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Abstract

We present a method for tracking a hand while it is inter-

acting with an object. This setting is arguably the one where

hand-tracking has most practical relevance, but poses sig-

nificant additional challenges: strong occlusions by the ob-

ject as well as self-occlusions are the norm, and classical

anatomical constraints need to be softened due to the exter-

nal forces between hand and object. To achieve robustness

to partial occlusions, we use an individual local tracker for

each segment of the articulated structure. The segments

are connected in a pairwise Markov random field, which

enforces the anatomical hand structure through soft con-

straints on the joints between adjacent segments. The most

likely hand configuration is found with belief propagation.

Both range and color data are used as input. Experiments

are presented for synthetic data with ground truth and for

real data of people manipulating objects.

1. Introduction

Visual hand tracking has several important applications,

including intuitive human-computer interaction, human be-

havior and emotion analysis, safety and process integrity

control on the workfloor, rehabilitation, and motion cap-

ture. Not surprisingly, much research has already gone into

computer algorithms for hand tracking. Yet, the majority of

contributions have only considered free hands, whereas in

many applications the hands will actually be manipulating

objects. In this paper, we present for the first time a system,

which can track the articulated 3D pose of a hand, while the

hand interacts with an object (such as depicted in Fig. 1).

The presence of objects has a significant impact on the

complexity and generality of the task. First, the manip-

ulated objects will frequently occlude parts of the hand,

and hand poses occurring during the process of grabbing or

holding will aggravate the problem of self-occlusion (e.g.

in Fig. 1 large parts of four fingers are partially or even

fully occluded). Second, the hand structure itself is less con-

strained in the presence of objects: parameter ranges have

Figure 1. The goal of the present work: recovering the articulated

3D structure of the hand during object manipulation.

to be widened and some simplifying assumptions derived

from human anatomy no longer hold. When in contact with

an object, forces are exerted on the hand, resulting in poses

which cannot be achieved with the bare hand (e.g. bend-

ing fingers backwards when pressing against a rigid surface,

breaching the “2/3-rule” between the joints of a finger when

pushing a button, etc.). Tracking hands under these less fa-

vorable conditions is the topic of this paper. To the best

of our knowledge, visual hand tracking in the presence of

objects is uncharted terrain.

Object manipulation is an inherently 3-dimensional phe-

nomenon, whereas 3D pose estimation in monocular video

is seriously under-constrained. We therefore base our es-

timations not only on image color, but also on 2.5D depth

maps. In our case, the depth maps are obtained with a real-

time structured light system [19], but in the near future such

data will in all likelihood be available at negligible cost, due

to the rapid progress of time-of-flight sensors [14, 3].

Our approach has been inspired by an established trend

in object recognition and detection. Occlusion is a frequent

and not reliably solved problem in these applications. Mod-

els are split into local parts, and each part separately con-

tributes evidence about the complete model. In this way ro-

bustness to partial occlusion is achieved and the estimation

relies only on observable parts, e.g. [11, 10]. The underly-

ing global configuration can then be used to infer informa-

tion regarding the occluded parts. In much the same way,
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we intentionally refrain from employing a single high di-

mensional model, but use local 6 DOF trackers for individ-

ual hand segments. We then exploit anatomic constraints

between adjacent segments to enforce the hand structure.

The constraints are represented by a first order Markov ran-

dom field (MRF). Each of the local trackers corresponds to

one rigid hand segment, and independently recovers a pdf

over the segment pose from local evidence. Then, a valid

hand structure is enforced by belief propagation [15] on the

hand graph. An explicit occlusion model makes sure that

missing local observations do not corrupt the estimation.

2. Related Work

While some state-of-the-art hand trackers rely on detec-

tion mechanisms [16, 1], many others estimate hand config-

urations based on an articulated, connected model [17, 18,

21, 4]. A common problem in articulated tracking is the

“curse of dimensionality”: depending on the exact model,

the human hand has ≈ 26 degrees of freedom. Accordingly,

an exact representation of the posterior distribution over

model configurations is intractable, and non-parametric ap-

proximations of the whole high-dimensional search space

are difficult to maintain. Sampling-based approaches such

as particle filters cannot cope without measures to drasti-

cally cut down the search space or reduce the dimensional-

ity of the problem [12, 20]. A recent summary of state-of-

the-art methods can be found in [7].

Given the additional problem with strong occlusions,

which routinely occurs in our object manipulation scenario,

we follow a different strategy, and divide the articulated

structure into local segments which are tracked individually.

Our work has been inspired by [17], which introduced

the idea of belief propagation on a graph consisting of lo-

cal hand parts. Although the approach has been extended

in [18] to incorporate self-occlusion between hand-parts,

their method targets only bare hands. In our work, we con-

sider not only self-occlusion but also occlusion by an object,

which is handled explicitly with an occlusion model.

In [17, 18], sampling is performed along the kinematic

chain. We refrain from this for two reasons: firstly, the ob-

servation of the palm is important in such an approach, but

the palm is often occluded during object handling; secondly,

such a sampling imposes hard constrains on the joints, since

samples even slightly violating anatomical constraints are

never drawn. However, some anatomical constraints no

longer hold strictly when in contact with an object.

Instead of sampling along the kinematic chain, we fo-

cus on the independence of the local trackers and sample

from local proposal functions. To cover the state space ap-

propriately we proceed hierarchically. To avoid impossible

configuration, we impose soft constraints, by penalizing a

sample’s deviation from a valid hand shape.

For better accuracy, especially in depth, we model the

(a) Human hand (b) Hand graph (c) Hand model

Figure 2. (a) An X-ray picture of a human hand shows the 27

bones. Image courtesy of M. L. Richardson1. (b) The hand graph.

(c) The complete hand model consisting of a skeleton and ruled

surfaces for the skin.

hand as a collection of surface patches, rather then only sil-

houette edges, which allows for a richer representation. The

observation likelihood of these patches is measured using a

modified 3D chamfer distance.

None of the previous approaches are concerned with ar-

ticulated hand tracking in the presence of objects. Object

manipulation is targeted in the literature only in terms of

action and object interpretation [9, 13] without exact pose

estimation, so no detailed, high-dimensional model of the

hand is provided. [9] for example focuses on the recognition

of the general kind of manipulation and the manipulated ob-

ject. Hand gestures are classified on a per-frame basis using

2D image features and learned sample sequences. [13] con-

siders the relationship between objects, like an attachment

or a contact between them, with the goal to explain the given

scene. Hands are not treated separately and the objects are

recognized and tracked from given 2D templates.

A taxonomy of human hand poses with regard to the

grasping of objects has been provided in [5]. In [8], ma-

nipulative hand gestures are visually recognized using a

state transition diagram that encapsulates the task knowl-

edge. The feature extraction is based on thresholding the

hue value, so that the person has to wear special gloves, and

the gestures are simulated, without a real object involved.

[6] recognizes grasps referring to the grasp taxonomy de-

fined in [5]. Real objects are handled, but do not impair the

hand observation, because a data glove, rather than visual

input, provides the hand pose.

3. Hand Model

The human hand consists of 27 bones (see Fig. 2(a)).

Eight of these are located within the wrist, and four make

up the palm. We ignore both the bones within the wrist

and those in the palm (following [20]), and represent the

palm as a single segment in our model. Thus, we consider

3 × 5 = 15 phalanges for the five fingers, plus the palm

which is defined as the remaining hand above the wrist. As

1University of Washington, http://uwmsk.org/RadAnat
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the wrist itself is irrelevant in terms of object grasping [5],

we do not include it in the model. The degrees of freedom

between hand segments are constrained by revolute joints:

hinge joints between finger phalanges allow only for bend-

ing within a certain range (flex, 1 DOF); saddle joints con-

necting the fingers to the palm additionally allow for spread-

ing the fingers (flex and abduction, 2DOF). Neither hinge

nor saddle joints permit a twist around the bone axis.

3.1. Local Hand Segments

In our model, each hand segment (either phalanx or

palm) has its own six dimensional state space, with three di-

mensions corresponding to the position of the segment and

the other three to its orientation (96 DOFs for the whole

hand). The state of a segment is represented by a local co-

ordinate system aligned with the segment. To complete the

model, we associate every phalanx with a mesh approximat-

ing the skin. The mesh has the form of a cylinder for the

middle and base segments of the fingers. In case of the tips,

it corresponds to a cylinder with a spherical cap (Fig. 2(c)).

3.2. Anatomical Constraints

Since each segment has its own pose, constraints are re-

quired to ensure that neighboring segments stay connected

at the joints, and that their respective orientations result in a

valid hand configuration.

Note that in the chosen parameterization the constraints

obey the (first order) Markov property (i.e. they apply only

to adjacent segments), and that the hand graph is a tree with

the root at the palm and leaves at the fingertips as depicted

in Fig. 2(b). The constraints can therefore be efficiently op-

timized with belief propagation.

We use soft constraints: to make sure hand segments

stay (nearly) connected, we employ proximity constraints,

meaning that we penalize configurations of neighboring

segments proportionally to the distance between their end-

points. To ensure valid joint angles, we use angle con-

straints. As already argued, the traditional anatomical limits

for the free hand are no longer valid in contact with objects,

so enlarged angle ranges are used. Details about the penalty

function and how it exploits the constraints are given in

Sec. 4.3.

4. Tracking Method

Every segment of the hand model has its own local

tracker. In each computation step, the local tracker draws

a number of samples from a local proposal function. The

sample space is 6D – three parameters for the position of

the segment, and three rotation angles. Fig. 4(d) shows ex-

emplary hand segment samples. We sample each parameter

uniformly, within a different range to account for the kine-

matics of the human hand (e.g. it is easy to confirm that

Figure 3. Top row: examples of model patches – one rendered

sample for each finger tip (from left to right: little, ring, middle, in-

dex, thumb). Bottom row: the corresponding data patches. Often,

parts of more than one finger are contained. Black areas represent

background (unknown/infinite depth).

we can bend our fingers faster than we can spread them).

For each sample, the likelihood is computed by compar-

ing it locally to the observation (Sec. 4.1), taking into ac-

count occlusion information (Sec. 4.2). Then, belief propa-

gation is applied to combine the evidence of the local track-

ers (Sec. 4.3). The resulting weights, together with the cor-

responding samples of a hand segment, are a discrete repre-

sentation of the posterior pdf over the segment’s pose. The

posterior pdf is then transformed to the next time step with

a dynamic prediction to yield the new proposal function.

4.1. Observation Model

As input, our system uses range data with a resolution of

640× 480 depth points recorded at 25 Hz and conventional

two-dimensional color images, see [19]. The mean error

in depth of the range data is approximately 2 mm. Color

information is exploited in a preprocessing step to locate

the hand and to detect object occlusion (see Sec. 4.2) via

skin color segmentation.

The local observation of a phalanx consists of a rectangu-

lar patch of range data D (the “data patch”) around the pre-

dicted position. We do not consider the observation of the

palm, which deforms less rigidly than the other segments,

and is often occluded during object handling.

To compare a pose sample for a given phalanx to the

data, its local surface mesh is rendered into a depth image,

using the known camera calibration. This projection yields

a depth image M (the “model patch”), which is in pointwise

correspondence with the range data for that segment, so that

the two patches are directly comparable. Fig. 3 provides

examples of model and data patches. The patches {Mi}
for the entire set of samples can be computed efficiently by

rendering all samples as one big texture on the GPU.

To evaluate the likelihood of a sample, we compare its

rendered depth image M to the corresponding data patch D

with a simple distance measure dx, computed over all pixels

xM of the hand surface in the model patch. If a pixel xM

belongs to the surface in both the model and the data patch,
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(a) Depth data (b) Distance Transform (c) Depth of Closest Observation (d) Observation Likelihood

Figure 4. Extended model-to-data distance. (a) Depth observation of the thumb tip. (b) Distance transform showing for each pixel the

(x, y)-distance to the nearest skin point in (a). (c) Extended distance transform showing for each location the depth of the nearest skin

point. (d) Hand segment samples. Color encodes relative observation likelihood: green is highest, red is lowest. The palm has no model,

hence uniform observation likelihood. The arrow indicates the viewing direction of the camera.

we directly use the depth difference, dx = zM − zD. If the

hand pixel in the model at location xM does not belong to

the hand according to the data, then we use a generalized

distance to the nearest hand pixel x̄D:

dx =
√

(xM − x̄D)2 + (yM − ȳD)2 + (zM − z̄D)2 .

(1)
The distance between xM and x̄D can be computed effi-

ciently using an extended 3D distance transform. The ex-

tended distance is illustrated in Figs. 4(a)–4(c).

In comparing the data with the model, we do not consider

the situation where there is a hand pixel in D, but not in

M (unexplained observation): it cannot be decided locally,

whether the data is observed by another hand segment, since

the local tracker has no information from other parts of the

hand. The likelihood of a sample Mi is hence defined as

L(D|Mi) =
1

Z
e
−

“ bd
σobs

”
2

, (2)

where σobs is a user parameter which specifies the accuracy

of the range data. Z is a normalization factor, which assures

probability distributions integrate to 1, and will from now

on be omitted for brevity. d̂ is the mean value over all T

considered distances, d̂ = 1
T

∑
xM∈Mi

dx.

We prefer to use the average error for the sample, rather

than computing an individual likelihood L(D|xM ) for each

pixel and multiplying them together. This choice is moti-

vated by the nature of range scanners: the point density of

such systems depends on the surface orientation. Further-

more, there are occasional missing depth values, and these

tend to be clustered, forming holes in the observed surface.

These two properties may cause a heavy bias in error mea-

sures that depend on the number of observed pixels.

4.2. Occlusion Model

Given the large amount of occlusion during object

manipulation, an explicit occlusion model is required to

achieve robustness.
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Figure 5. Illustration of the occlusion model. If the model is moved

away from its correct position (offset 0), its likelihood decreases.

However, with increasing occlusion the difference in likelihood

becomes smaller, as less and less evidence supports it.

After obtaining the observation patch of a hand segment,

we label self-occlusion within the patch. Accurate detec-

tion of self-occluded pixels requires the global hand config-

uration. Locally, the only way to detect self-occlusions is

to find regions where the data is substantially closer to the

camera than predicted by the model. We do this by applying

a distance threshold of 10 mm (approximately the diameter

of a finger). Object points (depth observations inconsistent

with the skin color model) are also regarded as occluders, if

they are closer to the camera than the skin mesh of a sample.

When computing the mean depth error d̂ as explained in

Sec. 4.1, we do not count the occluded model pixels as part

of the model, which is equivalent to assigning the average

error of the visible pixels to the occluded ones. Such a def-

inition does not penalize hand samples for moving into oc-

clusion, but attracts them to the data, as soon as they move

out of the occlusion. This behavior has proved to be desir-

able in our experiments.

As explained above, we do not take into account the

number of observed points on a hand segment, because it
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would bias the estimation from range data. However, in the

presence of occlusion the amount of visible surface does

matter: if a hand segment is completely occluded, the pdf

from the observation model should be uniform, since there

is no information available about its pose. Moreover, if it is

partially occluded, there are observations about the pose of

the segment, but they should not carry the same weight as

for an unoccluded segment, both due to the smaller number

of observations and to the narrower field of view. We intro-

duce a smooth dependence on the amount of occlusion by

introducing an additional factor α in the exponent of Equa-

tion 2 as follows:

L(D|Mi) = e
−α·

“ bd
σobs

”
2

, (3)

where α is the fraction of unoccluded pixels, estimated

from the predicted state. Intuitively, this definition produces

peakier distributions for unoccluded segments, and gradu-

ally flatter distributions as the degree of occlusion increases.

In the extreme case of total occlusion, the exponent in (3)

vanishes. All samples are assigned equal likelihood, and

the pose is entirely determined by the structural constraints.

Fig. 5 graphically illustrates this definition.

4.3. Enforcing Constraints

As already discussed, the (soft) constraints modelling the

structure of the hand can be divided into two categories,

those acting on the position of neighboring segments (prox-

imity constraints), and those acting on their orientation (an-

gle constraints). The constraint network is a tree obeying

the first-order Markov property, hence constraint enforce-

ment by belief propagation will yield a globally optimal

configuration. When sending a message from node i to node

j, a S×S constraint matrix (S being the amount of samples

at each node) is computed for all possible combinations of

samples of the two nodes. The matrix entries are the prob-

abilities of observing the respective sample pair ui, uj , and

are defined as

ψ(ui, uj) = pprox(ui, uj) · pang(ui, uj) , (4)

with pprox, pang the two types of constraints.

Proximity constraints make sure the hand segments stay

connected. We define the proximity error ǫprox—the degree

to which adjacent segments violate the constraint—as the

Euclidean distance between the corresponding endpoints,

pprox = e
−

“
ǫprox
σprox

”
2

. (5)

The parameter σprox specifies the importance of the ob-

served error, and also the relative weight of this error against

those of the angle constraint errors to be defined next. We

set σprox to 5 mm.

Angle constraints are defined in a similar way. In anal-

ogy to the segments of the hand model, each sample has

a local coordinate system. Consider the angles (flexion, ab-

duction, twist) rotating the local coordinate system of a sam-

ple of node i into the local coordinate system of a sample of

node j. We compare these angles to anatomically valid an-

gles for the connecting joint and compute error values ǫflex,

ǫabd and ǫtwist such that

pang = e
−

“
ǫflex
σflex

”
2

· e
−

“
ǫabd
σabd

”
2

· e
−

“
ǫtwist
σtwist

”
2

. (6)

Again, σflex, σabd and σtwist encode the relative impor-

tance of the different constraints, and their importance com-

pared to the other observed errors. In our case, σflex =
σabd = σtwist = 10 degrees.

Once all samples have been generated and their likeli-

hoods with respect to the observations have been computed,

belief propagation is used to propagate the local probabili-

ties through the graphical model by marginalization. Each

node contains a normalized S-dimensional observation vec-

tor φ representing a discretized pdf. Node i, which has a

number of neighbors N(i), sends a message to each node

j ∈ N(i) when i has received messages from all other

neighbors N(i) \ j. The message from i to j may be in-

terpreted as the opinion of i regarding the state of j. With

the likelihoods defined above, the message from i to j for a

specific sample uj has the form

mi→j(uj) =
∑

i

φ(ui) · ψ(ui, uj)
∏

k∈N(i)\j

mk→i(ui) . (7)

The product combines the incoming messages for each

state. The sum is the marginalization over all possible states

of i. Finally, the belief regarding the state of a node i, tak-

ing into account the information passed by the neighbors, is

computed by

bi(ui) = φ(ui)
∏

j∈N(i)

mj→i(ui) . (8)

For a more detailed description of belief propagation, see

for example [22].

An obvious constraint, which we have not used so far, is

that fingers cannot intersect. The reason is that in our ex-

periments, we have never observed such problems. This

testifies to the robustness of the proposed technique, but

it also prevents the graph model from including loops (see

Fig. 2(b)). This is important as loop-free belief propagation

delivers exact marginal probabilities – all available informa-

tion is distributed throughout the entire graph – and is guar-

anteed to yield the optimum. Moreover, computational ef-

ficiency is better than with loopy belief propagation, which

would be the fall-back strategy in case loops need to be in-

cluded [17]. Hence, including non-intersection of fingers is

feasible without major alterations to the system.

4.4. Hierarchical Computation

The local trackers discretize their state space by sam-

pling. The computational cost of evaluating the compati-
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bility functions within the belief propagation (see Sec. 4.3)

scales quadratically with the amount of samples drawn by

the local trackers. To guarantee a sufficiently fine discretiza-

tion of the state space and an acceptable computation time,

we proceed hierarchically. For each frame of the input data,

pose sampling, observation evaluation and belief propaga-

tion (i.e. one complete computation step) are performed

several times. At first we sample in a large region of the

state space in order to cover the required portion of the

space. The S′ samples with the highest weights are selected

(in our implementation S′ = 5), and uniform kernels are

placed at their positions, as new local proposal functions

for the next step. We have experimentally confirmed that

the number of modes in the state space is usually ≤ 3, so

that no important samples are lost by the intermediate hard

decisions.

We use 10 hierarchy levels. When the last level is com-

pleted and the transition to the next time step occurs, it has

proved beneficial in practice to include a simple dynamic

model in the proposal function. In our implementation we

use ICP [2] to predict large global hand motion, and a linear

(constant velocity) prediction for the motion of individual

hand segments. With the prediction step, sampling can fo-

cus on deviations from the dynamic model.

5. Results

We have conducted experiments with both synthetic and

real data. The synthetic data serves for quantitative evalua-

tion, while the real data confirms that the proposed method

is applicable to the input delivered by actual range cameras.

Computation time of our C++/Cg implementation is ≈ 6.2

sec/frame, with a 3GHz CPU and a GeForce 8800 Ultra.

5.1. Artificial Data

To quantitatively measure the performance of our ap-

proach, we generated sequences of artificial 2.5D observa-

tions: a 3D scan of a real hand was bound to a 26 DOF

forward-kinematic hand model and animated. The anima-

tion sequences were then rendered as in a virtual range cam-

era, to obtain 2.5D videos. Two experiments are presented

in this category.

Strong self-occlusion. The artificial hand has been tracked

over a period of 160 frames, taken at normal video rate. The

hand forms a fist twice, producing extreme self-occlusion,

once starting with joined fingers and once after spreading

them. The sequence is illustrated in Fig. 6(a). As an error

measure, we define the error of a phalanx as the mean dis-

tance of its two endpoints from those of the ground truth

given by the kinematic hand model, and the frame error as

the mean over all segments in that frame. Frame errors are

in the range [0.24. . . 2.77] mm (mean 1.04, median 0.92).

For comparison, the distance from the base of the palm to

the tip of the extended middle finger is 230 mm.

Occlusion by an object. To verify the robustness of our

method in the presence of an occluding object, we have in-

troduced artificial occluders into a sequence of 45 frames.

The hand first spreads and then returns to its initial pose (see

Fig. 6(b)). Fig. 6(c) demonstrates the seven tested degrees

of occlusion, ranging from no occlusion to full occlusion.

The error over all hand segments in the different occlusion

scenarios is plotted in Fig. 7. Up to occlusion level four

there is almost no increase of the error. At higher levels

fingers are fully occluded so their state has to be halluci-

nated, based only on the anatomic constraints. The system

can hardly be blamed for the larger errors in such situations.

(a) Two fists (b) Spreading

(c) Degrees of occlusion

Figure 6. (a) Self-occlusion. A fist is formed twice, starting once

with joined and once with spread fingers. (b) Object occlusion.

Fingers are spread, then joined again. (c) Different levels of oc-

clusion, ranging from 0% to 100% occlusion of the fingers.
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Figure 7. Seven occlusion levels. Occlusion ranges from 0% to

100% occlusion of the fingers. For each level, the median er-

ror (red), the lower/upper quartile (box) and the entire error range

(whiskers) are displayed.

5.2. Real Data

To assess the validity of our approach for real object ma-

nipulations observed by an actual 2.5D camera, we recorded

manipulations of 3 different everyday objects with our real-

time structured light system. All three sequences contain
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Figure 8. Snapshots of three real data sequences, each containing a different every day object. All three sequences were tracked successfully.

In the first two sequences, a cup and a tennis ball are being picked up, lifted, and then lowered back down. In the third sequence, the pliers

are not only lifted, but also pressed together. Blue dots represent distal endpoints of the phalanges. There may be a small gap between

segments due to our soft constraints. The mean gap of all three sequences is 1.0042 mm (deviation:0.6049 mm).

severe occlusions. In order to represent different aspects

of object handling, each of the sequences demonstrates a

different grasp type with respect to the grasp taxonomy de-

fined in [5]. Snapshots are provided in Fig. 8. The complete

sequences are available as supplemental material.

In all experiments, the initial state of the hand was deter-

mined by manual initialization in the first frame. Initializa-

tion, while not the topic of this work, could be automated by

using a standardized pose, like the “T-pose” in commercial

motion capture systems. It may even be possible to initial-

ize the hand pose on the fly, while the hand is not in contact

with an object.

The first sequence shows a hand which approaches a

mug, grasps it by the handle (precision grasp), lifts it up,

then places it back on the table and releases the grip. Of

particular interest are the moments at which parts of the

index and middle fingers are occluded and disoccluded as

they grasp the handle. The finger tips smoothly move into

the occlusion, since occluded model pixels do not decrease

the likelihood of a pose (c.f . Sec. 4.2). While occluded,

the fingertips continue to move with the rest of the hand,

as their local prediction and the proximity constraints at

the joints push them forward. As soon as the skin is ob-

served again inside the handle, the model is pulled towards

the new observation by the extended distance function dx

(c.f . Sec. 4.1), because of the increased penalty for samples

far away from the observed skin pixels.

The second sequence shows a hand manipulating a tennis

ball. The ball is gripped from behind with a power grasp,

then lifted up, lowered, and released. The most critical point

is shown in the second snapshot. The palm and lower pha-

langes of the fingers are largely occluded by the ball, and the

middle phalanges of the fingers are completely occluded by

the finger tips and are about to reappear above them. These

segments now have to reattach to the skin. The sequence

is tracked successfully, but presents the limit of our current

tracker. Fig. 9 shows that the reattachment of the ring finger

lags behind several frames, because the amount of visible

skin is initially very small. The finger thus continues in an

anatomically valid, but inaccurate position, until enough ev-

idence is available for it to recover.

The third sequence is the most complex one. The han-

dled object is a pair of pliers, which is not only lifted with

a hook grasp, but also pressed together. Note how the hand
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Figure 9. Failure and recovery of a local tracker. The structured

light system looks at the scene from the right. The rendered side-

view shows how the ring finger initially fails to reattach to the back

of the finger after reappearing from behind the tip, but as soon as

enough evidence is available, the local tracker recovers.

constraints ensure correct tracking of the fingers in spite of

long occlusions and scarce ambiguous evidence (e.g. the lit-

tle finger in the fourth image).

6. Conclusion

We have presented a method for articulated tracking in

2.5D range data, which can track a hand while interacting

with objects. The key contributions of the method are to

track a configuration of local parts coupled by soft con-

straints, rather than the complete hand model, and to ex-

plicitly model occlusion by both hand parts and objects.

Valid hand configurations are enforced by means of a MRF

model connecting the segments. Similar to part-based mod-

els in other computer vision applications, the use of local

parts greatly increases robustness to occlusions, while the

soft constraints imposed by the MRF add flexibility in situ-

ations in which classical kinematic constraints are too strict

due to the influence of handled objects.

Our system offers the information a classical data glove

provides. Therefore, previous work based on the output of

data gloves can be applied on top of our method—e.g. dif-

ferent grasp types like precision and power grasps can be

recognized [6] and associated with the grasped object.

We emphasize that our method does not depend on

knowledge about the manipulated objects. However, when

the object geometry is known (e.g. from CAD-models or

range scans), then this delivers valuable additional con-

straints: hand segments cannot penetrate the object. In the

future we plan to integrate this information into our model.

We also plan to estimate contact points between hand seg-

ments and the object, which are important in applications

such as the control of robotic hands and the automatic cre-

ation of physically plausible animations.
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