
Tracker: Security and Privacy for RFID-based Supply Chains

Erik-Oliver Blass Kaoutar Elkhiyaoui Refik Molva

EURECOM, Sophia Antipolis, France

{blass|elkhiyao|molva}@eurecom.fr

Abstract. The counterfeiting of pharmaceutics or luxury objects is a major threat to supply chains today. As

different facilities of a supply chain are distributed and difficult to monitor, malicious adversaries can inject fake

objects into the supply chain. This paper presents TRACKER, a protocol for object genuineness verification in RFID-

based supply chains. More precisely, TRACKER allows to securely identify which (legitimate) path an object/tag has

taken through a supply chain. TRACKER provides privacy: an adversary can neither learn details about an object’s

path, nor can it trace and link objects in the supply chain. TRACKER’s security and privacy is based on an extension

of polynomial signature techniques for run-time fault detection using homomorphic encryption. Contrary to related

work, RFID tags in this paper are not required to perform any computation, but only feature a few bytes of storage

such as ordinary EPC Class 1 Gen 2 tags.

1 Introduction

Supply chain management is one of the major applications of RFID tags today. The tags are physically

attached to objects, therewith enabling tracking of objects on their way through the steps of a supply chain.

Today, RFID-based supply chain applications range from simple barcode replacements in supermarkets to

more sensitive application scenarios, where tags are used for product genuineness verification, anti-coun-

terfeiting, anti-cloning, and replica-prevention of luxury products or pharmaceutics [9, 12, 18, 24, 26]. All

these scenarios and the latter in particular raise new security and privacy challenges.

First, with respect to security, it must be verifiable whether an object has taken one of the valid paths

through the supply chain, i.e., the object went through a certain valid sequence of steps in the supply chain.

The goal is to allow the operator or manager of the supply chain to be able to check the genuineness of an

object by simply scanning the object’s RFID tag. The problem is, though, that supply chains are physically

distributed and parties involved in a supply chain (the “steps”) may reside in different locations, even in

different countries. The manager does neither have full control over interconnections in between steps of

the supply chain, nor full control over some of the steps itself. Also, for simple feasibility reasons, it cannot

be assumed that facilities of the supply chain are permanently online or synchronized with a back-end

database. Consequently, supply chains today are prone to injection of faked, counterfeit or manipulated

products. For example, World Health Organization (WHO) has estimated that 10% of U.S. pharmaceutical

products were already counterfeit in 2005 [6]. Today, the International Chamber of Commerce estimates

that counterfeiting accounts for 5-7% of world trade, relating to $600 billion per year [11]. Hence, there is

a stringent requirement for a security solution to prevent an adversary from tampering with tags in order to

forge faked traces through the steps of the supply chain. Some supply chains today protect products by using

additional “tamper-proof” hardware, for example the familiar holograms sticking to products. However,

massive deployment of any tamper proof hardware implies additional costs. To the best of our knowledge,

there is no security solution available solely based on cheap, non tamper-proof RFID tags.

The second problem regards the privacy of objects in the supply chain. Typically, the manager of the

supply chain does not want to reveal any information about internal details, strategic relationships and pro-

cesses within the supply chain to adversaries, e.g., competitors or customers. An adversary should not be

able to trace and recognize tags and objects through subsequent steps in the supply chain and therewith learn

something about the internal processes of the supply chain. Similarly, by scanning an RFID tag attached to

an object, the adversary should not be able to gain any knowledge about the history of that tag and the object

it is attached to.

Solutions addressing these security and privacy requirements are, however, governed by the challenges

of the RFID settings: RFID tags have to be cheap for massive deployments and therefore can only afford

lightweight computational capabilities. Traditional security and privacy solutions would overburden tiny

tags and therefore are ineligible. Moreover, the manager of the supply chain uses a hand-held RFID reader

which is typically an embedded device. Consequently, the path verification at the manager should require

few cryptographic operations.

Note that security and privacy requirements for RFID-based supply chain management call for more

than just privacy-preserving authentication as already extensively covered in the literature, cf., Avoine [3].

As a new requirement raised by the supply chain management, the soundness of the history kept in the tags

must be assured throughout the steps of the supply chain.

This paper presents TRACKER, a protocol for secure, privacy-preserving supply chain management with

RFID tags. The main idea behind TRACKER is to encode paths in a supply chain using polynomial sig-

nature techniques similar to software run-time fault detection. These polynomials will be evaluated using

homomorphic encryption, thereby providing security and privacy.

TRACKER’s major contributions are:

– TRACKER allows to determine the exact path that each tag1 went through in the supply chain.

– TRACKER provides provable security: an adversary cannot create new tags or modify existing ones and

fake that a tag went properly through the supply chain.

– TRACKER is privacy-preserving: only the manager of the supply chain, but no adversary, can find out a

tag’s path. Also, TRACKER achieves unlinkability. An adversary cannot link tags it observes on subse-

quent occasions.

– To perform path verification, the manager is required to perform O(1) computations per tag, i.e., the

computational complexity of path verification does neither depend on the number of tags in the supply

chain n, nor on the number of valid paths ν. Memory requirements scale with O(n+ν) for the manager.

– Contrary to related work such as Ouafi and Vaudenay [20] or Li and Ding [17], TRACKER does not

require tags to perform any computation. Instead, TRACKER relies on passive tags with limited storage,

such as standard EPC Class 1 Generation 2 tags. Due to lower hardware complexity, this implies less

productions costs and cheaper (or cheapest) tags in comparison to related work.

– RFID readers do not need to be permanently online or synchronized with a central data-base. In the

same manner, the manager is “offline”.

– TRACKER detects, but does not prevent, malicious tampering with tags’ internal states by any adversary.

The rest of this paper is structured as follows: after presenting a formal model for a supply chain as used

throughout this paper in Section 2, we will state the problem addressed by TRACKER and the adversary

model in Section 3. This also includes the security and privacy goals within TRACKER. In sections 4 and 5,

we describe TRACKER’s details and formally analyze and prove TRACKER’s security and privacy properties.

2 Background

We use terms and expressions similar to the ones used by Ouafi and Vaudenay [20] and Vaudenay [25].

A supply chain in this paper simply denotes series of consecutive steps that a product has to pass through.

The exact meaning or semantic of such a “step” in the supply chain depends on the particular application

1 Assuming that a tag is physically connected to an object and thereby representing it, this paper uses “tag” and “object” inter-

changeably.

2

and will not be discussed here, one could imagine a step being a warehouse or a manufacturing unit. The

actual business or manufacturing process that takes place during each step of a supply chain is out of the

scope of this paper. From the point of view of this paper, each step of the supply chain is equipped with an

RFID reader, and when a product moves to the subsequent step of a supply chain, an interaction takes place

between the product’s RFID tag and the reader associated with the step. Finally, a manager wants to know

whether a product went through the “correct” sequence of steps in the supply chain.

2.1 Entities

The following entities exist in TRACKER:

Tags Ti: Each tag is attached to and therewith stands for a single product or object. A tag Ti features

re-writable memory representing Ti’s current “state” denoted sj
Ti

. The set of all possible states is denoted

with S, sj
Ti

∈ S, and |S| is a sufficiently large security parameter of TRACKER, e.g., |S| = 2160.

Issuer I: The issuer I prepares tags for deployment. While attaching a tag Ti to a product, I writes an

initial state s0
Ti

into Ti.

Readers Rk: Representing a single step in the supply chain, a reader Rk can interact with a product’s

tag Ti: Rk reads out Ti’s current state sj
Ti

and writes an updated state sj+1
Ti

into Ti. Here, Rk uses some

function fRk
to generate sj+1

Ti
out of sj

Ti
, i.e., fRk

(sj
Ti

) = sj+1
Ti

. Each reader is assumed to be “offline”, i.e.,

not permanently connected to the issuer, manager, other readers, or some kind of back-end database. Only

during initial system preparation, we assume that issuer I can connect to readers, e.g., to send some secrets

to the reader using some secure channel.

Manager M : Eventually, a tag arrives at a special step in the supply chain called a checkpoint. At

a checkpoint, manager M wants to check a tag’s genuineness or validity. M checks whether tag Ti, and

therewith the tagged object, has passed through a valid (“correct”) sequence of steps in the supply chain.

To do so, M simply reads out the current state sj
Ti

of Ti. Solely based on sj
Ti

, M decides whether Ti went

through a valid sequence of steps. We assume that M knows which paths in a supply chain are valid or

not. As with readers, M is assumed to be offline and not synchronized with the rest of the system – besides

during an initial setup.

2.2 Supply Chain

Formally, a supply chain is represented by a digraph G = (V,E) consisting of vertices V and edges E.

Each vertex v ∈ V is equivalent to one step in the supply chain. A vertex/step v in the supply chain is

uniquely associated with a reader Ri.

Each directed edge e ∈ E, e := −−→vivj , from vertex vi to vertex vj , expresses that vj is a possible next

step to step vi in the supply chain. This simply means that according to the organization of the supply chain,

a product might proceed to step vj after being at step vi. If products must not advance from step vi to vj ,

then −−→vivj /∈ E. Note that a supply chain can include loops and reflexive edges. Whenever a product in the

supply chain proceeds from step vi to step vj , reader Rj interacts with the product’s tag.

Issuer I is represented in G by the only vertex without incoming edges v0.

A path P is a finite sequence of steps P = {v0, . . . , vl}, where ∀i ∈ {0, . . . , l − 1} : −−−→vivi+1 ∈ E, and l
is the length of path P . Clearly, different paths can have different path lengths.

A valid path Pvalidi
is a special path which manager M will eventually check products for. A valid path

represents a particular legitimate sequence of steps in the supply chain that M is interested in. There may

be up to ν multiple different valid paths {Pvalid1 , . . . ,Pvalidν
}, in a supply chain.

The last step vl of a valid path Pvalidi
= {v0, . . . , vl} represents a checkpoint. After tag Ti has passed

through such a checkpoint, M will check for Ti’s path validity.

3

While manager M might not know all possible paths in G, we assume in the following that M knows

the valid paths, i.e., the sequences of steps, that he is willing to accept as valid.

!" #"

$"

%"

&"

'"

Fig. 1. Simple supply chain, checkpoints are encircled.

Figure 1 depicts a sample supply chain. Checkpoints, where manager M verifies tags/objects, are encir-

cled. So, after their deployment at issuer I , tags can either start in steps a or b. Valid paths in Figure 1 are, for

example, {I, a, d}, {I, a, d, e} or {I, a, c, c, e}. Other sequences such as {I, a, e} are not valid according to

the supply chain.

2.3 A Tracker System

Using the above definitions, a complete TRACKER system consists of

– a supply chain G = (V,E)
– a set T of n different tags

– a set of possible states S
– a total of η different readers, η = |E|
– issuer I and manager M
– a set of η state transition functions fi : S → S
– a set of ν valid paths

– a set of valid states Svalid

– a database DBclone, stored at manager M to protect against cloned tags (see next section)

– a function READ : T → S that reads out tag Ti and returns Ti’s current state sj
Ti

– a function WRITE: T × S → S that writes a new state sj+1
Ti

into tag Ti.

– a function CHECK: S →

{

Pvalidi
, if tag Ti went through Pvalidi

∅, if ∄Pvalidi
that Ti went through

that based on Ti’s current state sj
Ti

decides about which valid path in the supply chain tag Ti has taken.

3 Problem Statement and Adversary Model

In TRACKER, we assume that the readers in the supply chain are independent. We assume as well that a

reader Ri is semi-honest (“honest-but-curious”). That is, a reader Ri at step vi behaves correctly when it

comes to the operations it has to perform on tags going through vi. For instance, a reader Ri at step vi that

corresponds to quality control does not update the state of T unless the product attached to T satisfies the

quality requirements.

4

Within TRACKER, we identify the following security and privacy challenges and derive a formal adver-

sary model accordingly. Our formal definitions are direct adaptations of well-established RFID adversary

models to the challenges of supply chain management. In summary, our adversary corresponds to the adver-

sary proposed by Juels and Weis [13] and the Non-Narrow Destructive adversary by Vaudenay [25]

3.1 Security

The main security goal of TRACKER is to prevent an adversary from forging a tag’s internal state with a

valid path that was not actually taken by the tag in the supply chain. Using the components of the TRACKER

system, this goal is stated as follows: if the verification of tag Ti’s internal state sj
Ti

by manager M using

CHECK returns a valid path Pvalidi
, then Ti must have gone through the steps of Pvalidi

in the supply chain.

Only the soundness of the CHECK function is required with respect to identification of a valid path, since

the completeness of the CHECK function cannot always be assumed. As shown below, the adversary might

write any content, for example just “garbage”, into Ti at any time to spoil detection of valid paths. Even if

a tag Ti has been through Pvalidi
in the supply chain, the adversary might replace and invalidate the state of

Ti leading to a CHECK output of “∅”.

We formalize this security property and our adversary model using game-based definitions in accordance

with Juels and Weis [13].

An adversary A(ρ, r, ǫ), or just A, has access to a TRACKER system in two phases. First, in a learning

phase, A can query an oracle Opick, cf., Algorithm 1. When queried, Opick randomly selects a tag from all

the n tags T in the supply chain and gives it to A. During learning, A is allowed to read from and write

into the tags provided by Opick. For the sake of simplicity, we assume that products and tags go through a

supply chain in a clocked, synchronous way. At each “clock cycle”, all tags are read and then re-written by

the readers in their vicinity and then proceed to the subsequent step in the supply chain.

More precisely, the ITERATESUPPLYCHAIN command in Algorithm 1 enables A to iterate or “execute”

the supply chain by one clock cycle, i.e., all tags advance by one step and they are read-out and re-written

by readers. A can iterate the supply chain a total of ρ times. Now per iteration and per clock cycle, A gets

access to a set of r arbitrary tags, read-outs their internal state, and re-writes their state with some arbitrary

data. Also, A has access to an “oracle” like construction OM : queried with a tag Ti,j , OM will return the

output of the CHECK function.

The above definition of A reflects an adversary in the real world having full control over the network

and knowledge about the validity of tags’ states.

After the learning phase of Algorithm 1, A enters the (simple) challenge phase, cf., Algorithm 2.

for i := 0 to (ρ− 1) do
ITERATESUPPLYCHAIN;
for j := 1 to r do

Ti,j ← Opick ;

si
Ti,j

:=READ(Ti,j);

WRITE(Ti,j , s
i+1
Ti,j

);

CHECK(si+1
Ti,j

)← OM (Ti,j);

end

end

Algorithm 1:
Security learning phase of adversary A

8

<

:

Ti ← Opick;

s
j

Ti
:=READ(Ti);

WRITE(Ti, s
j+1
Ti

);

9

=

;

or

CREATETAG Ti;

WRITE(Ti, s
j+1
Ti

);

ff

A→M : Ti;
M evaluates CHECK on Ti’s state;

Algorithm 2:
Security challenge phase of adversary A

A can either arbitrarily choose one tag Ti ∈ T , read and re-write, or A can “create” his own tag Ti 6∈ T
and write some state s′Ti

in it. Finally, A sends Ti to M . Manager M will now evaluate CHECK on Ti’s state.

Definition 1 (False positives). If M ’s evaluation of CHECK on tag Ti’s state outputs one of the ν valid

paths Pvalidi
= {v0, . . . , vl}, andif Ti has not been through the exact sequence of steps {v0, . . . , vl} in the

5

supply chain, then this is called a false positive in TRACKER. The probability of a false positive is denoted

by Pr[False Positive].

Now, adversary A must not be able to generate a state corresponding to a valid path with higher proba-

bility than simple guessing:

Definition 2 (Security). TRACKER provides security ⇔

For adversary A, inequality Pr[False Positive] ≤ |Svalid|
|S| + ǫ holds, where ǫ is negligible.

Discussion: Cloning As we assume cheap re-writeable tags without any computational abilities, no reader

authentication is possible on the tag side. Any adversary can read from and write into a tag. Trivially, an

adversary might “clone” a tag. This is impossible to prevent in our setup with only re-writeable tags and

offline, unsynchronized readers.

To mitigate this problem, manager M utilizes a database DBclone. Initially empty, this database will

contain identifiers of tags that went through a valid path of a supply chain and were checked by M . Each

time that M verifies a tag’s path, M will also check whether this tag’s identifier is already in DBclone –

to check for cloning. Details about identifiers and handling of DBclone will be given later in the protocol

description of Section 4.

Therefore, an adversary cannot clone a tag more than once, and thus, cloning cannot be performed in

a large scale. On the other hand, if the tag is attached to a luxury product, cloning is critical even if a tag

is cloned only once. However, to get a malicious tag to be accepted by the manager, the adversary has to

break-in the supply chain, clone a tag, inject this tag, and “overtake” the legitimate tag in the supply chain

to reach the manager before the legitimate tag. We conjecture that this is not easy for an adversary to do.

Limitations The adversary model above does not capture an adversary hijacking tags and performing “extra”

steps with tags. One might envision an adversary controlling a set of steps with readers that do not behave

protocol compliant. For example, if the “extra” steps do not change the tags’ state (but modify products),

this will be unnoticed by the manager. We claim that these attacks, as well as physical attacks, e.g., removing

one tag from one product and attaching it to another product, are out of scope.

Also, there is no notion of multiple managers in the supply chain checking tags for genuineness, but we

focus on only one manager. While in the real world, multiple managers are probably more realistic, this is

left for future work. Additionally, we do not target managers proving (non-) genuineness to a third party in

a privacy-preserving way. Also, we focus only on detecting counterfeits, not preventing – that is, it remains

unclear what happens if a counterfeit has been detected. All this is left for future research.

3.2 Privacy

An adversary in TRACKER is an active adversary who, besides being able to eavesdrop on tags’ communi-

cation, can as well tamper with tags’ internal states. Along these lines, we identify two notions of privacy in

TRACKER: the first one is commonly known as tag anonymity. That is, an adversary A should not be able

to disclose the (unique) identity of tags he reads from or writes into. The second notion of privacy that we

are interested in is what we call step privacy: an adversary A should not be able to find out the steps vi a tag

went through. While A can eavesdrop on tags’ communication and re-write tags’ internal states, it should

be infeasible for A to break tag anonymity or step privacy.

Along these lines, another notion of privacy that could be derived as well is path privacy: A should

not be able to tell which path P a given tag T took. Note, however, that step privacy is stronger than path

privacy. If A is able to disclose the path a tag T went through, then A automatically knows each of T ’s

steps. So, if TRACKER preserves step privacy, then A cannot find out the path P a tag has taken.

6

Moreover, TRACKER should prevent A from binding (“linking”) the data he reads to the tag storing it.

This differs from tag anonymity, as the latter can be achieved, for example, through encryption. However,

simple encryption cannot achieve tag unlinkability: A may always be able to recognize the tag through the

ciphertext it stores. Thus, there is a need to regularly change the data stored on tags to prevent such a threat.

In the real world, tag unlinkability is the property that prevents an eavesdropper from tracking, following,

and distinguishing items and goods based on the data tags store.

Furthermore, A may as well aim at linking tags based on the steps they went through in the supply chain.

Roughly speaking, step unlinkability should prevent an adversary A from telling, whether the paths that two

different tags Ti and Tj took have a step in common. In practice, step unlinkability prevents an adversary A
from binding a tag Ti to a pallet of tags in the supply chain.

In this paper, we will focus on tag unlinkability and step unlinkability for which we give formal defi-

nitions in the following section. It is sufficient to focus only on unlinkability properties, as they represent

stronger requirements than tag anonymity and step privacy. As mentioned earlier, tag unlinkability grasps

the ability of an adversary A to distinguish between tags based on the content they store. This notion of

unlinkability is stronger than tag anonymity: if an adversary is able to undermine tag anonymity and to

uniquely identify a tag, he is automatically able to distinguish tags, therewith undermining tag unlinkability.

Just as well, step unlinkability ensures that it is infeasible for an adversary A to tell whether the paths of two

tags have a step in common or not. This notion is stronger than step privacy: if A is able to disclose the steps

any tag went through, he can always tell whether two tags have a step in common. Therefore, if TRACKER

provides tag and path unlinkability, it provides as well tag anonymity and step privacy.

So in conclusion, it is sufficient to investigate unlinkability properties. These will be presented in the

following section in detail.

3.3 Unlinkability

For our formal definitions of tag and path unlinkability, we assume A has access to the following oracles:

Ochoose is an oracle that, when queried, returns a random tag T entering the supply chain.

Oselect is an oracle that, when queried, returns a pair (T, S). T is a tag selected randomly from the set

of tags T and S is the set of steps that T went through so far.

Odraw is an oracle that, when queried with a step v, returns a pair (T, S). T is a random tag that will go

through v in the next supply chain iteration, and S is the set of steps that T went through so far.

Ostep is an oracle that, when queried with a tag T , returns the next step that T will go through in the

next supply chain iteration.

Oflip is an oracle that, when queried with two tags T1, T2, randomly chooses b ∈ {1, 2} and returns Tb.

Tag Unlinkability: We illustrate tag unlinkability by a formal experiment similar to the experiment

by Juels and Weis [13]. In this experiment, A has access to tags in two phases. In the learning phase, cf.,

Algorithm 3, Oselect provides A with two challenge tags T1 and T2, and r other tags along with the steps

they went through so far. A iterates the supply chain ρ times. At each iteration, A reads from and writes into

tags. He is as well provided with the step that T1 and T2 will go through in the next supply chain iteration.

This unlinkability game reflects an adversary A in the real world that can follow tags in the supply chain

along the steps they are going through.

In the challenge phase, cf., Algorithm 4, the supply chain is iterated first. Then, A is provided with tag

Tb, b ∈ {1, 2} through oracle Oflip. A’s goal is to output the value of b. Oselect provides A with s other tags

that he can read from and write into.

Given the data stored on Tb and the result of the different readings, A outputs his guess for the value of

b ∈ {1, 2}. A is successful, if his guess of b is correct.

7

(T1, S1)← Oselect;

(T2, S2)← Oselect;
for i := 1 to ρ do

ITERATESUPPLYCHAIN;
T1 → Ostep;
vT1,(i+1)

← Ostep;

si
T1

:=READ(T1);

WRITE(T1, s
′i
T1

);

T2 → Ostep;
vT2,(i+1)

← Ostep;

si
T2

:=READ(T2);

WRITE(T2, s
′i
T2

);

for j := 1 to r do
(Ti,j , Si,j)← Oselect;

sTi,j
:=READ(Ti,j);

WRITE(Ti,j , s
′

Ti,j
);

end

end

Algorithm 3:
A’s tag unlinkability learning phase

ITERATESUPPLYCHAIN;

Tb ← Oflip{T1, T2};
sTb

:=READ(Tb);
for i := 1 to s do

(T ′

i , S
′

i)← Oselect;

sT ′

i
:=READ(T ′

i);

end
OUTPUT b;

Algorithm 4:
A’s tag unlinkability challenge phase

Definition 3 (Tag Unlinkability). TRACKER provides tag unlinkability ⇔
For adversary A, inequality Pr(A outputs a correct guess) ≤ 1

2 + ǫ holds, where ǫ is negligible.

Discussion: Unlinkability in between reader interactions This paper targets passive tags that only feature

storage capabilities and therewith cannot perform any (cryptographic) computation. Consequently, tags can-

not update their state after an interaction with a reader on their own, and tags cannot perform any kind of

access control. Hence, the tag state does not change in between two protocol executions, and an adversary

can easily access a tag’s state. Under such circumstances, it is therefore impossible to provide tag unlinka-

bility against a powerful adversary who tries to link tags in between two subsequent reader interactions (cf.,

formal proof by Vaudenay [25]). However, we conjecture that, in a real world scenario, an adversary cannot

permanently access tags or eavesdrop tags’ communications, but there is at least one unobserved interaction

between a tag and a reader. This is also in accordance with related work, such as Ateniese et al. [2], Dimitrou

[8], Sadeghi et al. [22]. We implement this in our definition of adversary A in Algorithm 4 by iterating the

supply chain before calling oracle Oflip and giving tag Tb to A.

Step unlinkability: TRACKER should prevent an adversary A from being able to tell, whether the paths

of two different tags Ti and Tj have a step in common.

This is formalized as follows: in the learning phase, cf., Algorithm 5, A(ρ, r, s, ǫ) calls Ochoose which

provides him with a random tag that just entered the supply chain at step v0. A then iterates the supply chain

for a maximum of ρ times. At each iteration i, A reads out T ’s state and writes into T . Also, Ostep provides

A with the step vT,(i+1) that T will go through in the next supply chain iteration. A then queries the oracle

Odraw with step vT,(i+1). Odraw provides A with r tags Ti,j that will go through vT,(i+1) in the next supply

chain iteration that he can read and write into. Also, Oselect provides A with s tags T ′
i,j from T along with

the steps they went through so far. A is also provided with the next step of tags T ′
i,j by calling the oracle

Ostep. A then iterates the supply chain and reads the updated states of the r tags provided by Odraw and the

s tags provided by Oselect.

As in the tag unlinkability game, this step unlinkability game reflects the capabilities of an active ad-

versary who, besides eavesdropping on tags’ communication, can as well follow tags and tamper with their

internal states along different steps of the supply chain.

8

T ← Ochoose;
for i := 0 to ρ− 1 do

T → Ostep;
vT,(i+1) ← Ostep;

si
T :=READ(T);

WRITE(T, s′iT);
for j := 1 to r do

vT,(i+1) → Odraw;

(Ti,j , Si,j)← Odraw;

sTi,j
:=READ(Ti,j);

WRITE(Ti,j , s
′

Ti,j
);

end
for j := 1 to s do

(T ′

i,j , S
′

i,j)← Oselect;

T ′

i,j → Ostep;

vT ′

i,j
← Ostep;

sT ′

i,j
:=READ(T ′

i,j);

WRITE(T ′

i,j , s
′

T ′

i,j
);

end
ITERATESUPPLYCHAIN;
for j := 1 to r do

READ(Ti,j);
end
for j := 1 to s do

READ(T ′

i,j);

end

end

Algorithm 5:
A’s step unlinkability learning phase

Tc ← Ochoose;
for i := 0 to ρ− 1 do

si
Tc

:=READ(Tc);

WRITE(Tc, s
′i
Tc

);
for j := 1 to s do

(Ti,j , Si,j)← Oselect;

sTi,j
:=READ(Ti,j);

WRITE(Ti,j , s
′

Ti,j
);

Ti,j → Ostep;
vTi,j

← Ostep;

end
ITERATESUPPLYCHAIN;
for j := 1 to s do

READ(Ti,j);
end

end

READ(Tc);
OUTPUT b;

Algorithm 6:
A’s step unlinkability challenge phase

In the challenge phase, cf., Algorithm 6, A is provided with a challenge tag Tc which just entered the

supply chain. A’s goal is to tell whether the paths that tag T and tag Tc took have a step in common –

trivially, besides the initial step v0. A iterates the supply chain for a maximum of ρ times. At each iteration

i, A reads out and writes into Tc. A calls as well the oracle Oselect that provides him with s tags Ti,j which he

can read and write into. He is also provided with the step vTi,j
that Ti,j will go through in the next iteration.

A then iterates the supply chain and reads the updated state of the s tags. At the end of the challenge phase,

A reads the current state of tag Tc and outputs b = 1, if Tc and T have a step in common (besides v0), and

b = 2 if they do not have a step in common (besides v0). The adversary is successful, if his guess is correct.

Definition 4 (Step Unlinkability). TRACKER provides step unlinkability⇔
For adversary A, inequality Pr(A outputs a correct guess) ≤ 1

2 + ǫ holds, where ǫ is negligible.

The above definition covers unlinkability of individual steps in the supply chain. Note that “step unlinka-

bility” is stronger than “unlinkability of paths” that prevents an adversary A from telling whether two tags

went through the same path or not. If A is able to tell whether two tags went through the same path then he

automatically knows that the paths of these two tags have steps in common. So, if TRACKER provides step

unlinkability, it will as well provide path unlinkability. Step unlinkability also implies step and path privacy.

4 Tracker Protocol

Protocol overview: In TRACKER, a tag T ’s state sl
T represents the sequence of steps in the supply chain

that T went through. The main concept is to represent different paths in the supply chain using different

9

polynomials. More precisely, at the end of a supply chain’s valid path Pvalid, a tag’s state sl
T will match the

evaluation of a unique polynomial QPvalid
(x) in a fixed value x0. Therefore, a path in the supply chain is

represented by QPvalid
(x0) ∈ Fq providing a compact and efficient representation of paths.

Now, TRACKER relies on the property that for any two different paths P 6= P ′, valid or not, the equation

QP(x0) = QP ′(x0) holds only with negligible probability. Two different paths will result in two different

polynomial evaluations. As a result, the state of a tag T at the end of the supply chain can be uniquely related

to one single (valid) path.

However, the path representation as presented above does not suffice to prevent path cloning, i.e., copy-

ing the path of a valid tag into a fake tag and then injecting the fake tag in the supply chain. To tackle

this problem, tags will store QPvalid
(x0) multiplied by a keyed HMAC of their unique IDs. HMAC serves

two purposes: first, it proves that tags are issued by a legitimate authority and prevents an adversary from

injecting its own tags. Second, it allows to map the tag’s ID to a random number that cannot be predicted

by the adversary. A tag’s state therefore consists of three elements that are: a unique ID, HMACk(ID) and

HMACk(ID) · QPvalid
(x0).

TRACKER can be structured into three parts: 1.) Issuer I writes an initial state s0
T into a new tag T .

2.) Readers successively compute the evaluation of a polynomial: to achieve the evaluation of the “entire”

polynomial QPvalid
(x0) at the end of a valid path, each reader visited by tag T computes T ’s new state

si
T by applying simple arithmetic operations represented by the function fi on the T ’s current state si−1

T .

Eventually, this results in the evaluation of the entire polynomial QPvalid
(x0). 3.) Finally, manager M checks

a tag’s state sl
T . M knows a set of ν evaluations of valid polynomials QPvalidi

(x0). M checks whether one

of these polynomials corresponds to sl
T , and if so, M knows the path the tag has taken.

Privacy and security overview: On the one hand, to protect privacy (more precisely “unlinkability”)

in TRACKER, tags store only probabilistic elliptic curve Elgamal encryptions of their states, and readers use

homomorphic (re-)encryption techniques for the arithmetic operations on encrypted path encodings. At the

end of the supply chain, the manager can then decrypt and identify the path.

On the other hand, security of TRACKER relies on both the security of Elgamal and the security of

HMAC. A tag stores an encrypted state of the three elements: ID, HMACk(ID) and HMACk(ID)·QPvalid
(x0).

Although an adversary can always have access to encryptions of HMACk(ID) and encryptions of QPvalid
(x0),

he cannot come up with an encryption that corresponds to the product of the underlying plaintexts, that is,

HMACk(ID) · QPvalid
(x0). We show in Section 5.2 that if an adversary A is able to come up with an en-

cryption of HMACk(ID) ·QPvalid
(x0), he will be able to break either computational Diffie-Hellman (CDH)

or HMAC security. Before the detailed protocol description in Section 4.3, we will first provide an overview

about TRACKER’s polynomial path encoding and elliptic curve encryption used in this paper.

4.1 Path Encoding in Tracker

TRACKER’s polynomial path encoding is based on techniques for software fault detection. Noubir et al.

[19] propose to encode a software’s state machine using polynomials such that the exact sequence of states

visited during run-time generates a unique “mark”. Therewith, run-time faults can be detected. TRACKER’s

path encoding is based on the one by Noubir et al. [19] and will be described in the following.

For each step vi, 1 ≤ i ≤ η, in the supply chain, vi is associated with a unique random number ai ∈ Fq,

where q is a large prime. Accordingly, the issuer’s step v0 is associated with a random number a0 ∈ Fq.

As mentioned above, a path in the supply chain is represented as a polynomial in Fq. The polynomial

corresponding to a path P = −−−−−−→v0v1 . . . vl is defined in Equation (1). All operations are in Fq.

QP(x) := a0x
l +

l
∑

i=1

aix
l−i. (1)

10

To have a more compact representation of paths, a path P is represented as the evaluation of QP(x) in

x0, where x0 is a generator of F∗
q . We denote φ(P) = QP(x0). The above path encoding using polynomials

with random coefficients ai ∈ Fq has the desired property that any two different paths result in distinct

polynomial evaluations with high probability. That is, ∀P,P ′ with P 6= P ′, equation φ(P) = φ(P ′) holds

with probability 1
q
, cf., Noubir et al. [19].

Let T be a tag with a unique ID that took path P . We define T ’s path mark as: φID(P) := HMACk(ID)·
φ(P). As defined above, the path mark depends on tags’ ID to prevent an adversary from copying the

path mark of a tag into another one. Although the path mark depends on ID, knowledge of φID(P) and

HMACk(ID) allows M to always derive φ(P) and identify P .

Readers: The path mark φID(P) is stored on the tag. A reader that is visited by a tag T reads T ’s current

path mark, updates it, and writes the updated path mark back into T . To eventually achieve the evaluation of

path mark φID(P) of path P = −−−−−−−−−−−−−−−−−→v0v1 . . . vi−1vivi+1 . . . vl, the per reader effort is quite low. Assume that T
arrives at reader Ri, i.e., step vi in the supply chain. So far, T went through (sub-)path Pi−1 = −−−−−−−−→v0v1 . . . vi−1,

and stores ID, HMACk(ID), and path mark φID(Pi−1).

To get φID(Pi), reader Ri simply computes its state transition function fRi
defined as

fRi
(x) := x0x + HMACk(ID) · ai.

So, φID(Pi) := fRi
(φID(Pi−1)) = x0φID(Pi−1)+HMACk(ID) · ai. Ri writes φID(Pi) in T . By construc-

tion, this will eventually result in φID(Pi) = HMACk(ID) ·(a0x
l
0 +

∑i
j=1 ajx

i−j
0) = HMACk(ID) ·φ(Pi).

Tag state decoding: This operation corresponds to the CHECK function of the TRACKER protocol.

The state sl
T of a valid tag T in the supply chain that went through a valid path Pvalid consists of a tuple

of three elements sl
T := (ID,HMACk(ID), φID(Pvalid)).

Before decoding φID(Pvalid), M provided with the secret key k and ID, computes HMACk(ID) and ver-

ifies the second element of T ’s state. If T passes the verification, M multiplies φID(Pvalid) by HMACk(ID)−1

to get φ(Pvalid). M stores a list of all possible φ(Pvalidi
) along with their corresponding valid paths. Given

φ(Pvalid), M will be able to check and identify the path Pvalid.

As we will now see in the following paragraphs, tags in TRACKER store encrypted versions of ID,

HMACk(ID) and φID(Pvalid). So in conclusion, a tag stores the tuple: sl
T = (E(ID), E(HMACk(ID)),

E(φID(Pvalid)).

4.2 Elliptic Curve Elgamal Cryptosystem

An elliptic curve Elgamal cryptosystem provides the following usual set of operations:

Setup: The system outputs an elliptic curve E over a finite field Fp. Let P be a point on E(Fp) of a

large prime order q such that the discrete logarithm problem is intractable for G =< P >. Here, p and q are

TRACKER security parameters, e.g., |p| = |q| = 160 bit.

Key generation: The secret key is sk ∈ Fq. The corresponding public key pk is the pair of points

(P, Y = sk · P).

Encryption: To encrypt a point M ∈ E , one randomly selects r ∈ Fq and computes E(M) := (U, V) =
(r · P,M + r · Y). The ciphertext is c = (U, V).

Decryption: To decrypt a ciphertext c = (U, V), one computes D(c) := U−sk ·V = M . In TRACKER,

a tag in the supply chain stores the elliptic curve Elgamal encryption of its unique ID, HMACk(ID), and a

path mark φID(P). Without loss of generality, we assume that ID of a tag is a random point in the elliptic

curve E and that HMACk(ID) is an element of Fq such that |q| = 160 bits.

To encrypt HMACk(ID) and φID(P) in Fq using Elgamal over elliptic curves, we need a point mapping

which transforms a message m ∈ Fq to a point in the elliptic curve E .

11

Point mapping: We use a simple additively homomorphic mapping M : Fq → E that preserves the

properties of our polynomial path encoding with respect to the probability of path “collisions”. Message

m ∈ Fq is mapped to a point in E by M(m) = m · P , where P is a point in E of large prime order q.

This mapping is a one-to-one mapping from Fq to G =< P >: if ∃m1,m2 ∈ Fq such that M(m1) =
M(m2), then m1 = m2 mod q . Therefore, the probability that the mappings of two path marks collide

in E , i.e., M(φID(P1)) = M(φID(P2)), is the same as the probability that two path marks collide in Fq.

This mapping is not reversible which means that we cannot deduce φID(P) from M(φID(P)). However,

this is not an issue in TRACKER: as mentioned above, the manager knows the valid paths in advance. So he

computes and stores the mappings M(φ(Pvalidi
)) ∈ E , instead of computing and storing φ(Pvalidi

) ∈ Fq.

Given ID, the manager computes HMACk(ID), derives the mapping M(φ(P)) ∈ E from M(φID(P)), and

then checks if P is a valid path by comparing M(φ(P)) with the list of valid mappings..

4.3 Detailed Protocol Description

TRACKER consists of an initial setup phase, the preparation of new tags entering the supply chain, reader

and tag interaction as part of the supply chain, and finally a path verification conducted by manager M .

Tracker initialization: Issuer I sets up an elliptic curve Elgamal cryptosystem and generates the secret

key sk and the public key pk = (P, Y = sk · P) such that the order of P is a large prime q, |q| = 160 bit.

Then, I selects x0 a generator of the finite field Fq, and selects randomly a value a0 ∈ Fq. I generates

a random bit string k, |k| = 160 bit. The initial step v0, representing the issuer in the supply chain, is

associated with (a0, k).

Similarly, I generates η random numbers ai ∈ Fq, 1 ≤ η. I sends to each reader Ri, representing step

vi, the tuple (x0, ai) using a secure channel.

Also using a secure channel, I provides manager M with secret key sk, generator x0, key k and tuples

(i, ai). Therewith, M is informed which reader Ri at step vi knows which ai. As M knows which paths in

the supply chain will be valid, he now computes all the ν valid φ(Pvalid) using Equation (1). Finally, M com-

putes and stores pairs (M(φ(Pvalidi
)), steps), where steps is the sequence of steps −−−−−−−−−−−−−−−−−−−−→v0vPvalid,1vPvalid,2 . . . vPvalid,l

of Pvalidi
. That is, M knows for each mapping the sequence of steps. Therefore, the manager verifies the

validity of the path and if the path is valid he can identify it.

In conclusion, x0 is public, the ai are secret and only known by reader Ri and M . Also, only M and I
know sk and k.

Tag preparation: For each new tag T entering the supply chain, I draws a random point ID ∈ E which

is T ’s unique identifier. Now, let HMACk be a (secure) HMAC algorithm [5], HMACk(m) : Fq ×E → Fq.

Provided with key k, Issuer computes HMACk(ID).

I then selects three random numbers r0
ID, r0

σ, r0
φ ∈ Fq to compute the following ciphertexts:

c0
ID = E(ID) = (U0

ID, V 0
ID) = (r0

ID · P, ID + r0
ID · Y)

c0
σ = E(HMACk(ID)) = (U0

σ , V 0
σ) = (r0

σ · P,HMACk(ID) · P + r0
σ · Y)

c0
φ = E(φID(v0)) = (U0

φ, V 0
φ) = (r0

φ · P,HMACk(ID) · a0 · P + r0
φ · Y)

Finally, I writes state s0
T = (c0

ID, c0
σ, c0

φ) into T that can enter the supply chain.

Tag and reader interaction in the supply chain: Assume a tag T arrives at step vi and reader Ri in the

supply chain. Without loss of generality, assume that the path that tag T took so far is Pi−1 = −−−−−−−→v0v1...vi−1

and let Pi = −−−−−→v0v1...vi. Ri reads out T ’s current state si−1
T = (ci−1

ID , ci−1
σ , ci−1

φ).

Given the ciphertexts ci−1
φ = (U i−1

φ , V i−1
φ), ci−1

σ = (U i−1
σ , V i−1

σ), generator x0, and ai, Ri computes

ci
φ = (U i

φ, V i
φ):

12

U i
φ = x0 · U

i−1
φ + ai · U

i−1
σ = (x0r

i−1
φ + air

i−1
σ) · P

V i
φ = x0 · V

i−1
φ + ai · V

i−1
σ

= x0(

i−1
∑

j=0

HMACk(ID) · ajx
i−1−j
0 · P + ri−1

φ · Y) + ai(HMACk(ID) · P + ri−1
σ · Y)

=

i−1
∑

j=0

HMACk(ID) · ajx
i−1−j
0 · P + HMACk(ID) · ai · P + x0r

i−1
φ · Y + air

i−1
σ · Y

= HMACk(ID) ·
i

∑

j=0

ajx
i−j
0 · P + (x0r

i−1
φ + air

i−1
σ) · Y

= M(HMACk(ID) · φ(Pi)) + (x0r
i−1
φ + air

i−1
σ) · Y = M(φID(Pi)) + (x0r

i−1
φ + air

i−1
σ) · Y

In conclusion, the above is the homomorphic encryption variant of the reader computation of Section 4.1.

To get ci
ID and ci

σ, reader Ri re-encrypts ci−1
ID and ci−1

σ , respectively: it picks randomly two numbers r′ID
and r′σ ∈ Fq and outputs two new ciphertexts ci

ID = (U i
ID, V i

ID) = (r′ID · P + U i−1
ID , r′ID · Y + V i

ID) and

ci
σ = (U i

σ, V i
σ) = (r′σ · P + U i−1

σ , r′σ · Y + V i
σ).

The reader also re-encrypts ci
φ. It picks randomly r′φ ∈ Fq and outputs: c′iφ = (U ′i

φ , V ′i
φ) = (r′φ · P +

U i
φ, r′φ · Y + V i

φ). Finally, Ri writes the new state si
T = (ci

ID, ci
σ, c′iφ) into T .

Path verification by M : This operation corresponds to TRACKER’s realization of the CHECK function.

Upon reading a tag’s state sl
T = (cl

ID, cl
σ, cl

φ), M decrypts cl
ID and gets ID ∈ E . M checks then for cloning

by looking up ID in M ’s database DBclone. If ID ∈ DBclone, then M outputs ∅ and rejects T .

Otherwise, M decrypts cl
σ to get a point Q ∈ E . M computes HMACk(ID) and M(HMACk(ID)), and

verifies whether the equation Q = M(HMACk(ID)) holds. If it does not, M outputs ∅ and rejects T . If

Q = M(HMACk(ID)), M decrypts cl
φ which results in a point Q′. Given HMACk(ID), M computes the

inverse of HMACk(ID) ∈ Fq, and then computes π = HMACk(ID)−1 · Q′ = M(φ(P)).
M checks, whether π is in his list of valid mappings M(φ(Pvalidi

)). If there is no match, M outputs ∅
and rejects the tag. Otherwise, manager M outputs Pvalid and adds ID to DBclone.

5 Security and Privacy Analysis

Before giving the security and the privacy analysis, we introduce the security properties of HMAC.

5.1 HMAC Security

An HMAC with key k, a message m, and a cryptographic hash function h is defined as HMACk(m) :=
h(k⊕opad||h(k⊕ipad||m)), where || is concatenation. For more details about opad and ipad see Krawczyk

et al. [16].

If the output of h and the secret key k are indistinguishable from random data for an adversary, then

HMACk holds the following two properties [4, 5]:

1.) Resistance to existential forgery: Let Oforge
HMACk

be an HMAC oracle that, when provided with a

message m, returns HMACk(m). An adversary A can choose N messages m1, . . . ,mN , and provide them

to the oracle Oforge
HMACk

to get the corresponding HMACk(mi). Still, the advantage ǫ of A to come up with a

new pair (m,HMACk(m)), where m 6= mi, 1 ≤ i ≤ N , is negligible.

2.) Indistinguishability: Let Odistinguish
HMACk

be an HMAC oracle, when provided with a message m, it flips

a coin b ∈ {0, 1} and returns a message m′ such that: if b = 0, it returns a random number. If b = 1, it returns

13

HMACk(m). Even knowing m, A cannot tell if m′ is a random number or m′ = HMACk(m). That is,

HMACk is a pseudo-random function.

5.2 Security

First, an adversary A winning the security game of Algorithm 2 implies that A writes into a tag T a valid

state sT = (c′ID, c′σ, c′φ). This implies that the pair (c′ID, c′σ) is a valid pair, i.e., c′ID = E(ID) and c′σ =
E(HMACk(ID) · P). Producing a new valid pair (c′ID, c′σ) entails that A is breaking the security of HMAC

as sketched in Lemma 1.

Note: We say that A produces a new valid pair (c′ID = E(ID), c′σ = E(HMACk(ID) · P)), if (c′ID, c′σ)
is not (a re-encryption of) a pair (cID, cσ) that A read during the learning phase.

Lemma 1. Producing a new valid pair (c′ID, c′σ) contradicts the indistinguishability property of HMAC.

Proof (Sketch). More precisely, we can build an adversary A′ that uses A to break the indistinguishability

property of HMACk. When A provides A′ with a new pair (c′ID, c′σ), A′ decrypts c′ID and c′σ and gets ID

and a point Q respectively. A′ gives ID to Odistinguish
HMACk

. Odistinguish
HMACk

returns a message m′. Finally, to break

the indistinguishability of HMACk, A′ checks whether Q = m′ · P . If so, A′ outputs 1, meaning that

m′ = HMACk(ID). Otherwise, A′ outputs 0 implying that m′ is a random number. ⊓⊔

Theorem 1. TRACKER is secure under the security of HMAC and the computational Diffie-Hellman (CDH)

assumption.

Proof. As of Lemma 1, A cannot compute a new valid pair (c′ID, c′σ). If A re-uses a valid pair (c′ID, c′σ) read

in the learning phase, then providing a valid tuple (c′ID, c′σ, c′φ) implies that A is able to solve an instance of

the computational Diffie-Hellman problem as shown below.

Assume there would be an adversary A(ρ, r, ǫ) that breaks the security of TRACKER by choosing arbi-

trarily a tag T ∈ T , then re-writing it with a valid state (c′ID, c′σ, c′φ). If this is the case, and if the output of

HMAC is indistinguishable from a random number, we show that there is an adversary A′ that breaks the

CDH assumption with non-negligible advantage ǫ′.
Note that we do not cover simple cloning here, as an adversary can always succeed in copying the state

of a tag that went through a valid path. As discussed before, anti-cloning protection is provided by DBclone.

Let OCDH be an oracle that, when it is queried, selects randomly two elements a and b in Fq and returns

the tuple (P, a · P, b · P). An adversary A′ breaks CDH, if given (P, a · P, b · P), he outputs ab · P .

Overview: In a nutshell, an adversary A is able to break TRACKER, if he outputs an encryption of

ID,HMACk(ID) · P , and HMACk(ID) · φ(Pvalid) · P from an encryption of ID,HMACk(ID) · P , and

φ(Pvalid) ·P . So to break CDH, A′ uses A as a subroutine as follows: firstly, A′ creates a TRACKER system

with a valid path Pvalid = −−−−−−→v0v1 . . . vl. He randomly generates (l − 1) elements ai ∈ Fq such that ai corre-

sponds to step vi. The step vl, however, will be associated with a point R = b · P − x0
∑l−1

i=0 aix
l−1−i
0 · P .

Therefore, M(φ(Pvalid)) = b ·P . Secondly, A′ writes into a challenge tag Tn a state sTn = (cIDn , cσn , cφn
)

such that cσn = E(a · P). If in the challenge phase of the security game A is able to write a valid state

(c′IDn
, c′σn

, c′φn
) into Tn which corresponds to the path Pvalid, then A′ will be able to break CDH by decrypt-

ing c′φn
. By construction, the path mark stored on Tn will correspond to ab · P .

Details: For ease of understanding, we assume that the supply chain consists of only one valid path

Pvalid = −−−−−−→v0v1 . . . vl such that M(φ(Pvalid)) = b · P .

– A′ creates a TRACKER system with one valid path Pvalid = −−−−−−→v0v1 . . . vl: he generates randomly l elements

ai, 0 ≤ i ≤ l − 1, such that ai corresponds to vi, the step vl however is associated with a point R =
b ·P − x0

∑l−1
i=0 aix

l−1−i
0 ·P . Finally, A′ generates a valid pair of keys (sk, pk) for Elgamal encryption

and a key k for the HMAC.

14

– A′ initializes (n − 1) tags Ti in TRACKER.

– To create the nth tag Tn, A′ picks randomly IDn ∈ E and encrypts it into cIDn . Then, to compute cσn , A′

encrypts a·P instead of encrypting HMACk(IDn)·P . Given the indistinguishability property of HMAC,

A cannot tell, whether A′ computes the HMAC correctly or not. Finally, A′ computes cφn
= E(aa0 ·P).

– A′ calls A(ρ, r, ǫ) that enters the learning phase. A iterates the supply chain ρ times. At each iteration

of the supply chain:

1. A′ updates the state of tags in the supply chain as follows: first, if a tag Ti is at step vi 6= vl, the

tag is updated according to the TRACKER protocol. Second, if a tag Ti is at step vl: A
′ decrypts the

state sTi
= (cIDi

, cσi
, cφi

) and gets three points (ID′
i, Qi, Q

′
i). A checks whether (ID′

i, Qi, Q
′
i) corre-

sponds to a valid state of a tag going through the sub-path −−−−−−−−→v0v1 . . . vl−1, i.e., Qi = HMACk(ID
′
i)·P

and Q′
i = HMACk(ID

′
i) ·

∑l−1
i=0 aix

l−1−i
0 · P . If it is the case, A′ writes into Ti a state s′Ti

=
(c′IDi

, c′σi
, c′φi

) such that c′φi
= E(HMACk(ID

′
i) · b · P). Otherwise, A′ writes into Ti a state

s′Ti
= (c′IDi

, c′σi
, c′φi

) such that c′φi
is an encryption of a random number.

Note. Writing the encryption of a random number into an invalid tag T does not affect the output of

the CHECK function. An invalid tag T either did not go through the valid sub-path −−−−−−−−→v0v1 . . . vl−1 or

it stores an invalid HMAC. When A calls the CHECK function on T , CHECK will always output ∅.

Moreover, a valid tag T that went through Pvalid will always store a valid path mark corresponding

to HMACk(ID) · b · P .

2. Simulating Opick, A′ provides A with r tags that A is allowed to read from and write into.

3. A gives back the r tags to A′. A simulates OM as follows:

• Upon reading the state sT ′

i
= (cID′

i
, cσ′

i
, cφ′

i
) of a tag T ′

i , A′ decrypts cID′
i

to get ID′
i. First,

A′ verifies whether ID′
i = IDn. If it is the case, A′ aborts and restarts the game. Otherwise, A

decrypts cσ′

i
and gets a point Qi. Then, A′ verifies whether the equation Qi = HMACk(ID

′
i) ·P

holds. If it does not hold, A′ rejects the tag T ′
i .

• If Qi = HMACk(ID
′
i) · P , A′ decrypts cφ′

i
and gets a point Q′

i. A
′ then computes πi =

HMACk(ID
′
i)
−1 ·Q′

i. If πi = b ·P , i.e., πi is valid, A′ outputs Pvalid. Otherwise, A′ rejects the

tag T ′
i and outputs ∅.

– After the learning phase, A′ puts A into the challenge phase. A then returns a tag T ∈ T which stores

the state (c′ID, c′σ, c′φ) to A′.

Once A′ receives (c′ID, c′σ, c′φ), he decrypts c′ID and gets ID using Elgamal secret key sk. He checks whether

ID = IDn, i.e., T = Tn. If it is not the case, A′ restarts the game. Otherwise, A′ decrypts c′φ. Since A′

computes the HMAC of IDn as if it was a, the decryption of c′φ results in a point Q′ = a · φ(Pvalid) · P =
ab · P . To solve the CDH problem A′ outputs Q′.

A′ succeeds in its attacks if: 1.) the game does not abort: A is not provided with tag Tn in the learning

phase. 2.) In the challenge phase, A picks Tn.

In the learning phase, A is provided with r · ρ tags. Since tags are selected randomly among n tags, the

probability that A is not provided with Tn in the learning phase is (1− 1
n
)r·ρ. Moreover, the probability that

A picks Tn in the challenge phase is 1
n

. Therefore, if A(ρ, r, ǫ) breaks TRACKER’s security, then A′ breaks

CDH with advantage ǫ′ = 1
n
(1 − 1

n
)r·ρǫ. ⊓⊔

Above, we have shown that if there is an adversary A who breaks the security of TRACKER with one valid

path, then there is an adversary who breaks CDH assumption. However, note that the security of TRACKER

with one valid path can be extended to the security of TRACKER with multiple valid paths.

Lemma 2. If there is an adversary A(ρ, r, ǫ) who breaks TRACKER’s security with ν valid path, then there

is an adversary A(ρ, r, ǫ′) who breaks TRACKER’s security with one valid path.

15

Proof (sketch). In order to break TRACKER with one valid path Pvalid, A creates a supply chain of ν valid

paths such that Pvalid is one of the valid paths. Since A(ρ, r, ǫ) breaks TRACKER with ν valid paths, he may

output a tuple (c′ID, c′φ, σ′
i) that corresponds to the path Pvalid with probability 1

ν
ǫ. Therefore, the advantage

of A′ is ǫ′ = ǫ
ν

. ⊓⊔

In conclusion, if there is an adversary A(ρ, r, ǫ) that breaks the security of TRACKER with ν valid paths,

then there is an adversary A′ who breaks CDH with advantage ǫ′ = 1
νn

(1 − 1
n
)r·ρǫ.

5.3 Privacy Analysis

For the privacy analysis, we use the semantic security property of Elgamal under re-encryption, cf., Golle

et al. [10], to prove both tag unlinkability and step unlinkability.

Let Ore−encrypt be the oracle that, provided with two ciphertexts c1, c2, randomly chooses b ∈ {1, 2},

re-encrypts cb using Elgamal and public key pk, and returns the resulting ciphertext c′b.

As this re-encryption is based on Elgamal, the semantic security property of Elgamal encryption is

extended to semantic security under re-encryption. Let A be an adversary that selects two ciphertexts c1, c2

and provides oracle Ore−encrypt with c1 and c2. Ore−encrypt randomly chooses b, re-encrypts cb to c′b, and

returns c′b to A. The semantic security of Elgamal under re-encryption implies that guessing the value of b
is as difficult for A as the decisional Diffie-Hellman (DDH) problem [10].

Theorem 2 (Tag Unlinkability). TRACKER provides tag unlinkability under the DDH assumption.

Proof. Assume there is an adversary A whose advantage ǫ to break the tag unlinkability experiment is

non-negligible. We now construct a new adversary A′ that executes A and breaks the semantic security of

Elgamal under re-encryption ensured under the DDH assumption:

– A′ creates a supply chain for the TRACKER protocol.

– A′ calls the adversary A. Simulating Oselect, A
′ provides A with two pairs (T1, S1) and (T2, S2) such

that T1 and T2 are selected randomly among the n tags in the supply chain, and S1 (respectively S2) is

the set of steps that T1 (respectively T2) went through so far.

– A iterates the supply chain ρ times. At each iteration i of the supply chain:

1. A reads and writes into T1 and T2.

2. Simulating Ostep, A′ provides A with the next step that T1 (respectively T2) will go through in the

next supply chain iteration.

3. A′ simulates Oselect and provides A with r pairs (Ti,j , Si,j), 1 ≤ j ≤ r, where Ti,j is selected

randomly, and Si,j is the set of steps that Ti,j went through so far. A′ is allowed to read from and

write into these r tags.

– After the learning phase, A submits T1 and T2 to A′ that simulates Oflip. T1 contains state sT1 =
(cID1 , cσ1 , cφ1), and T2 contains state sT1 = (cID2 , cσ2 , cφ2).

– A′ transmits cID1 and cID2 to oracle Ore−encrypt.

– Ore−encrypt randomly chooses b and returns the result c′IDb
of re-encrypting one of the ciphertexts

cID1 , cID2 to A′.

– A′ prepares the challenge tag Tc:

1. A′ iterates the supply chain one more time.

2. A′ randomly selects b′ ∈ {1, 2} and stores the state sTc = (c′IDb
, c′σb′

, c′φb′
) in Tc.

– Simulating Oflip, A′ provides A with the challenge tag Tc.

– A′ simulates Oselect and provides A with s pairs (T ′
i , S

′
i), 1 ≤ i ≤ s, where T ′

i is selected randomly, and

S′
i is the set of steps that T ′

i went through so far. A is allowed to read from and write into these s tags.

16

In general, given two events {E1, E2}, the probability that event E1 occurs is always Pr(E1) =
Pr(E1|E2) · Pr(E2) + Pr(E1|E2) · Pr(E2). Now let E1 be the event that A′ can break the semantic

security of Elgamal under re-encryption, and E2 is the event that b = b′ holds.

If b = b′, the state sTc = (c′IDb
, c′σb′

, c′φb′
) stored on Tc corresponds to a well formed tuple. Therefore, A

outputs his guess for the tag corresponding to challenge tag Tc with non-negligible advantage ǫ. If A outputs

T1, this means that Tc stores a re-encryption of cID1 , and A′ outputs 1. If A outputs T2, this means that Tc

stores a re-encryption of cID2 , and A′ outputs 2.

If b 6= b′, the probability that A′ breaks the semantic security of Elgamal under re-encryption is at worst

a random guess, i.e., 1
2 .

Since b′ is selected randomly, the probability that b = b′ holds is 1
2 . Therefore,

Pr(E1) = Pr(E1 ∩ E2) + Pr(E1 ∩ E2) = Pr(E2) · Pr(E1|E2) + Pr(E2) · Pr(E1|E2)

=
1

2
Pr(E1|E2) +

1

2
Pr(E1|E2) =

1

2
(
1

2
+ ǫ) +

1

2
Pr(E1|E2) ≥

1

2
(
1

2
+ ǫ +

1

2
) =

1

2
+

ǫ

2

Consequently, the advantage of A′ to break the semantic security of Elgamal under re-encryption is at

least ǫ
2 . As a conclusion, if A has a non-negligible advantage ǫ to break TRACKER, A′ as well will have a

non-negligible advantage ǫ
2 to break the semantic security of Elgamal under re-encryption.

Theorem 3 (Step Unlinkability). TRACKER provides step unlinkability under the DDH assumption.

Proof. Assume there is an adversary A whose advantage ǫ to break the step unlinkability experiment is

non-negligible. We now construct a new adversary A′ that executes A and breaks the semantic security of

Elgamal under re-encryption:

– A′ creates a supply chain for the TRACKER protocol with n tags, η + 1 steps, and ν valid paths.

– A′ calls the adversary A. Simulating Ochoose, A′ provides A with a tag T entering the supply chain.

– A iterates the supply chain ρ times. At each iteration i of the supply chain:

1. A reads from and writes into T .

2. Simulating Ostep, A′ provides A with the next step vT,(i+1) that T will go through in the next supply

chain iteration.

3. A′ simulates Odraw and provides A with r pairs (Ti,j , Si,j), 1 ≤ j ≤ r, where Ti,j is a tag that will

go through vT,(i+1) in the next iteration, and Si,j is the set of steps that Ti,j went through so far. A
is allowed to read from and write into these r tags.

4. A′ simulates Oselect and provides A with s pairs (T ′
i,j , S

′
i,j), 1 ≤ j ≤ s, where T ′

i,j is a tag selected

randomly, and S′
i,j is the set of steps that T ′

i,j went through so far. A is allowed to read from and

write into these s tags.

5. A provides the oracle Ostep with tags T ′
i,j . A′ simulates Ostep and provides A with the next step of

tags T ′
i,j .

6. When A iterates the supply chain, he will again receive the tags Ti,j , T
′
i,j which he can read from.

Without loss of generality, we assume that T went through path P = −−−−−−→v0v1 . . . vρ. Let P ′ =
−−−−−−→
v0v

′
1 . . . v′ρ

be a path such that P and P ′ have no step in common except for v0.

– In the challenge phase, A′ provides A with a challenge tag Tc that just entered the supply chain.

– A is allowed to iterate the supply chain ρ times.

– Before each iteration i:

1. A can read from and write into Tc.

2. A′ simulates Oselect and provides A with s pairs (T ′
i,j , S

′
i,j), 1 ≤ j ≤ s, where T ′

i,j is a tag selected

randomly, and S′
i,j is the set of steps that T ′

i,j went through so far. A′ is allowed to read and write

into these s tags.

17

3. A provides the oracle Ostep with tags T ′
i,j . A′ simulates Ostep and provides A with the next step of

tags T ′
i,j .

– To update the state of Tc in the challenge phase, A′ proceeds as follows:

• During the first iteration:

1. A′ computes two states. He computes s1
Tc,1 = (c1

ID, c1
σ, c1

φ1
) as if Tc will go through v1 in the

first iteration. He computes s1
Tc,2 = (c1

ID, c1
σ, c1

φ2
) as if Tc will go through v′1 in the first iteration.

2. A′ then transmits c1
φ1

and c1
φ2

to oracle Ore−encrypt.

3. Ore−encrypt returns the result c′φb
of re-encrypting one of the two ciphertexts c1

φ1
, c1

φ2
to A′.

4. A′ writes the state s1
Tc

= (c1
ID, c1

σ, c′φb
) into Tc.

• In the next iterations, A′ updates the state of Tc as if Tc will go through the sub-path
−−−−−−→
v′2v

′
3 . . . v′ρ.

– At the end of the challenge phase, A reads the state of tag Tc and outputs b.

Note that the path stored in Tc is now either PTc =
−−−−−−−−→
v0v1v

′
2 . . . v′ρ or P ′

Tc = P ′ =
−−−−−−−−→
v0v

′
1v

′
2 . . . v′ρ.

If A outputs b = 1, this means that Tc and T have a step in common that is different from v0. Since

PTc ∩P = {v0, v1} and P ′
Tc ∩P = {v0}, outputting 1 implies that Tc went through PTc and hence through

v1. Therefore, the state that Tc stored at the first iteration corresponds to −−→v0v1, and c′φb
is a re-encryption of

c1
φ1

. A′ outputs 1.

If A outputs b = 2, this means that Tc and T do not have a step in common except for v0. This implies

as well that Tc went through P ′
Tc = P ′ and hence through v′1. Therefore, the state that Tc stored at the first

iteration corresponds to
−−→
v0v

′
1, and c′φb

is a re-encryption of c1
φ2

. A′ outputs 2.

Therefore, if A has a non-negligible advantage ǫ in breaking TRACKER, A′ as well has non-negligible

advantage ǫ in breaking the semantic security of Elgamal under re-encryption, leading to a contradiction.

6 Evaluation

TRACKER can be implemented using today’s available RFID tags. It requires tags to only store data, i.e,

the encrypted ID, the encrypted HMAC and the encrypted path mark. Consequently, the tag stores three

Elgamal ciphertexts cID = (rID · P, ID + rID · Y) , cσ = (rσ · P,M(HMACk(ID)) + rID · Y) and

cφ = (rφ ·P,M(φID(Pvalid)) + rφ ·Y), which results in an overall storage of 2 · 3 · 160 = 960 bits. Storing

only 1 Kbit of data is feasible for today’s EPC Class 1 Gen 2 UHF tags, for example Alien Technology’s

Higgs 3 tags [1].

Complexity for readers is also low in TRACKER. A reader Ri at step vi is required to store an element

ai ∈ Fq and the public key of Elgamal pk. So, the total storage per reader is less than 80 bytes. Regarding

computation, Ri is required to update the path mark of the tags passing by and to re-encrypt three ciphertexts:

this sums up to a total three elliptic curve Elgamal encryptions. We conjecture this to be feasible even for

lightweight embedded readers.

The manager M is the entity verifying the path that a tag T went through. Therefore, M is required to

decrypt the ciphertexts stored on the tag using the secret key sk. M maintains two hash tables: the first table

stores the list of valid paths in the supply chain. The second table is DBclone. This is a hash table containing

the IDs that M has read. So, the storage required for M is linear in the number of valid paths, and the

number of tags in the supply chain O(ν + n), the path verification cost has constant complexity: when M
reads a tag T , M is required to decrypt three elliptic curve ciphertexts to get ID, M(HMACk(ID)) and

M(φID(P)). Therewith, he computes a single HMAC and compares the output.

To detect cloning, M checks whether DBclone contains ID. This operation is a hash look-up operation

of cost O(1). If no cloning is detected, M uses M(φID(P)) and HMACk(ID) to derive M(φ(P)). Finally,

M traces the tag path by looking up M(φ(P)) into the table of valid paths.

18

In total, M performs three elliptic curve Elgamal decryptions, one HMAC verification, and two hash

look-up operations per tag verification which is “cheap”. As a conclusion, the complexity of TRACKER on

the manager side is O(n + ν) storage and O(1) computation.

Assume the size of an ID is, e.g., 96 bit as specified for EPC Class 1 Generation 2 tags, and each entry

M(φ(Pvalid)) is 160 bit. A large sample TRACKER system supporting n = 109 different tags and ν = 106

different valid paths would consume only around ≈ 11 GByte of storage for manager M . We conjecture this

storage to be available for the manager of such a supply chain.

7 Related Work

Although historically one of the major applications for RFID tags, secure and privacy-preserving supply

chain management has not received much attention in research. Instead, research focuses more on privacy-

preserving authentication protocols and their cryptographic primitives [3].

Ouafi and Vaudenay [20] address counterfeiting of products using strong cryptography on RFID tags. To

protect against malicious state updates, tags authenticate readers at every step in the supply chain. Only if

readers are successfully authenticated, tags will update their internal state. Ouafi and Vaudenay [20] require

tags to evaluate a cryptographic hash function twice: for reader authentication and for the state update. A

similar approach with tags evaluating cryptographic hash functions is proposed by Li and Ding [17]. While

such setups using cryptography-enabled tags might lead to a secure and privacy-preserving solution of the

counterfeiting problem, tags will always be more expensive than read/write-only tags in TRACKER.

Chawla et al. [7] check whether covert channels exist in a supply chain that leak information about

a supply chain’s internal details to an adversary. Therefore, tags’ state is frequently synchronized with a

backend-database. If a tag’s state contains “extra” data not in the database, the tag is rejected. TRACKER’s

focus, however, is on the secure, privacy-preserving detection of which path a tag has taken.

Shuihua and Chu [23] detect malicious tampering of a tag’s state in a supply chain using watermarks.

However, there is neither a way to identify a tag’s path, nor to protect its privacy in the supply chain.

Kerschbaum and Oertel [15] detect counterfeits in the supply chain using pattern matching for anomaly

detection. When a tag is read, this information is stored in a central database along with the ID of the tag.

Unlike TRACKER, the focus of this paper is privacy-preservation of readers participating in the supply chain.

There is no privacy for the tags in the supply chain.

Regarding simple product genuineness verification, solutions exist that rely on physical properties of a

“tag”. For example, TAGSYS produces holographic “tags” that are expensive to clone [24]. Verayo produces

tags with Physically Unclonable Functions (PUF) [26]. While these approaches solve product genuineness

verification, they neither support identification of tag’s paths nor any kind of privacy properties.

Our construction based on polynomial path encoding might resemble other (cryptographic) construc-

tions based on, e.g., Rabin fingerprints [21], aggregated messages authentication codes [14] or any kind

of aggregated signatures. However, we stress that our design focuses on 1.) preserving both the order or

sequence of steps in the supply chain and the privacy of paths and tags, 2.) at the same time putting only

minimal computational burden on the manager (O(1) complexity with low overhead), and 3.) being prov-

able. While alternative constructions might be envisioned, this is far from being straightforward.

8 Conclusion

In this paper, we presented TRACKER to address security and privacy challenges in RFID-based supply

chain management. TRACKER’s main idea is to encode valid paths in a supply chain using polynomials.

Readers representing steps in the supply chain evaluate polynomials successively, such that eventually the

19

manager of the supply chain can uniquely identify the exact path a tag has taken. TRACKER’s security,

privacy, and unlinkability properties against adversaries relies on the semantic security of Elgamal and the

security of HMAC, and we prove these properties. Contrary to related work, TRACKER does not require any

computational complexity on the tag, but only 80 bytes of storage. This shows TRACKER’s feasibility for

today’s cheap EPC Class 1 Gen 2 RFID tags.

References

[1] Alien Technology. RFID Tags, 2009. http://www.alientechnology.com/tags/index.php.
[2] G. Ateniese, J. Camenisch, and B. de Medeiros. Untraceable rfid tags via insubvertible encryption. In CCS ’05: Proceedings

of the 12th ACM conference on Computer and communications security, pages 92–101, New York, NY, USA, 2005. ACM.
ISBN 1-59593-226-7.

[3] G. Avoine. RFID Security & Privacy Lounge, 2010. http://www.avoine.net/rfid/.
[4] M. Bellare. New Proofs for NMAC and HMAC: Security without Collision-Resistance. In Proceedings of Annual Interna-

tional Cryptology Conference, pages 602–619, Santa Barbara, USA, 2006. ISBN 3-540-37432-9.
[5] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message authentication. In Proceedings of Annual

International Cryptology Conference, pages 1–15, Santa Barbara, USA, 1996. ISBN 3-540-61512-1.
[6] K. Brooks. Anti-Counterfeiting Initiatives and RFID Practices. Contract Pharma, Feb 2006. http://tinyurl.com/yj5pxct.
[7] K. Chawla, G. Robins, and W. Weimer. On Mitigating Covert Channels in RFID-Enabled Supply Chains. In RFIDSec Asia,

Singapore, 2010. http://rfidsec2010.i2r.a-star.edu.sg.
[8] T. Dimitrou. rfidDOT: RFID delegation and ownership transfer made simple. In Proceedings of International Conference on

Security and privacy in Communication Networks, Istanbul, Turkey, 2008. ISBN 978-1-60558-241-2.
[9] EU project SToP. Stop Tampering of Products, 2010. http://www.stop-project.eu/.

[10] P. Golle, M. Jakobsson, A. Juels, and P. Syverson. Universal re-encryption for mixnets. In In Proceedings of the 2004 RSA
Conference, Cryptographer’s track, pages 163–178. Springer-Verlag, 2002.

[11] ICC Commercial Crime Services. Counterfeiting Intelligence Bureau, 2010.
http://www.icc-ccs.org/index.php?option=com content&view=article&id=29&Itemid=39.

[12] International Medical Products Anti-Counterfeiting Taskforce. International Medical Products Anti-Counterfeiting Taskforce
– IMPACT, 2010. http://www.who.int/impact/.

[13] A. Juels and S.A. Weis. Defining Strong Privacy for RFID. In PerCom Workshops, pages 342–347, White Plains, USA, 2007.
ISBN 978-0-7695-2788-8.

[14] J. Katz and A. Y. Lindell. Aggregate message authentication codes. In Topics in Cryptology CT-RSA 2008, volume 4964 of
Lecture Notes in Computer Science, pages 155–169. Springer Berlin / Heidelberg, 2008. ISBN 978-3-540-79262-8.

[15] F. Kerschbaum and N. Oertel. Privacy-Preserving Pattern Matching for Anomaly Detection in RFID Anti-Counterfeiting. In
Workshop on RFID Security – RFIDSec’10, Istanbul, Turkey, June 2010.

[16] H. Krawczyk, M. Bellare, and R. Canetti. Hmac: Keyed-hashing for message authentication, 1997. RFC 2104,
http://www.ietf.org/rfc/rfc2104.txt.

[17] Y. Li and X. Ding. Protecting RFID communications in supply chains. In Proceedings of ACM Symposium on Information,
Computer and Communications Security, pages 234–241, Singapore, 2007. ISBN 1-59593-574-6.

[18] Motorola. Saudi Arabia’s luxury retailer Jade Jewellery implements Motorola’s RFID technology to improve inventory
management and security, 2010. http://tinyurl.com/yg6wzjv.

[19] G. Noubir, K. Vijayan, and H. J. Nussbaumer. Signature-based method for run-time fault detection in communication proto-
cols. Computer Communications Journal, 21(5):405–421, 1998. ISSN 0140-3664.

[20] K. Ouafi and S. Vaudenay. Pathchecker: an RFID Application for Tracing Products in Suply-Chains. In Workshop on RFID
Security – RFIDSec’09, pages 1–14, Leuven, Belgium, 2009.
http://www.cosic.esat.kuleuven.be/rfidsec09/Papers/pathchecker.pdf.

[21] M.O. Rabin. Fingerprinting by random polynomials. Technical Report TR-15-81, Center for Research in Computing Tech-
nology. Harvard University, Cambridge, Massachusetts, USA, 1981.

[22] A.R. Sadeghi, I. Visconti, and C. Wachsmann. Anonymizer-Enabled Security and Privacy for RFID. In 8th International
Conference on Cryptology And Network Security – CANS’09, Kanazawa, Ishikawa, Japan, December 2009. Springer. ISBN
978-3-642-10432-9.

[23] H. Shuihua and C.-H. Chu. Tamper Detection in RFID-Enabled Supply Chains Using Fragile Watermarking. In Proceedings
of IEEE RFID, pages 111–117, Las Vegas, USA, 2008.

[24] TAGSYS RFID. RFID Luxury Goods Solutions, 2010. http://www.tagsysrfid.com/Markets/Industries/Luxury-Goods.
[25] S. Vaudenay. On Privacy Models for RFID. In Proceedings of ASIACRYPT, pages 68–87, Kuching, Malaysia, 2007. ISBN

978-3-540-76899-9.
[26] Verayo. Verayo Anti-Counterfeiting Solution, 2010. http://www.verayo.com/solution/anti-counterfeiting.html.

20

