implies (2) is immediate. Theorem 7.3 proves that (2) and (3) are equiva-

lent. It remains to prove that (2) implies (1). Suppose that every bipartite 3-stack graph has

queue-number at most some constant q. Consider an arbitrary graph G. By Lemma 7.11, G ′

has a (sn(G) + 1)-stack layout. Thus, by Theorem 7.7, G′ has a 3-stack subdivision D with

2(2⌈log2(sn(G)+1)⌉−2)+1 = 4⌈log2(sn(G)+1)⌉−3 division vertices per edge. That is, G has

a 3-stack subdivision with 2⌈log2(sn(G)+1)⌉−1 division vertices per edge. Since each edge

of G is subdivided an odd number of times, D is bipartite. By assumption, D has queue-

number at most q. By Lemma 7.19, G has queue-number 1
2 (2q+2)8⌈log2(sn(G)+1)⌉−6−1. Since

q is constant, queue-number is bounded by a polynomial function of stack-number.

Theorem 7.9. For every integer d ≥ 2, every graph G has a (d + 1)-stack subdivision with

1 + 2⌈logd qn(G)⌉ division vertices per edge.

Proof. Apply Lemma 7.15 with d1 = d2 = d, h = ⌈logd qn(G)⌉, and T0 a complete d-ary

tree of height h. Then G has a subdivision D0 with 2⌈logd qn(G)⌉ division vertices per edge

such that D0 has a simple (1, T0)-layout in which every non-leaf node x ∈ V (T ) has sx = 0,

and every leaf node has x ∈ V (T ) has qx ≤ 1. Let D be the subdivision of G obtained

from D0 by subdividing each intrabag edge (in the (1, T0)-layout of D0) once. Clearly D has

2⌈logd qn(G)⌉+1 division vertices per edge of G. By Lemma 7.18, there exists a tree T such

that D has a (2, T )-track layout in which every node x ∈ V (T ) has

max
x∈V (T )







∑

xy∈E(T )

kxy +
∑

yx∈E(T )

kyx







≤ d + 1 .

Colour all the edges and nodes of T red. Since every node x ∈ V (T ) has sx = 0,

max
x∈V (T )







sx +
∑

xy∈E(T )

kxy +
∑

yx∈E(T )

kyx







≤ d + 1 .

By Lemma 5.17, T has a 1-stack layout, and by Lemma 7.16, D has a (d+1)-stack layout.

7.3.5 Mixed layouts

Theorem 7.10. For all integers s ≥ 1 and q ≥ 1, every graph G has an s-stack q-queue

subdivision with 4⌈log(s+q) q sn(G)⌉ division vertices per edge.

Proof. Apply Lemma 7.15 with d1 = s + q, d2 = q, h = 2⌈log(s+q)q sn(G)⌉, and T a complete

(d1, d2)-ary tree of height h. Then G has a subdivision D with 4⌈log(s+q) q sn(G)⌉ division

vertices per edge, and D has a simple (1, T )-layout where maxx∈V (T ){sx} ≤ 1 and where

every node v ∈ V (T ) at even depth has deg+(v) ≤ s + q and every node v ∈ V (T ) at odd
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depth has deg+(v) ≤ q. Colour the edges of T as follows. For each non-leaf node v ∈ V (T )

at even depth, colour its outgoing edges red or black so that at most s outgoing edges are

red and at most q are black. For nodes v ∈ V (T ) at odd depth, colour the outgoing edges

of v black. Clearly this edge colouring is good (see page 71 to recall the definition of good

edge colouring). By Lemma 5.18, T has a topological ordering that admits a 1-queue layout

of T [Eb] and a 1-stack layout of T [Er].

Colour all the vertices of T red. Consequently, every node x in T has q ′
x = 0. (See

Lemma 7.16 to recall the definitions of q ′x and s′x.) For each node x ∈ V (T ), let deg+
black(x)

denote the outdegree of x in T [Eb]. Define λs and λq as in Lemma 7.16. Then

λq = max
x∈V (T )







q′x + max
y∈V (T ) : y≤σx

∑

yz∈Eb(T ) : x≤σz

kyz







≤ max
x∈V (T )







∑

xv∈Eb(T )

kxv







≤ max
x∈V (T )

deg+
black(x)

≤ q .

By the properties of the simple (1, T )-layout of D every non-leaf node x of T has s ′x = 0

and every leaf node x of T has s′x ≤ 1. For a node x in T , let degred(x) denote the degree of

x in T [Er]. Since h is even, the height of T is even and thus all the edges incident to leaves

of T are black. For every leaf node x ∈ V (T ) that implies that degred(x) = 0. Therefore,

λs = max
x∈V (T )







s′x +
∑

xy∈Er(T )

kxy +
∑

yx∈Er(T )

kyx







≤ max

{

max
x∈V (T ) : deg(x)=1

s′x , max
x∈V (T ) : deg(x)6=1

degred(x)

}

≤ s .

By Lemma 7.16, the subdivision D of G has an s-stack q-queue mixed layout.

Theorem 7.11. For all s ≥ 1 and q ≥ 1, every graph G has an s-stack q-queue subdivision

with 2 + 4⌈log(s+q) q qn(G)⌉ division vertices per edge.

Proof. Apply Lemma 7.15 with d1 = s + q, d2 = q, h = 2⌈log(s+q)q qn(G)⌉, and T a tree

obtained from a complete (d1, d2)-ary tree of height h by subdividing each of its leaf-edges

once. The height of T is h+1 and all of its leaves are at depth h+1. Then G has a subdivision

D with 2+4⌈log(s+q) q qn(G)⌉ division vertices per edge, and D has a simple (1, T )-layout in
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which every non-leaf node x ∈ V (T ) has qx = 0, and every leaf node x ∈ V (T ) has qx ≤ 1.

Colour the edges of T as follows. For each node x ∈ V (T ) at odd depth, colour all

its outgoing edges black. For each node x ∈ V (T ) at even depth, if depth(x) < h colour

each of its outgoing edges red or black such that s are red and q are black, otherwise,

depth(x) = h, colour its only outgoing edge red. Clearly this edge colouring of T is good.

Thus by Lemma 5.18, has a topological vertex ordering, such that the black edges form a

queue, and the red edges form a stack.

Colour all the vertices of T black. Consequently, every node x ∈ V (T ) has s ′x = 0. (See

Lemma 7.16 to recall the definitions of q ′x and s′x). For each node x ∈ V (T ), let degred(x)

denote the degree of x in T [Er]. Define λs and λq as in Lemma 7.16. Then

λs = max
x∈V (T )







s′x +
∑

xy∈Er(T )

kxy +
∑

yx∈Er(T )

kyx







≤ max
x∈V (T )

{degred(x)} ≤ s .

By the properties of the simple (1, T )-layout of D every non-leaf node x of T has q ′
x = 0

and every leaf node x of T has q′x ≤ 1. By construction, the edges incident to leaves of T

are red. Thus every leaf node x ∈ V (T ) has degree zero in T [E b]. Now λq is the maximum,

taken over all nodes x ∈ V (T ), of

q′x + max
y∈V (T ) : y≤σx

∑

yz∈Eb(T ) : x≤σz

kyz . (7.8)

Since nodes of T appear in σ according to nondecreasing depth, for each node x ∈ V (T )

at depth i, the summation in (7.8) may be nonzero only for nodes y ∈ V (T ) at depth i − 1

and i. Since the nodes at depth h and h + 1 have outdegrees zero in T [E b], for leaf nodes

x, (7.8) is 1 + 0 = 1. Since the nodes at depth less than h have outdegrees q in T [E b], for

non-leaf nodes x, (7.8) is 0 + max{q, 0} = q. Since q ≥ 1, by Lemma 7.16, the subdivision

D of G has an s-stack q-queue mixed layout.

Theorems 7.10 and 7.11 with s = 1 and q = 1 imply:

Theorem 7.12. Every graph G has a 1-stack 1-queue subdivision with min{4 ⌈log2 sn(G)⌉, 2+

4 ⌈log2 qn(G)⌉} division vertices per edge.

Corollary 7.1. Let G be a graph family with bounded stack-number and/or bounded queue-

number. Then every graph in G has a 1-stack 1-queue subdivision with a bounded number of

division vertices per edge.

Since the stack-number of a proper minor-closed graph family is bounded [11], Corol-

lary 7.1 implies that every graph from such a family has a 1-stack 1-queue subdivision with

a constant number of division vertices per edge.
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7.3.6 Track layouts

First we consider layouts of subdivisions on two tracks.

Theorem 7.13. For every integer d ≥ 2, every graph G has a (d+1, 2)-track subdivision D with

4⌈logd qn(G)⌉+ 3 division vertices per edge. That is, D has 2-track thickness θ2(D) ≤ d + 1.

Proof. By Theorem 7.5, G has a d-queue subdivision D0 with 2⌈logd qn(G)⌉ + 1 division

vertices per edge. By Lemma 7.1, D = D′
0 has a (d + 1, 2)-track layout.

We now consider 3-track layouts of subdivisions.

Theorem 7.14. For every integer d ≥ 2, every graph G has a (d, 3)-track subdivision with

1 + 2⌈logd qn(G)⌉ division vertices per edge.

Proof. Let T0 be the complete d-ary tree of height h = ⌈logd qn(G)⌉. By Lemma 7.15, G has

a subdivision D0 with 2⌈logd qn(G)⌉ division vertices per edge such that D0 has a simple

(1, T0)-layout in which every non-leaf node x ∈ V (T0) has deg+(x) = d and qx = 0, and

every leaf node x ∈ V (T0) has qx ≤ 1. By Lemma 7.18, there is a tree T , such that the sub-

division D = D′
0 obtained by subdividing each intrabag edge of D0 once has a (2, T )-track

layout in which every node x ∈ V (T ) has
∑

xy∈E(T ) kxy ≤ d and deg+(x) ≤ d. Consider the

(edge-monochromatic) track layout of T produced by Lemma 5.19. By Lemma 7.17 with

p = d, for some t, D has a (d, t)-track layout with every edge having span one, as illustrated

in Figure 7.4 for d = 2. By Lemma 5.7(b) with s = 1 and k = d, D has a (d, 3)-track

layout

Finally we consider layouts of subdivisions on four or more tracks, and with no X-

crossings.

Theorem 7.15. For every integer d ≥ 2, every graph G has a bipartite (d+2)-track subdivision

with at most 8⌈logd qn(G)⌉ + 1 division vertices per edge.

Proof. Let T0 be the complete d-ary tree of height h = ⌈logd qn(G)⌉. Let T be the subdivision

of T0 obtained as follows. For each node x ∈ V (T0) at depth at most h − 2, subdivide its

rightmost outgoing edge twice, and subdivide the remaining d − 1 outgoing edges three

times. For each non-leaf node x ∈ V (T0) that is incident to a leaf-edge, subdivide its

rightmost outgoing edge once, and subdivide the remaining d − 1 outgoing edges twice.

The resulting tree T has height h + 3h − 1 = 4⌈logd qn(G)⌉ − 1. By Lemma 7.15, G has a

subdivision D0 with at most 8⌈logd qn(G)⌉−2 division vertices per edge and a simple (1, T )-

layout, such that every non-leaf node x ∈ V (T ) has qx = 0, and every leaf node x ∈ V (T )

has qx ≤ 1. Moreover, every edge of G has an even number of division vertices in D.
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FIGURE 7.4: (2, 4)-Track layout of subdivision of K8 before wrapping.

Let H the graph obtained from T by adding a 4-cycle (x, ax, bx, cx) to each leaf-node

x ∈ V (T ), as illustrated in Figure 7.5. Now subdivide every intrabag edge vw of D0 three

times. We obtain a subdivision D of G in which every edge of G has an odd number of

division vertices in D. Thus D is bipartite, and has at most 8⌈logd qn(G)⌉ + 1 division

vertices per edge.

Create a (1,H)-layout of D from the simple (1, T )-layout of D0 as follows. For each

intrabag edge vw ∈ E(D0) mapped to a leaf-node x ∈ E(T ) such that v <x w in the (1, T )-

layout, place the division vertex avw incident to v in the bag Hax , place the middle division

vertex bvw in the bag Hbx
, and place the division vertex cvw incident to w in the bag Hcx.

Since the intrabag edges mapped to x in the (1, T )-layout of D0 induce a 1-queue layout,

we can order the division vertices in Hax , Hbx
and Hcx by the queue order of the edges they

subdivide (recall equation (2.1)). As in Lemma 7.3(c), there is no X-crossing in the resulting

layout. Thus we have an H-track layout of D.

Now create a track layout of H indexed by

{(i, j) : 0 ≤ i ≤ 3h, 1 ≤ j ≤ d} ∪ {(3h + 1, 1)} .

Nodes are ordered in the obvious way so that there are no X-crossings, as illustrated in

Figure 7.5.

Firstly, consider a node x ∈ V (H) that corresponds to a node of T0 at depth i ≤ h− 2 in

T0. Recall that the first d − 1 outgoing edges of x in T0 are subdivided three times, and the

rightmost outgoing edge in T0 is subdivided twice. Denote the d outgoing paths at x in H
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FIGURE 7.5: Track layout of H .

by

(x, α1, β1, γ1), (x, α2, β2, γ2), . . . , (x, αd−1, βd−1, γd−1), (x, βd, γd) .

Position x in track (3i, 1). For each 1 ≤ j ≤ d − 1, position αj in track (3i, j + 1). For each

1 ≤ j ≤ d, position βj in track (3i + 1, 1), and position γj in track (3i + 2, 1).

Now consider a node x ∈ V (H) that corresponds to a node of T0 at depth h − 1 in T0.

Recall that the first d− 1 outgoing edges of x in T0 are subdivided twice, and the rightmost

outgoing edge in T0 is subdivided once. Denote the d outgoing paths at x in H by

(x, α1, β1), (x, α2, β2), . . . , (x, αd−1, βd−1), (x, βd) .

Position x in track (3h− 3, 1). Position each node αj , 1 ≤ j ≤ d− 1, in track (3h− 3, j + 1).

Position each node βj , 1 ≤ j ≤ d, in track (3h − 2, 1).

Finally consider a node x ∈ V (H) that corresponds to a leaf node of T0 (at depth h in

T0). Position x in track (3h−1, 1), position ax in track (3h, 1), position bx in track (3h+1, 1),

and position cx in track (3h, 2).

Now wrap the track layout of H using Lemma 5.5(b) with k = 1. The partial span s = 1,

so we are wrapping modulo 3 = 2s + 1. Observe that the track layout of H is indexed by:

{

(i, j) : i ≡ 0 (mod 3), 0 ≤ i ≤ 3h, 1 ≤ j ≤ d
}

∪
{

(i, 1) : i ≡ 1 (mod 3), 0 ≤ i ≤ 3h + 1
}

∪
{

(i, 1) : i ≡ 2 (mod 3) 0 ≤ i ≤ 3h
}

.

Thus in Lemma 5.5(b), we have t′0 = d, t′1 = 1, and t′2 = 1. Thus H has a (d + 2)-track

layout. In Figure 7.5 we indicate the new track assignment by A1, . . . , Ad, B,C, where for
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each 0 ≤ i ≤ h, the tracks (3i, j) are mapped Aj , the track (3i + 1, 1) is mapped to B, and

the track (3i + 2, 1) is mapped to C. Note that for i = 3h we use the assumption that d ≥ 2.

It is easily seen that in the (d + 2)-track layout of H, every node has at most one neigh-

bour on any other track. Thus replacing each node x in the track layout of H by Hx, we

obtain a (d + 2)-track layout of D, as in Lemma 7.17.

Note that the bound on the number of division vertices per edge in Theorem 7.15 can

be slightly improved, at the expense of D no longer being bipartite. We will need D to be

bipartite in Section 8.3.

The following result proves that in each of Theorems 7.13, 7.14 and 7.15, the bound on

the number of division vertices per edge is within a constant factor of optimal for any graph.

Theorem 7.16. In every (k, t)-track subdivision D of a graph G there is an edge with at least
1
2 log2kt 2 qn(G) division vertices.

Proof. Let r be the maximum number of division vertices in an edge of G in the subdivision

D. By Lemma 5.14, D has k(t − 1)-queue layout. By Lemma 7.19, qn(G) ≤ 1
2(2k(t − 1) +

2)2r − 1 ≤ 1
2 (2kt)2r. Hence 2 qn(G) ≤ (2kt)2r and r ≥ 1

2 log2kt 2 qn(G).

7.4 Planar subdivisions

We have seen that every graph has a 3-stack subdivision, a 2-queue subdivision, a 4-track

subdivision, and a subdivision with bipartite thickness at most 3. It is interesting to consider

which graphs have s-stack subdivisions for each 1 ≤ s ≤ 2; which graphs have 1-queue

subdivisions; which graphs have t-track subdivisions for 2 ≤ t ≤ 3; and which graphs have

subdivisions with 2-track thickness at most t for 1 ≤ t ≤ 2. In this section we completely

answer these questions. As the section title suggests, planar graphs will play a leading role

in the characterizations.

7.4.1 Planar stack layouts

Theorem 7.17. Every graph has a 3-stack subdivision. A graph has a 2-stack subdivision if

and only if it is planar. A graph has a 1-stack subdivision if and only if it is outerplanar.

Proof. By Theorem 7.1 with d = 2 every graph has a 3-stack subdivision. The 2-stack graphs

are precisely the subgraphs of planar Hamiltonian graphs [7]. Thus a non-planar graph

does not have a 2-stack subdivision. Many authors [38, 127, 159] have observed that

every planar graph has a subdivision that is a subgraph of a planar Hamiltonian graph

(see Lemma 7.20 below), and hence has a 2-stack layout. The 1-stack graphs are precisely

the outerplanar graphs [7]. Thus, for any outerplanar graph, the graph itself is a 1-stack
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subdivision. Conversely, if a subdivision of a graph G is outerplanar then so is G. Thus only

the outerplanar graphs have 1-stack subdivisions.

We now consider how many division vertices per edge are needed in a 2-stack subdivi-

sion of any planar graph. Pach and Wenger [159] proved that the subdivision of a planar

graph with two division vertices per edge is the subgraph of a Hamiltonian planar graph,

and hence has a 2-stack layout. Kaufmann and Wiese [127] and Di Giacomo et al. [38]

improve this result by showing that the subdivision G′ of a planar graph G with one division

vertex per edge is the subgraph of a Hamiltonian planar graph, and hence has a 2-stack

layout. (Note that Pach and Wenger [159] were more interested in the total number of ver-

tices in the Hamiltonian supergraph rather than the number of division vertices per edge.

Di Giacomo et al. [38] also prove that the division vertex x of each edge vw is between v

and w in the 2-stack layout.) Here we give a new proof of the above result in [38, 127],

with the additional property that the Hamiltonian supergraph is bipartite.

Lemma 7.20. For every planar graph G, the subdivision G′ of G with one division vertex per

edge is the subgraph of a bipartite Hamiltonian planar graph, and hence has a 2-stack layout.

Proof. Without loss of generality G is a triangulation. Otherwise we can add edges to G so

that every face is a 3-cycle. Let V = V (G). Now subdivide every edge once. Let X be the set

of these division vertices. Finally add a single vertex to each face adjacent to the six vertices

on that face. Let Y be the set of these vertices. We obtain a planar triangulation H. Observe

that {V,X, Y } is a vertex 3-colouring of H. Thus every triangle of H contains one vertex

from each of V , X and Y . Every such triangle forms a face of H. Therefore every triangle

in H is a face, and H has no separating triangles. Since H is a triangulation, by the classical

result of Whitney [200], H has a Hamiltonian cycle C.

The subgraph of H induced by V ∪X is G′. Thus H and G′ are 2-stack graphs. We now

construct a bipartite Hamiltonian planar graph W from H such that G′ is a subgraph of W .

Consider a face f of G′. Let x be the vertex adjacent to every vertex of f in H. Exactly

two edges incident to x are in C. Say xv, xw ∈ C, where v,w ∈ f . Delete all the edges

incident to x except xv and xw. Clearly the resulting graph remains Hamiltonian. In the

case that the distance from v to w along the boundary of f is odd, subdivide the edge xv.

The resulting graph W is clearly Hamiltonian. It is easily verified that each face of W is an

even cycle. Thus W is bipartite.

7.4.2 Planar queue and track layouts

Recall that Open Problem 6.1 asks whether planar graphs have bounded queue-number.

We make the following contribution to the study of this problem, which is analogous to
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Theorem 7.8 for arbitrary graphs. Recall from Table 6.1 that the best known upper bound

on the queue-number of planar graphs is O(
√

n).

Theorem 7.18. Let F(n) be the family of functions O(1) or O(polylog n). The following are

equivalent:

(1) n-vertex planar graphs have queue-number in F(n),

(2) n-vertex bipartite Hamiltonian planar graphs have queue-number in F(n),

(3) n-vertex bipartite Hamiltonian planar graphs have 2-track thickness in F(n).

Proof. That (1) implies (2) is immediate. Theorem 7.3 proves that (2) and (3) are equiva-

lent. It remains to prove that (3) implies (1). Suppose that every n-vertex bipartite Hamil-

tonian planar graph has 2-track thickness at most some function f(n) ∈ F(n). Let G be an

n-vertex planar graph. By Lemma 7.20, there is a bipartite Hamiltonian planar graph W

containing G′ as a subgraph. Observe that W has n + (3n− 6) + 2(2n− 4) < 8n vertices. By

assumption, W has 2-track thickness θ2(W ) ≤ f(8n), and since G′ is a subgraph of W , we

have θ2(G
′) ≤ f(8n). By Lemma 7.2, G has queue-number at most (f(8n))2 ∈ F(n).

We now answer the questions discussed at the start of this section in the case of queue

and track layouts.

Lemma 7.21. Every n-vertex planar graph G has a subdivision D with at most n− 2 division

vertices per edge such that D admits an n-track layout with every edge having span one.

Proof. By the classical result of Fáry [79] and Wagner [192], G has a straight-line plane

drawing. Rotate such a drawing so that every vertex has a unique Y -coordinate. Draw n

lines parallel to the X-axis, one through each vertex, and subdivide every edge at the point

at which it crosses a line. The subdivision D obtained has at most n − 2 division vertices

per edge. Now consider each line to be a track. Since there are no crossings in the drawing,

there are no X-crossings in the track assignment of D. Thus we have an n-track layout of D

with every edge having span one.

Theorem 7.19. Every graph has a 2-queue subdivision. A graph has a 1-queue subdivision if

and only if it is planar.

Proof. By Theorem 7.5 with d = 2 every graph has a 2-queue subdivision. Since 1-queue

graphs are planar [114], non-planar graphs do not have 1-queue subdivisions. For any pla-

nar graph G, the subdivision D of G from Lemma 7.21 has a 1-queue layout by Lemma 5.14.

Note that this conclusion can also be reached by observing that D is arched levelled planar

(see [114]).
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Theorem 7.20. Every graph has a 4-track subdivision. A graph has a 3-track subdivision if and

only if it is planar. A graph has a 2-track subdivision if and only if it is a forest of caterpillars.

Proof. By Theorem 7.15 with d = 2 every graph has a 4-track subdivision. By Lemma 8.4, a

3-track graph is planar. Thus non-planar graphs do not have 3-track subdivisions. For any

planar graph G, the subdivision of G from Lemma 7.21 can be wrapped into a 3-track layout

by Lemma 5.7(b). By Lemma 2.4, a graph has a 2-track layout if and only if it is a forest

of caterpillars. If a subdivision of a graph G is a forest of caterpillars then so is G. Thus a

graph has a 2-track subdivision if and only if it is a forest of caterpillars.

We expect that the bound on the number of division vertices per edge in Lemma 7.21

can be improved.

Open Problem 7.2. Is there a function f such that every planar graph G has a subdivision

D with f(qn(G)) division vertices per edge, and D has a 1-queue layout and/or a 3-track

layout?

Theorem 7.21. Every graph has a subdivision with 2-track thickness at most 3. A graph has a

subdivision with 2-track thickness at most 2 if and only if it is planar. A graph has a subdivision

with 2-track thickness at most 1 if and only if it is a forest of caterpillars.

Proof. The first claim is Theorem 7.13 with d = 2. If the 2-track thickness of a graph G is at

most 2, then sn(G) ≤ 2 by Lemma 5.10(c), and thus G is planar [7]. Thus no non-planar

graph has a subdivision with 2-track thickness at most 2. By Lemma 7.21, every planar

graph has a subdivision D that admits an (edge-monochromatic) track layout with every

edge having span one. By Lemma 5.7(a), such a track layout can be wrapped into a (2, 2)-

track layout. That is, θ2(D) ≤ 2. This proves the second claim. By Lemma 2.4, a graph has

2-track thickness at most 1 if and only if it is a forest of caterpillars. If a subdivision of G is

a forest of caterpillars then so is G. This proves the third claim.

7.4.3 Planar mixed layouts

Since the stack-number of planar graphs is at most four [207], Theorem 7.12 implies that

every planar graph has a 1-stack 1-queue subdivision with eight division vertices per edge.

Although asymptoticly much weaker than Theorem 7.10, the following result gives a better

bound on the number of division vertices per edge for graphs with small stack-number.

Lemma 7.22. For every integer s ≥ 1, every graph G has a s-stack 1-queue subdivision with

at most ⌈sn(G)/s⌉ division vertices.

Proof. Let k = ⌈sn(G)/s⌉. Let h = ⌊ k
2⌋. Let T be the path on 2h edges rooted at the

‘middle’ vertex r. Thus T has height h. Label each node x ∈ V (T ) by l(x) = s. Then
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∑

x l(x) = (2h + 1)s = (2⌊k
2⌋ + 1)s ≥ ks = ⌈sn(G)/s⌉s ≥ sn(G). By Lemma 7.14, G has

a subdivision D with at most 2h ≤ k division vertices per edge, and D has a (1, T )-layout

such that sx ≤ s for all nodes x ∈ V (T ).

Change the root of T from r to one of the two leaves of T and redirect the edges ac-

cordingly. Now every node in T has at most one outgoing edge. Colour all the edges of T

black and all the nodes of T red. Since all the edges are black, by Lemma 5.18, T has a

topological ordering σ that admits a 1-queue layout of T . Furthermore, since there are no

red edges in T ,

max
x∈V (T )







s′x +
∑

xy∈Er(T )

kxy +
∑

yx∈Er(T )

kyx







≤ s .

Since there are no black nodes and since every node has at most one black outgoing edge

max
x∈V (T )







q′x + max
y∈V (T ) : y≤σx

∑

yz∈Eb(T ) : x≤σz

kyz







≤ max
x∈V (T )

∑

xv∈Eb(T )

kxv ≤ 1 .

(See Lemma 7.16 to recall the definitions of q ′x and s′x). Therefore by Lemma 7.16, D

has an s-stack 1-queue mixed layout.

By Lemma 7.22 with s = 1 and since planar graphs have 4-stack layouts [207] we have:

Lemma 7.23. Every planar graph has a 1-stack 1-queue subdivision with four division vertices

per edge.

Similar bounds can be be obtained for the number of division vertices per edge in a

1-stack 1-queue subdivision of a graph with small stack-number (see Table 6.1).

Lemma 7.23 provides a partial solution to the following open problem by Heath and

Rosenberg [114], who conjectured an affirmative answer.

Open Problem 7.3. [114] Does every planar graph have a 1-stack 1-queue mixed layout?

7.5 Bibliographic notes

The results of this chapter are the subject of [56].



Chapter 8

Three-Dimensional Graph Drawings

In this chapter we prove the following intrinsic relationship between 3D drawings and track

layouts.

Theorem 8.1. Every graph with track-number tn(G) ≤ t has a 2t × 4t × 4t⌊ n
t ⌋ 3D drawing

with O(t2n) volume. Conversely, if a graph G has an A × B × C 3D drawing then G has

track-number tn(G) ≤ 2AB.

This theorem and the bounds on track-number derived in Chapters 6 and 7 imply a num-

ber of results on 3D straight-line and polyline drawings. In particular, all graphs of bounded

treewidth have O(n) volume 3D drawings, and all connected graphs have O(m log n) vol-

ume 3D polyline drawings with O(log n) bends per edge.

As Table 8.1 indicates, for bipartite graphs we obtain a better bound on the volume of 3D

drawings in terms of track-number. Recently, Dujmović and Wood [58] further generalized

this bound to O(c7tn) for c-colourable t-track graphs, resulting in O(n3/2) volume bounds

for a variety of graph families, including planar graphs and graphs with bounded degree.

TABLE 8.1: Volume of 3D straight-line drawings and track-number of n-vertex graphs

graph family volume reference

t-track O(t2n) Theorem 8.1

t-track c-colourable O(c7tn) [58]

bipartite t-track 2tn Lemma 8.3

Table 8.2 summarizes the best known upper bounds on the volume and bends per edge

in 3D polyline drawings, including those established in this chapter. In general, there is

a trade-off between few bends and small volume in such drawings, which is evident in

Table 8.2. Our upper bound of O(m log q) is within a factor of O(log q) of being optimal

for all q-queue graphs, since Bose et al. [16] proved that 3D polyline drawings have at least
1
8(n + m) volume.
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TABLE 8.2: Volume of 3D straight and polyline drawings of graphs with n vertices and m ≥ n edges.

graph family bends volume reference

per edge

arbitrary 0 O(n3) [26]

arbitrary 0 O(m4/3n) [58]

maximum degree ∆ 0 O(∆mn) [58]

maximum degree ∆ 0 O(∆15/2m1/2n) [58]

c-colourable 0 O(c2n2) [158]

c-colourable 0 O(c6m2/3n) [58]

Kh-minor free 0 O(h17/2 log7/2 h · n3/2) [58]

genus γ 0 O(γ4n3/2) [58]

planar 0 O(n3/2) [58]

outerplanar 0 O(n) [80]

bounded treewidth 0 O(n) Corollary 8.1

c-colourable q-queue 1 O(cqm) Theorem 8.3

arbitrary 1 O(nm) Theorem 8.4

q-queue 2 O(qn) Theorem 8.5

q-queue (constant ǫ > 0) O(1) O(mqǫ) Theorem 8.6

q-queue O(log q) O(m log q) Theorem 8.7

The remainder of the chapter is organized as follows. In Section 8.1 we prove Theo-

rem 8.1, which is used in Section 8.2 to derive the above mentioned result on 3D drawings

of bounded treewidth graphs. 3D polyline drawings are the focus of Section 8.3. Final

remarks are given in Section 8.4.

8.1 Track layouts into 3D drawings

In this section we prove Theorem 8.1, which states that 3D drawings with small volume are

closely related to track layouts with few tracks.

Lemma 8.1. If a graph G has an A×B × C 3D drawing, then G has a 2AB-track layout.

Proof. Let Vx,y be the set of vertices of G with an X-coordinate of x and a Y -coordinate of

y, where without loss of generality 1 ≤ x ≤ A and 1 ≤ y ≤ Y . With each set Vx,y ordered by

the Z-coordinates of its elements, {Vx,y : 1 ≤ x ≤ A, 1 ≤ y ≤ Y } is an improper AB-track

assignment. There is no X-crossing, as otherwise there would be a crossing in the original

drawing, and hence we have an improper AB-track layout. By Observation 2.1, G has a

2AB-track layout.

We now prove the converse of Lemma 8.1. The proof is inspired by the generalizations

of the moment curve algorithm by Cohen et al. [26] and Pach et al. [158], described in
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Section 1.1.2. Loosely speaking, Cohen et al. [26] allow three ‘free’ dimensions, whereas

Pach et al. [158] use the assignment of vertices to colour classes to ‘fix’ one dimension with

two dimensions free. We use an assignment of vertices to tracks to fix two dimensions with

one dimension free. The style of 3D drawing produced by our algorithm, where tracks are

drawn vertically, is illustrated in Figure 8.1.

FIGURE 8.1: A 3D drawing produced from a monochromatic track layout.

Lemma 8.2. If a graph G has a t-track layout, then G has a t× 2t× 2t ·n′ 3D drawing, where

n′ is the maximum number of vertices in a track.

Proof. Suppose {(Vi, <i) : 1 ≤ i ≤ t} is the given t-track layout. Let p be the smallest prime

such that p > t. Then p ≤ 2t by Bertrand’s postulate. For each i, 1 ≤ i ≤ t, represent the

vertices in Vi by the grid-points

{(i, i2 mod p, t) : 1 ≤ t ≤ p · |Vi|, t ≡ i3 (mod p)} ,

such that the Z-coordinates respect the given total order <i. Draw each edge as a line-

segment between its endpoints. Suppose two edges e and e′ cross such that their endpoints

are at distinct points (iα, i2α mod p, tα), 1 ≤ α ≤ 4. Then these points are coplanar, and if M

is the matrix

M =













1 i1 i21 mod p t1

1 i2 i22 mod p t2

1 i3 i23 mod p t3

1 i4 i24 mod p t4













then the determinant det(M) = 0. We proceed by considering the number of distinct tracks

N = |{i1, i2, i3, i4}|. By the definition of a track layout, N ≥ 2.

• N = 2: Since there is no X-crossing, e and e′ do not cross.
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• N = 3: Without loss of generality i1 = i2. It follows that det(M) = (t2 − t1) · det(M ′),

where

M ′ =







1 i2 i22 mod p

1 i3 i23 mod p

1 i4 i24 mod p






.

Since t1 6= t2, det(M ′) = 0. However, M ′ is a Vandermonde matrix modulo p, and thus

det(M ′) ≡ (i2 − i3)(i2 − i4)(i3 − i4) (mod p),

which is non-zero since i2, i3 and i4 are distinct integers smaller than the prime p, a contra-

diction.

• N = 4: Let M ′ be the matrix obtained from M by taking each entry modulo p. Then

det(M ′) = 0. Since tα ≡ i3α (mod p), 1 ≤ α ≤ 4,

M ′ ≡













1 i1 i21 i31
1 i2 i22 i32
1 i3 i23 i33
1 i4 i24 i34













(mod p) .

Since each iα < p, M ′ is a Vandermonde matrix modulo p, and thus

det(M ′) ≡ (i1 − i2)(i1 − i3)(i1 − i4)(i2 − i3)(i2 − i4)(i3 − i4) (mod p),

which is non-zero since iα 6= iβ and p is a prime. This contradiction proves there are no

edge crossings. The produced drawing is at most t× 2t× 2t · n′.

Proof of Theorem 8.1. Suppose G is a graph with a t-track layout. By Lemma 5.4 with t ′ = t,

G has a 2t-track layout with at most ⌈n
t ⌉ vertices in each track. By Lemma 8.2, G has a

2t × 4t × 4t · ⌈n
t ⌉ drawing. Conversely, if a graph G has a A × B × C 3D drawing, then by

Lemma 8.1, G has track-number tn(G) ≤ 2AB.

For bipartite graphs the bound in Lemma 8.2 can be improved as follows.

Lemma 8.3. Every t-track bipartite graph G with bipartition {A,B} has a 2×t×max{|A|, |B|}
3D drawing.

Proof. Let {Ti : 1 ≤ i ≤ t} be a t-track layout of G. For each 1 ≤ i ≤ t, let Ai = Ti ∩ A

and Bi = Ti ∩ B. Order each Ai and Bi as in Ti. Place the jth vertex in Ai at (0, t − i +

1, j +
∑i−1

k=1 |Ak|). Place the jth vertex in Bi at (1, i, j +
∑i−1

k=1 |Bk|). The drawing is thus

2 × t × max{|A|, |B|}. There is no crossing between edges in G[Ai, Bj] as otherwise there

would be an X-crossing in the track layout. Clearly there is no crossing between edges in
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G[Ai, Bj ] and G[Ai, Bk] for j 6= k. Suppose there is a crossing between edges in G[Ai, Bj ]

and G[Ak, Bℓ] with i 6= k and j 6= ℓ. Without loss of generality i < k. Then the projections

of the edges in the XY -plane also cross, and thus ℓ < j. This implies that the projections

of the edges in the XZ-plane do not cross, and thus the edges do not cross. Figure 8.2

illustrates the construction used in this proof.

FIGURE 8.2: 3D drawing of a 6-track bipartite graph.

This improvement can be generalized to c-colourable graphs by the number theoretic

analysis similar to, but much more involved than, the one used in the proof of Lemma 8.2.

The constants in Lemma 8.2 can be dramatically improved in the case of a 3-track or 4-track

layout. Here the vertices are positioned on the edges of a triangular or rectangular prism.

These models of graph drawing were introduced by Felsner et al. [80].

Lemma 8.4. Let {V1, V2, V3} be a 3-track layout of a graph G. Let n′ = max{|V1|, |V2|, |V3|}.
Then G has a 2 × 2 × n′ straight-line drawing with the vertices on a triangular prism. In this

case, G is necessarily planar.

Proof. Position the ith vertex in V1 at (0, 0, i). Position the ith vertex in V2 at (1, 0, i). Position

the ith vertex in V3 at (0, 1, i). Since there is no X-crossing in the track layout, no two edges

cross. Since G is embedded in a surface homeomorphic to the sphere, G is planar.

Lemma 8.5. Let {V1, V2, V3, V4} be a 4-track layout of a graph G. Let n′ = max{|V1|, |V2|, |V3|,
|V4|}. Then G has a 2× 2× 2n′ straight-line drawing with the vertices on a rectangular prism.
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Proof. Position the ith vertex in V1 at (0, 0, 2i). Position the ith vertex in V2 at (1, 0, 2i).

Position the ith vertex in V3 at (0, 1, 2i). Position the ith vertex in V4 at (1, 1, 2i + 1). Clearly

the only possible crossing is between edges vw and xy with v ∈ V1, w ∈ V4, x ∈ V2, and

y ∈ V3. Such a crossing point is on the line L = {( 1
2 , 1

2 , z) : z ∈ R}. However, vw intersects

L at (1
2 , 1

2 , α + 1
2) for some integer α, and xy intersects L at ( 1

2 , 1
2 , β) for some integer β.

Thus vw and xy do not intersect.

Di Giacomo and Meijer [40] proved that a 4-track graph with n vertices has a 2× 2 × n

drawing. When n′ < n
2 the above construction has less volume. For 4-track layouts we also

have the following ‘non-prism’ constructions.

Lemma 8.6. Let {V1, V2, V3, V4} be a 4-track layout of a graph G. Let n′ = max{|V1|, |V2|, |V3|,
|V4|}. Then G has a 3× 3× n′ straight-line drawing.

Proof. Position the ith vertex in V1 at (0, 0, i). Position the ith vertex in V2 at (1, 1, i). Position

the ith vertex in V3 at (2, 1, i). Position the ith vertex in V4 at (0, 2, i). Since the ‘footprint’ of

the drawing in the XY -plane is a plane K4 there is no crossings in the 3D construction.

8.2 Straight-line drawings

Theorems 6.3 and 8.1 imply the following theorem.

Theorem 8.2. Let G be a graph with maximum degree ∆(G), pathwidth pw(G), tree-partition-

width tpw(G), and treewidth tw(G). Then G has a 3D drawing with the following dimensions:

(a) O(pw(G)) ×O(pw(G))×O(n), which is O(tw(G) log n)×O(tw(G) log n)×O(n),

(b) O(tpw(G)) ×O(tpw(G)) ×O(n), which is O(∆(G) tw(G)) ×O(∆(G) tw(G))×O(n),

(c) O(64tw(G)
)×O(64tw(G)

)×O(n).

Most importantly, we have the following corollary of Theorem 8.2(c).

Corollary 8.1. Every graph with bounded treewidth has a 3D drawing with O(n) volume1.

Note that bounded treewidth is not necessary for a graph to have a 3D drawing with

O(n) volume. The
√

n × √n plane grid graph has Θ(
√

n) treewidth, but is easily seen to

have an improper 3-track layout, and thus, by Lemma 8.2, has a 3D drawing with O(n)

volume.

1The large constant in the O(n) volume bound of Corollary 8.1 can be improved for graphs with small

treewidth. In [59] we proved that every series-parallel graph has an 18-track layout, and thus has a 36 × 37 ×
37⌈ n

18
⌉ drawing.
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8.3 Polyline drawings

We first prove results for 3D 1-bend drawings.

Theorem 8.3. Every c-colourable q-queue graph G with n vertices and m edges has a 2× c(q +

1)× (n + m) polyline drawing with one bend per edge. The volume is 2c(q + 1)(n + m).

Proof. The subdivision G′ of G with one division vertex per edge is bipartite and has n + m

vertices. By Lemma 7.3(b), tn(G′) ≤ c(q + 1). Thus by Lemma 8.3, G′ has a 2 × c(q + 1) ×
(n + m) straight-line drawing, which is the desired 3D polyline drawing of G.

The next result applies a construction of Calamoneri and Sterbini [19].

Theorem 8.4. Every n-vertex m-edge graph G has an n × m × 2 polyline drawing with one

bend per edge.

Proof. Let (v1, v2, . . . , vn) be an arbitrary vertex ordering of G. Let (x1, x2, . . . , xm) be an

arbitrary ordering of the division vertices of G′. Place each vi at (i, 0, 0) and each xj at

(0, j, 1). Clearly the endpoints of any two disjoint edges of G′ are not coplanar (see [19]).

Thus no two edges cross, and we have an n×m× 2 straight-line drawing of G′, which is a

3D 1-bend drawing of G.

Now consider 3D 2-bend drawings.

Theorem 8.5. Every n-vertex m-edge q-queue graph G has a 2×2q×(2n−3) polyline drawing

with two bends per edge. The volume is at most 8qn ∈ O(n
√

m).

Proof. Let σ = (v1, v2, . . . , vn) be the vertex ordering in a q-queue layout of G. Let {Eℓ :

1 ≤ ℓ ≤ q} be the queues. Order the edges in each queue Eℓ according to the queue

order (see Eq. (2.1)). Denote by (L(e),X(e), Y (e), R(e)) the path replacing e in G′′, where

L(e) <σ R(e). Put each vertex vi at (0, 0, i). If e is the jth edge in the ordering of Eℓ, put the

division vertices X(e) at (1, 2ℓ, j) and Y (e) at (1, 2ℓ+1, j). Observe that the projection of the

drawing onto the XY -plane is planar. Thus the only possible crossings occur between edges

contained in a plane parallel with the Z-axis. Thus an X-crossing could only occur between

pairs of edges {L(e)X(e), L(f)X(f)}, {X(e)Y (e),X(f)Y (f)}, or {Y (e)R(e), Y (f)R(f)},
where e and f are in a single queue Eℓ. Suppose e <ℓ f . Then the Z-coordinates satisfy:

Z(L(e)) ≤ Z(L(f)), Z(R(e)) ≤ Z(R(f)), Z(X(e)) < Z(X(f)), and Z(Y (e)) < Z(Y (f)).

Thus there is no crossing. The drawing is at most 2 × 2q × (2n − 3) since each queue

has at most 2n − 3 edges [55, 114, 160]. The volume is at most 8qn, which is O(n
√

m)

[55, 114, 178].
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Theorem 8.6. Let G be a q-queue graph with n vertices and m edges. For every ǫ > 0, G has a

2×
(

⌈qǫ⌉+ 2
)

×
(

n + (8
⌈

1
ǫ

⌉

+ 1)m
)

polyline drawing with at most 8⌈ 1
ǫ ⌉ + 1 bends per edge. The volume is O(qǫ(n + m

ǫ )). For

constant ǫ there are O(1) bends per edge and the volume is O(qǫ(n+m)), which is in O(nǫ(n+

m)).

Proof. Let d = ⌈qǫ⌉. By Theorem 7.15, G has a bipartite subdivision D with at most

8⌈logd q⌉ + 1 division vertices per edge such that the track-number tn(D) ≤ d + 2. Now

logd q ≤ 1
ǫ . Thus D has at most 8⌈ 1ǫ ⌉ + 1 division vertices per edge, and tn(D) ≤ ⌈qǫ⌉ + 2.

The number of vertices of D is at most n + (8⌈ 1
ǫ ⌉+ 1)m. By Lemma 8.3, D has a 2× (⌈qǫ⌉+

2) × (n + (8⌈1ǫ ⌉ + 1)m) straight-line drawing, which is the desired 3D polyline drawing of

G. The other claims immediately follow since q ≤ n.

Theorem 8.7. Every q-queue graph G with n vertices and m edges has a 2 × 2 ×
(

n +

m(8 ⌈log2 q⌉ + 1)
)

polyline drawing on a rectangular prism. There are O(log q) bends per

edge, and the volume is O(n + m log q) volume, which is in O(n + m log n).

Proof. By Theorem 7.15, G has a 4-track subdivision D with at most 8 ⌈log2 q⌉ + 1 division

vertices per edge. The number of vertices of D is at most n+m(8 ⌈log2 q⌉+1). By Lemma 8.5,

D has a 2 × 2×
(

n + m(8 ⌈log2 q⌉+ 1)
)

straight-line drawing, which is the desired polyline

drawing of G. The volume is O(n + m log n) since q ≤ n.

Since the queue-number of an n-vertex graph is at most n we have:

Corollary 8.2. Every graph with n vertices and m edges has a polyline drawing with O(n +

m log n) volume and O(log n) bends per edge.

8.4 Conclusion and bibliographic notes

Felsner et al. [80] asked the following question.

Open Problem 8.1. [80] Does every n-vertex planar graph have a 3D drawing with O(n)

volume?

By Theorem 8.1, this question has an affirmative answer if every planar graph has O(1)

track-number. Whether every planar graph has O(1) track-number is an open problem due

to H. de Fraysseix [private communication, 2000].

Open Problem 8.2. [H. de Fraysseix (2000)] Do planar graphs have bounded track-number?
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By Theorem 5.2, this question is equivalent to the Open Problem 6.1.

Theorem 8.1 (that is, Lemmas 8.1 and 8.2) have appeared in [53]. Lemma 8.3 has

appeared in [58]. The results of Section 8.2 have appeared in [59]. Lemmas 8.4 and 8.5

and the results of Section 8.3 are a part of [56].



Chapter 9

Conclusion and Open Problems

In this thesis we investigated graph drawing problems from two complementary directions.

In one, we studied parameterized analogues of well-known hard algorithmic problems. We

applied two FPT techniques for their solution. In the other direction, we studied structural

properties of graphs through their track layouts. The results of this study were applied to

several well-known graph layout models.

The study of parameterized complexity of hard graph drawing problems has only just be-

gun. A number of techniques useful for deriving FPT algorithms have not been considered

in this thesis. One example is the popular use of dynamic programming on tree decom-

positions. Furthermore, the problems we studied were parameterized by some measure

restricting the desired output. We may instead parameterize a problem by some measure

restricting input graphs. For example, is the problem of testing upward planarity of planar

directed graphs with treewidth k in FPT ? Here the treewidth of an input graph is the

parameter of the problem. For input graphs excluding Kh minor, h may be an appropriate

parameter for some problems. Here the techniques developed for the proof of the graph

minors theorem may prove useful again. A general direction for future work would be to

explore these avenues — they have the potential to provide new insights into a variety of

problems arising in graph drawing.

We conclude this thesis by summarizing and relating the open problems considered or

raised in this thesis.

Open problems

• Open Problem 1.1 [110]: Is stack-number bounded by queue-number?

Blankenship and Oporowski [10] conjectured that the next question has an affirmative

answer (Conjecture 7.1). By Theorem 7.2 the truth of that conjecture would imply an

affirmative solution to Open Problem 1.1.
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• [10] Does there exist a function f such that for every subdivision D of a graph G with

at most one division vertex per edge, sn(G) ≤ f(sn(D)).

By Theorem 7.8 the following open problems are equivalent.

• Open Problem 1.2 [110]: Is queue-number bounded by stack-number?

• Do bipartite 3-stack graphs have bounded queue-number?

• Do bipartite 3-stack graphs have bounded 2-track thickness?

By Theorems 5.2 and 7.18 the following open problems are equivalent.

• Open Problem 6.1 [110]: Do planar graphs have bounded queue-number?

• Open Problem 8.2 [H. de Fraysseix (2000)]: Do planar graphs have bounded track-

number?

• Do bipartite Hamiltonian planar graphs have bounded queue-number?

• Do bipartite Hamiltonian planar graphs have bounded 2-track thickness?

By Theorem 8.1 an affirmative answer to any of the last seven questions implies an

affirmative answer to the following question.

• Open Problem 8.1 [80]: Does every n-vertex planar graph have a 3D drawing with

O(n) volume?

By Theorem 5.2, queue-number and track-number are tied for any proper minor closed

family of graphs. An affirmative solution to the following open problem would imply that

queue-number and track-number are tied (for all graphs).

• Open Problem 5.2: Is star chromatic number bounded by queue-number?

The following are the remaining open problems raised in this thesis.

• Open Problem 3.1 [H. Fernau (2003)]: Is the 1-SIDED CROSSING MINIMIZATION prob-

lem in the class FPT when parameterized by the number of crossings by which a

2-layer drawing is allowed to exceed the lower bound?

• Open Problem 4.1: Is there a c-approximation algorithm for the optimization version

of the 2-LAYER PLANARIZATION problem with c < 2? Is there an FPT algorithm for the

2-LAYER PLANARIZATION problem parameterized by the number of edge deletions k,

with the exponential part of the running time better than 6k?
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• Open Problem 4.2: Is there a c-approximation algorithm for the optimization version

of the 1-LAYER PLANARIZATION problem with c < 3? Is there an FPT algorithm for

the 1-LAYER PLANARIZATION problem parameterized by the number of edge deletions

k, with the exponential part of the running time better than 3k? Is there a problem

kernel of size f(k) for the problem?

• Open Problem 5.1: What is the computational complexity of recognizing track graphs?

Is it NP-complete to recognize (2, 2)-track graphs? Is it NP-complete to recognize 3-

track graphs?

• Open Problem 6.2: Is the queue-number of a graph bounded by a polynomial function

of its treewidth?

• Open Problem 7.1: Is 2-track sub-thickness sub-θ2(G) ∈ o(qn(G))?

• Open Problem 7.2: Is there a function f such that every planar graph G has a subdivi-

sion D with f(qn(G)) division vertices per edge, and D has a 1-queue layout and/or

a 3-track layout?

• Open Problem 7.3: [114] Does every planar graph have a 1-stack 1-queue mixed

layout?
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[54] V. DUJMOVIĆ AND S. WHITESIDES, An efficient fixed parameter tractable algorithm

for 1-sided crossing minimization. In [93], pp. 118–130.
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