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Abstract— In this paper, a novel Bayesian estimator for the
minimum bounding axis-aligned rectangle of a point set based
on noisy measurements is derived. Each given measurement
stems from an unknown point and is corrupted with additive
Gaussian noise. Extreme value theory is applied in order to
derive a linear measurement equation for the problem. The
new estimator is applied to the problem of group target and
extended object tracking. Instead of estimating each single
group member or point feature explicitly, the basic idea is to
track a summarizing shape, namely the minimum bounding
rectangle, of the group. Simulation results demonstrate the
feasibility of the estimator.

I. INTRODUCTION

Minimum bounding rectangles are frequently used in

many application areas like image processing, geography,

and tracking. This paper is concerned with the problem of

estimating the minimum bounding axis-aligned rectangle of

a set of points. However, the points, which we also call mea-

surement sources, are not given directly. Only measurements

corrupted with Gaussian noise are available. Furthermore, it

is not known from which measurement source a particular

measurement stems.

The contributions of the paper are the following: We

derive a novel recursive Bayesian estimator [1] for the min-

imum axis-aligned bounding rectangle given noisy position

measurements. In order to derive the estimator, we employ

techniques from extreme value theory, which deals with the

probability of the minimum or maximum of random experi-

ments. The resulting measurement equation is linear, so that

the well-known Kalman filter can be used for inference.

Finally, we apply the proposed estimator to the problem of

tracking a group of point targets [2] (see Fig. 1). The basic

approach followed here is to track the minimum bounding

rectangle of the group, instead of each single group member.

This is suitable in cases where data association is too difficult

or one is simply not interested in the exact position of the

individual group members. For example, data association

may become hard, when the group members are closely

spaced, i.e., their validation gates overlap. For a large number

of targets, e.g., more than 10, data association algorithms

then may even become computationally intractable.

A similar problem occurs when tracking an extended

target object, where several point features, i.e., measurement

sources, on the target surface may cause measurements. In

this case, the proposed method can be used to track the
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Fig. 1: Extended object and group of targets.

minimum bounding rectangle of the shape of the extended

object. Such tracking problems arise for instance in air

surveillance, where aircraft are tracked with high-resolution

radar devices (see Fig. 1). The estimator proposed in this

paper is suitable if the minimum bounding rectangle of the

measurement sources coincides with the minimum bounding

rectangle of the target (see Fig. 1). It is important to note

that the application area for summarizing shape estimation in

tracking is different from Spatial Distribution Models [3] or

Random Hypersurface Models [4]. These models are suitable

for a rather diffuse measurement generation process, e.g.,

scenarios with low detection probability, partly unresolved

targets, and high measurement noise.

The remainder of this paper is structured as follows:

After a brief overview of related methods in Section II,

we give a detailed problem formulation in Section III.

Then, we introduce some basic results from extreme value

theory (see Section IV), which are employed for deriving

the novel estimator for the minimum bounding rectangle

(see Section V). The proposed estimator is then evaluated

in Section VI. Finally, conclusions and an outlook to future

work are given in Section VII.

II. RELATED WORK

In this section, we give a short overview of related methods

to the considered problem. Because the measurement sources

for which the smallest enclosing rectangle is to be estimated

are unkwown (and should not be estimated explicitely), it is

necassary to make proper (implicit) assumptions on the loca-

tion of the measurement sources. One statistical approach for

the problem of estimating rectangles is to assume that each

measurement source is an independent random draw from a

uniform distribution on the true rectangle. Such a distribution

is also called spatial distribution [3], [5]. This approach suf-

fers from the disadvantage that in real-world applications, the

measurement sources are in fact not uniformly distributed on

the rectangle. Then, a spatial distribution model may provide

poor estimation results. Furthermore, there are no closed-

form expressions for a Bayesian solution with a uniform

spatial distribution on a rectangle available. Non-Bayesian
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Fig. 2: Different models for generating measurement sources

at a particular time step.

solutions to this problems have also been considered in a

context different from tracking, for instance in [6].

In [4], so-called Random Hypersurface Models are intro-

duced for the purpose of tracking extended targets. This ap-

proach assumes that each measurement source is an element

of a hypersurface generated from a random draw of a one-

dimensional probability distribution. In fact, this approach

could also be used to model a rectangle. However, also a

Random Hypersurface Model imposes statistical assumptions

on the measurement sources and no closed-form expressions

are currently available for rectangles.

A further related approach for tracking rectangular-shaped

extended target objects was introduced in [7]. There, it is

only assumed that the measurement sources lie on the target

surface. No (statistical) assumptions about the measurement

sources are made. If there is no measurement noise, the prob-

lem can be formulated as a set-theoretic estimation problem.

Stochastic measurement noise then requires a combined set-

theoretic and stochastic estimator. With this approach it is

not possible to estimate the size of the target extent only

with position measurements. In [7], it is necessary to assume

that the number of measurements, which are received at a

particular time step depends on the size of the extended

object in order to estimate the size of minimum bounding

rectangle. This is a quite restrictive assumption, which,

however, is often fulfilled in target tracking applications.

The approach presented in this paper does not have this

restriction.

Apart from the above approaches, which implicitly model

measurement sources, there also exist approaches that ex-

plicitly model each single measurement sources on the target

extent [8], [9], [10]. These approaches require data associ-

ation and are thus computationally expensive. Furthermore,

they require dynamic models for the measurement sources,

which may not be available.

III. PROBLEM FORMULATION

We treat the problem of tracking the parameters of the

axis-aligned minimum bounding rectangle of a finite set of

N -dimensional points based on measurements corrupted with

additive Gaussian noise. At each time step k, a finite set

of measurements Zk := {ẑk,l}nk

l=1 becomes available. Each

individual measurement ẑk,l ∈ IRN is the noisy observation

of a point z̃k,l ∈ IRN , named measurement source, i.e.,

ẑk,l = z̃k,l +wk,l , (1)

where wk,l denotes additive white Gaussian noise1 with

diagonal covariance matrix diag([σ1, . . . , σN ]). The location

of the measurement source z̃k,l is totally unknown. The goal

is to estimate the parameters of the axis-aligned minimum

bounding rectangle of {z̃k,l}nk

l=1.

Since we focus on tracking applications, the parameters

of the minimum bounding rectangle may evolve over time.

Its temporal evolution is modeled by means of a stochastic

motion model. Note that no dynamic models for the mea-

surement sources itself are given.

In this paper, we seek a Bayesian estimator [1] for the

minimum bounding rectangle, which is a recursive update

scheme for a probability distribution over the unknown state

according to Bayes’ rule .

REMARK 1 The above problem formulation is different from

Spatial Distribution Models [3] and Random Hypersurface

Models [4], which were introduced in the context of extended

object tracking. There, each single measurement source is

generated independently according to a stochastic process.

As a consequence, these models allow for receiving a single

measurement at a particular time step from an extended

object. Here, a single measurement per time step would

immediately yield a point since the minimum bounding

rectangle of a point is a point. These two different generative

models for the measurements are illustrated in Fig. 2.

REMARK 2 The above problem is fundamentally different

from statistical shape fitting [11], [12], [13]. In statistical

shape fitting, one deals with estimating a shape, like a circle,

from given noisy measurements. However, the big difference

is that in shape fitting, the measurement sources all stem from

the border of the shape. Here, the measurement sources may

also lie in the inner of the shape, i.e., the rectangle.

IV. EXTREME VALUE THEORY

In this section, a brief introduction to extreme value theory

is given. Extreme value theory [14] is a branch of statistics

that deals with extreme values such as minima and maxima

of random experiments. The application area of extreme

value theory is quite broad. Just to mention a few, it has

been applied for (financial) risk management [15], flood

prediction, engineering and, insurance assessment [16].

In probability theory, the Central Limit Theorem states that

the mean of a sequence of independent identically distributed

random variables approaches a normal distribution (under

certain assumptions). Similarly, it can be shown that the

extreme value of a sequence of independent identically dis-

tributed random variables approaches a limiting distribution.

1All random variables are printed bold face in this paper.



Let x1, . . . ,xn be a sequence of independent identically

distributed random variables with common probability distri-

bution function F (x). The maximal element of this sequence

is given by the random variable

Mn := max{x1, . . . ,xn} .

The so-called Fisher–Tippet–Gnedenko theorem or extreme

value theorem, which is a main result in extreme value

theory, says that with normalizing sequences {an} and {bn},

the probability distribution of

Mn − an
bn

approaches the generalized extreme value (GEV) distribution.

G(x;α, β, ξ) = exp

{

−
[

1 + ξ

(

x− α

β

)]−1/ξ
}

with 1 + ξ(x − µ)/σ > 0, where µ ∈ R is the location

parameter, σ > 0 the scale parameter and ξ ∈ R the shape

parameter. The shape parameter ξ reflects the weight of the

tail of the distribution F (·) and yields to the following special

cases:

• For ξ → 0, the so-called Gumble or Type I extreme

value distribution is obtained

G1(x;α, β) = exp {− exp {(α− x)/β}} .

• ξ > 0 results in the the Fréchet or Type II extreme value

distribution.

• For ξ < 0, the Reversed Weibull or Type III extreme

value distribution is obtained.

Probability distributions whose tails decrease exponen-

tially yield a Gumble distribution. This class of probability

distributions for instance include the exponential distribution

and the normal distribution. In this paper, we only deal

with normally distributed random variable, such that we only

consider Gumble distributions in the following.

The distribution of Mn, can be approximated with a

Gumble distribution G1(x;αn, βn) with

αn := F−1(1− 1
ne )− βn ,

βn := F−1(1− 1
n ) .

The precision of this approximation is illustrated in Fig. 3.

Furthermore, it can be seen that the Gumble distribution is

similar to a normal distribution.

The first two moments of a Gumble distribution

G1(x;αn, βn) are

µ = αn + γβn ,

σ = αnπ
√
6 ,

where γ ≈ 0.577215 is the Euler-Mascheroni constant.
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Fig. 3: Approximation of the maximum Mn of n Gaussian

random variables with a Gumble distribution (black) and

histogram (red) for 10000 samples of Mn.

V. BAYESIAN ESTIMATION OF THE MINIMAL

BOUNDING RECTANGLE

In this section, we introduce a recursive Bayesian esti-

mator for the minimum bounding rectangle according to the

problem description in Section III. An axis-aligned rectangle

in N -dimensional space is represented with the extreme

values (the minimum and maximum) on each axis. Hence,

the uncertainty of the minimum bounding rectangle at time

step k is represented with the random vector

xk = [l1k,u
1
k, . . . , l

N
k ,uN

k ]T

where for all 1 ≤ i ≤ N

• l
i
k represents the lower bound of the rectangle on the

i-th axis, and

• u
i
k represents the upper bound of the rectangle on the

i-th axis.

The parameters of the true rectangle to be estimated at

time step k are given by

x̃k =















l̃1k
ũ1
k
...

l̃Nk
ũN
k















=























min1≤j≤nk

{

z̃ik,j

}

max1≤j≤nk

{

z̃ik,j

}

...

min1≤j≤nk

{

z̃ik,j

}

max1≤j≤nk

{

z̃ik,j

}























.

The goal is to derive an estimator that recursively com-

putes the probability density of xk given the accumulated

measurements Z1:k := {Z1, . . . ,Zk}

p(xk|Z1:k) .

We assume that this probability density is Gaussian, i.e.,

p(xk|Z1:k) = N (xk − µe
k,C

e
k).

For this purpose, we first derive a linear measurement

equation that relates the state xk to the measurements Zk

The Kalman filter [17] equations then provide expression

for the optimal state update.



A. Derivation of the Measurement Equation

First, we restrict to a particular axis i and the upper bound

ũi
k of the minimum bounding rectangle. In order to estimate

ũi
k, we first make the following decisive assumption: The i-th

coordinate of a subset of the measurement sources coincides

with ũi
k, i.e.,

z̃ik,j = ũx
k for all j ∈ Bu,i

k ,

where Bu,i
k is a set of indices of measurements. The other

measurement sources are assumed to be far away from ũi
k so

that they do not influence the maximum distribution. Then,

obviously, the following holds:

ũi
k = maxi∈B

u,i

k

{

z̃ik
}

.

If the number of elements |Bu,i
k | in Bu,i

k is known, a Bayesian

estimator for l̃xk can be derived. Because of the above

assumption z
i
k,j are independently identically-distributed for

j ∈ Bu,i
k . Hence, the probability distribution of

maxj∈B
u,i

k

{

z
i
k,j

}

− ũi
k := w

i,u
k (2)

is approximately Gumble distributed G1(x; au,ik , bu,ik ) with

au,ik := Φ−1(1− 1

|Bu,i
k |e

)− bu,ik

bu,ik := Φ−1(1− 1

|Bu,i
k |

)

where |Bu,i
k | denotes the number of elements in Bu,i

k and Φ−1

is the inverse cumulative distribution function of a Gaussian

distribution with zero mean and variance σi.

According to Section IV, the Gumble distribution can

be approximated with a Gaussian distribution by means of

analytic moment matching. A reformulation of (2) yields the

linear measurement equation

ûi
k = u

i
k +w

u,i
k ,

where w
u,i
k is approximated with a Gaussian with mean

au,ik + γbu,ik and variance au,ik π
√
6 and virtual measurement

ûi
k := max0≤j≤nk

{

ẑik,j
}

.

Unfortunately, the number of elements in Bu,i
k is unknown.

We therefore propose a simple but effective heuristic to

determine it:

Let r
u,i
k be the number of measurements ẑk,u with ẑik,j >

ũx
k . Then, the discrete random variable r

u,i
k is Binomial

distributed according to

p(ru,ik = r) =

(

|Bu,i
k |
r

)

0.5r .

The expectation of r
u,i
k is E

[

r
u,i
k

]

= 0.5 · |Bu,i
k |. Hence, a

proper approximation for |Bu,i
k | is given by

|Bu,i
k | ≈ 2 · r̂u,ik

where r̂u,ik := |{j|ẑik,j > ûi
k}| and ûi

k is the current estimate

for ũi
k . The estimate for |Bu,i

k | can also be averaged over

several time steps in order to obtain more robust values.

However, then temporal changes of |Bu,i
k | are followed

slower. For small |Bu,i
k |, i.e., |Bu,i

k | < 4, it is important that

|Bu,i
k | is estimated precisely. However, with an increasing

|Bu,i
k |, it becomes less and less important to estimate |Bu,i

k |
precisely. This results from the fact that the maximum

approaches the limiting distribution quite fast (see Fig. 3).

In the same manner as for the upper bound ũi
k, a Bayesian

estimator can be constructed for the lower bound l̃ik. With

the pseudo measurement

ûi
k := min0≤j≤nk

{

ẑik,j
}

,

the measurement equation becomes

l̂ik = l
i
k +w

l,i
k ,

where w
l,i
k is approximated with a Gaussian distribution with

mean −(aik + γbik) and variance al,ik π
√
6.

Finally, we have to compose the above measurement

equations to a single measurement equation for all axes and

extreme values. Since the measurement noise on different

axes is uncorrelated, we obtain

ŷ
k
= xk +wk (3)

with measurement

ŷ
k
:=

[

l̂1k, û
1
k, · · · , l̂Nk , ûN

k

]T

and Gaussian noise term

wk =
[

w
l,1
k ,wl,1

k , · · · ,wl,N
k ,wl,N

k ,
]

with mean

µw
k =















−(a1k + γb1k)
a1k + γb1k

...

−(aNk + γbNk )
aNk + γbNk















and covariance matrix

C
w
k = π

√
6 · diag([b1k, b

1
k, . . . , b

N
k , bNk ]) .

One underlying assumption of the above measurement

equation is that the minimum and maximum on a particular

axis are independent. This assumption is fulfilled if the

measurement noise is not greater than the width of the

rectangle. However, we observed that even if this is not the

case, the correlation between the maximum and minimum

distribution is negligible.

B. Measurement Update Step

If the predicted probability density for the parameters at

time step k is Gaussian, i.e.,

p(xk|Z1:k−1) = N (xk − µp
k,C

p
k) ,

the updated estimate p(xk|Z1:k) according to measurement

model (3) is also Gaussian with mean µe
k and covariance C

e
k

and results from the Kalman filter equations

µe
k = µp

k +Kk(yk − µp
k) ,

C
e
k = (I−Kk)C

p
k ,



with Kalman gain

Kk = C
p
k(C

p
k +C

v
k)

−1 .

C. Prediction Step

The parameter vector xk of the rectangle is assumed to

evolve according to a known Markov model characterized by

the conditional density function p(xk|xk−1). Thus, the pre-

dicted probability density at time step k, i.e., p(xk|Z1:k−1),
results from the Chapman-Kolmogorov equation

p(xk|Z1:k−1) =

∫

p(xk|xk−1)p(xk−1|Z1:k−1)dxk−1 .

If p(xk−1|Z1:k−1) is Gaussian and a linear system equation

xk = Bkxk−1 + vk ,

with white Gaussian noise vk is given, the prediction

p(xk|Z1:k−1) is also Gaussian. Its mean µp
k and covariance

matrix C
p
k can be computed with the formulas of the Kalman

filter prediction step

µp
k = Bkµ

e
k−1 ,

C
p
k = B

T
kC

e
k−1Bk +C

v
k−1 .

VI. EVALUATION

A. Fixed Set of Measurement Sources

The first example shows the applicability of the presented

estimator for estimating the minimum bounding box. For

this purpose, a fixed set of measurement sources are ar-

ranged in a plane. At each time step, noisy measurements

are received from all measurement sources. The Gaussian

measurement noise has covariance matrix of diag([1, 1]). The

prior for the rectangle parameters are given by a Gaussian

distribution with mean [−1, 9, 0, 9]T and covariance matrix

diag(4, 4, 4, 4). The estimation results for three differents sets

of measurement sources are depicted in Fig. 4.

The estimation results are compared with a spatial distri-

bution model [3], [5] that assumes the measurement sources

to be uniformly distributed on the entire rectangle surface.

This spatial distribution model leads to the measurement

likelihood function

p(ẑk,l|xk) :=
1

R(xk)

∫

R(xk)

N (z − ẑk,l,C
v
k)dz ,

where R(xk) denotes the area of the rectangle specified

by the parameter vector xk. As no closed-form expressions

for the measurement update with this likelihood exists, we

applied the Gaussian Particle Filter [18] for state estimation.

Actually, the new approach is computationally far mor attrac-

tive than the spatial distribution model, as the new approach

results in a linear formulation of the problem. The spatial

distribution model is not suitable for higher dimensions.

The depicted results in Fig. 4 are chosen such that the

estimation results have been converged, i.e., the results do not

change anymore in the subsequent time steps. The different

estimation results of the two estimators result from the differ-

ent assumptions on the measurement sources. As the received

measurement only stem from a finite set of measurement

sources, the assumption made by the spatial distribution

model is not proper. However, the assumptions made by the

new approach appear to justified in this examples.

B. Group Target Tracking

The next example shows the feasibility of the new ap-

proach for tracking a group of point targets. For this purpose,

18 point targets are arranged in fixed relative positions. At

each time step, the center of the group moves along the vector

ûg
k−1 + v

g
k−1, where ûg

k−1 := [12, 0]T and v
g
k−1 is zero

mean Gaussian noise with covariance matrix diag(0.01, 0.2).
After the fourth time step, the target group starts to perform

a 90◦ turn, i.e., the group rotates. For the parameters of

the minimum bounding rectangle, we employed the motion

model xk = xk−1 + ûk−1 + vk−1, The system input ûk−1

is assumed to be
[

0 0 1 1
1 1 0 0

]T

ûg
k−1 ,

which translates the lower and upper bounds of the rectangle

according to ûg
k−1. At each time step, a single position

measurement is received from each individual target (the

probability of detection is 1). The measurement noise is zero-

mean Gaussian with covariance diag([1, 1]). Moreover, we

made use of a prior density for x1 with covariance matrix

diag(1, 1, 1, 1).
In this scenario, tracking each single group member would

be quite hard, because of the large number of targets and

overlapping validation gates. The example run in Fig. 5

shows that the minimal bounding rectangle of the group is

tracked quite well. In particular, the 90◦ turn is detected. Note

that in real-world applications, more realistic motion models

are required. Since the estimator is linear, it is straightforward

to implement more complex motion models.

REMARK 3 It is important to note that the application area

for summarizing shape estimation in tracking is different

from the application area of Spatial Distribution Models or

Random Hypersurface Models. These models are suitable for

scenarios with low detection probability, partly unresolved

targets and high measurement noise. In such a scenario,

tracking a summarizing shape, like the minimum bounding

rectangle, can be senseless. This is due to the fact that the

minimum bounding box of the measurement sources may not

coincide with the minimum bounding box of the target.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we have derived a Bayesian estimator for

the axis-aligned minimum bounding box of a set of points

given measurements corrupted with Gaussian additive noise.

For this purpose, we have constructed a linear measurement

equation with the help of extreme value theory. The appli-

cability of the estimator has been demonstrated by means of

a group target tracking example.

The presented estimator requires the Gaussian measure-

ment noise to have a diagonal covariance matrix. Future work

consists of extending the approach to Gaussian noise with
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Fig. 4: Example: Estimating the minimum bounding rectangle of a fixed set of measurement sources. Measurement sources

(red dots) and measurements (blue crosses). The results of the novel estimator is given by the black rectangle, the dashed

rectangle is the estimation results for the spatial distribution model. The prior for the rectangle parameters is given by a

Gaussian distribution with mean [−1, 9, 0, 9]T and covariance matrix diag(4, 4, 4, 4).
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Fig. 5: Tracking a group of point targets: Point targets (red dots), measurements (crosses), and estimated ellipse (red) plotted

for several time steps.

non-diagonal covariance matrix. Finally, it will be investi-

gated whether the approach can be extended to other shapes,

such as arbitrary oriented rectangles, circles or ellipses.

Especially for tracking applications, information about the

target orientation is important.
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