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TRACKING ACROSS MULTIPLE CAMERAS 
WITH DISJOINT VIEWS 

This invention claims the benefit of priority to U.S. Provi­
sional Application Ser. No. 60/511,796 filed on Oct. 16, 2003. 

FIELD OF INVENTION 

2 
Conference on Multimedia Computing and Systems, used 
calibrated cameras and an environmental model to obtain 3 D 
location of a person. The fact that multiple views of the same 
person are mapped to the same 3 D location was used for 
establishing correspondence. Q. Cai and J. K. Aggarwal, 
"Tracking human motion in structured environments using a 
distributed camera system" (1999), IEEE Trans. on Pattern 
Analysis and Machine Intelligence, 2(11): 1241-1247, used 

This invention relates to tracking and surveillance, in par­
ticular to methods and systems of tracking person(s) that 10 

move in spaces between non-overlapping cameras. 

multiple calibrated cameras for surveillance. 
Geometric and intensity features were used to match 

objects for tracking. These features were modeled as multi­
variate Gaussians and the Mahalanobis distance measure was 
used for matching. Ting-Hsun, Chang, and Shaogang Gong. 
"Tracking multiple people with a multi-camera system" 

BACKGROUND AND PRIOR ART 

Video systems are well known in the field of security 
systems. In a typical security system one or more video cam­
eras are placed to provide a field of view of the area under 
surveillance. These video cameras convert a visual image into 
electronic form suitable for transmission, recording or analy­
sis. When the security system includes a network of cameras, 
tracking across cameras with non-overlapping views is a 
challenging problem. Firstly, the observations of an object are 
often widely separated in time and space when viewed from 
non-overlapping cameras. Secondly, the appearance of an 
object in one camera view might be very different from its 
appearance in another camera view due to the differences in 
illumination, pose and camera properties. 

There has been a major effort underway in the vision com­
munity to develop fully automated surveillance and monitor­
ing systems. Such systems have the advantage of providing 
continuous active warning capabilities and are especially use­
ful in the areas oflaw enforcement, national defense, border 
control and airport security. 

One important requirement for an automated surveillance 
system is the ability to determine the location of each object 

15 (2001 ), IEEE Workshop on Multi-Object Tracking, discloses 
use of the top most point on an object detected in one camera 
to compute its associated epipolar line in other cameras. The 
distance between the epipolar line and the object detected in 
the other camera was used to constrain correspondence. In 

20 addition, height and color were also used as features for 
tracking. 

The correspondences were obtained by combining these 
features using a Bayesian network. S. L. Dockstader and A. 
M. Tekalp. "Multiple camera fusion for multi-object track-

25 ing" (2001 ), IEEE Workshop on Multi-Object Tracking, also 
used Bayesian networks for tracking and occlusion reasoning 
across calibrated cameras with overlapping views. Sparse 
motion estimation and appearance were used as features. A. 
Mittal and L. S. Davis "M2 tracker: a multi-view approach to 

30 segmenting and tracking people in a cluttered scene" (2003), 
Int. Journal of Computer Vision, 51(3): 189-203 used a 
region-based stereo algorithm to estimate the depth of points 
potentially lying on foreground objects and projected them on 
the ground plane. The objects were located by examining the 

35 clusters of the projected points. In Kang et al "Continuous 
tracking within and across camera streams" (2003), IEEE 
Conf. on Computer Vision and Pattern Recognition, a method 
is disclosed for tracking in stationary and pan-tilt-zoom cam­
eras. 

in the environment at each time instant. This problem of 
estimating the trajectory of an object as the object moves 
around a scene is known as tracking and it is one of the major 
topics of research in computer vision. In most cases, it is not 
possible for a single camera to observe the complete area of 40 

interest because sensor resolution is finite, and the structures 
The ground planes in the moving and stationary cameras 

were registered. The moving camera sequences were stabi­
lized by using affine transformations. The location of each 
object was then projected into a global coordinate frame, 
which was used for tracking. An approach for tracking in 

in the scene limit the visible areas. 
Therefore, surveillance of wide areas requires a system 

with the ability to track objects while observing them through 
multiple cameras. Moreover, it is usually not feasible to com­
pletely cover large areas with cameras having overlapping 
views due to economic and/or computational reasons. Thus, 
in realistic scenarios, the system should be able to handle 
multiple cameras with non-overlapping fields of view. Also, it 
is preferable that the tracking system does not require camera 
calibration or complete site modeling, since the luxury of 
fully calibrated cameras or site models is not available in most 
situations. 

45 cameras with overlapping field of views (FOY) that did not 
require explicit calibration is disclosed in L. Lee, R. Romano, 
and G. Stein. "Monitoring activities from multiple video 
streams: Establishing a common coordinate frame" (August 
2000), IEEE Trans. on Pattern Recognition and Machine 

50 Intelligence, 22(8): 758-768. The camera calibration infor­
mation was recovered by matching motion trajectories 
obtained from different views and plane homographices were 
computed from the most frequent matches. Explicit calibra­
tion was avoided in S. Khan and M. Shah. In general, multi-camera tracking methods differ from 

each other on the basis of their assumption of overlapping or 55 

non-overlapping views, explicit calibration vs. learning the 
inter-camera relationship, type of calibration, use of 3 D 
position of objects, and/or features used for establishing cor­
respondences. The multi-camera tracking art is broken into 
two major categories based on the requirement of overlapping 60 

or non-overlapping views. 

Multi-Camera Tracking Methods Requiring Overlapping 
Views: 

A large amount of work on multi-camera surveillance 65 

assumes overlapping views. R. Jain and K. Wakimoto. "Mul­
tiple perspective interactive video" (1995) IEEE International 

"Consistent labeling of tracked objects in multiple cameras 
with overlapping fields of view" (2003), IEEE Trans. on 
Pattern Analysis and Machine Intelligence, 25, by using the 
FOY line constraints to handoff labels from one camera to 
another. The FOY information was learned during a training 
phase. Using this information, when an object was viewed in 
one camera, all the other cameras in which the object was 
visible could be predicted. Tracking in individual cameras 
was needed to be resolved before handoff could occur. Most 
of the above mentioned tracking methods require a large 
overlap in the FOVs of the cameras. This requirement is 
usually prohibitive in terms of cost and computational 
resources for surveillance of wide areas. 
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Multi-Camera Tracking Methods for Non-Overlapping 
Views: 

To track people in an environment not fully covered by the 
camera fields of view, Collins et al. developed a system con­
sisting of multiple calibrated cameras and a site model. See R. 

4 

T. Collins, A. J. Lipton, H. Fujiyoshi, and T. Kanade, "Algo­
rithms for cooperative multi sensor surveillance" (2001 ), Pro­
ceedings ofIEEE, 89(10): 1456-1477. Normalized cross cor­
relation of detected objects and their location on the 3 D site 
model were used for tracking. T. Huang and S. Russell. 
"Object identification in a Bayesian context" (1997), Pro­
ceedings of IJCAI, presents a probabilistic approach for 
tracking vehicles across two cameras on a highway. 

The present invention contributes a system and method to 
determine correspondences between objects tracked by plural 
cameras when the tracks are separated in space and time using 
space-time features and appearance features of the object. 
Using Parzen windows, spatial temporal probability between 
cameras is learned and appearance probabilities are learned 
using distribution of Bhattacharyya distances between 
appearance models is learned for use in establishing corre­
spondences between camera tracks. Through the method of 

10 the present invention, object tracks from plural cameras are 
automatically evaluated to determine correspondences 
between tracks, thus tracking an object moving around the 
area covered by the cameras. 

The solution presented was application specific, i.e., 
vehicles traveling in one direction, vehicles being in one of 
three lanes and solution formulation for only two calibrated 
cameras. The appearance was modeled by the mean of the 
color of the whole object, which is not enough to distinguish 
between multi-colored objects like people. Transition times 
were modeled as Gaussian distributions and the initial tran- 20 

sition probabilities were assumed to be known. The problem 
was transformed into a weighted assignment problem for 
establishing correspondence. Huang and Russell, trades off 
correct correspondence accuracy with solution space cover­
age, which forces them to commit early and possibly make 25 

erroneous correspondences. 

15 
Further objects and advantages of this invention will be 

apparent from the following detailed description of the pres­
ently preferred embodiments which are illustrated schemati­
cally in the accompanying drawings. 

V. Kettnaker and R. Zabih. "Bayesian multi-camera sur­
veillance" (1999), IEEE Conf. on Computer Vision and Pat­
tern Recognition, pages 1117-123, discloses use of a Baye-

30 
sian formulation of the problem of reconstructing the paths of 
objects across multiple cameras. Their system requires 
manual input of the topology of allowable paths of movement 
and the transition probabilities. The appearances of objects 
were represented by using histograms. In Kettnaker and 

35 
Zabih's formulation, the positions, velocities and transition 
times of objects across cameras were not jointly modeled. 
However, this assumption does not hold in practice as these 
features are usually highly correlated. 

SUMMARY OF THE INVENTION 

A primary objective of the present invention is to provide a 
method and system for tracking an object as the object passes 
before plural non-overlapping cameras, i.e. determining if an 
object detected in one camera is the same object that appeared 
in another camera. 

A secondary objective of the present invention is to provide 
a method for generating a set of tracks corresponding to plural 
tracks recorded by plural cameras wherein the tracks are 
separated in space and time. 

A novel system and method to automatically determine 
whether an object tracked by one camera is the same object 
tracked by a second camera without calibrating the cameras 
or providing site modeling. Spatial temporal probability and 
appearance probability between the first camera and the sec­
ond camera are learned using Parzen windows and distribu-
tion ofBhattacharyya distances between appearance models, 
respectively. The spatial temporal and the appearance prob­
abilities are then used to establish correspondences between 

40 objects tracked by the first camera and objects tracked by the 
second camera based on Maximum A Posteriori (MAP) 
framework. 

Ellis et al. determined the topology of a camera network by 
using a two stage algorithm. First the entry and exit zones of 
each camera were determined, then the links between these 
zones across seven cameras were found using the co-occur­
rence of entry and exit events. The system and method of the 
present invention assumes that correct correspondences cl us- 45 
ter in the feature space (location and time) while the wrong 
correspondences are generally scattered across the feature 
space. The method also assumes that all objects moving 
across a particular camera pair have similar speed. See T. J. 
Ellis, D. Makris, and J. K. Black. "Learning a multi-camera 50 
topology" (2003), Joint IEEE International Workshop on 
Visual Surveillance and Performance Evaluation of Tracking 
and Surveillance. 

Recently, a method was disclosed by A. Rahimi and T. 

Correspondences between tracks from different cameras 
represent a set of tracks for the same object in the real world. 
Through the method of the present invention, tracks from 
plural cameras are automatically evaluated to determine cor­
respondences between tracks and forming a chain of consecu­
tive correspondences, thus tracking an object passing before 
plural cameras. 

Further objects and advantages of this invention will be 
apparent from the following detailed description of the pres­
ently preferred embodiments which are illustrated schemati­
cally in the accompanying drawings. 

BRIEF DESCRIPTION OF THE FIGURES 

FIG. 1 is a block diagram of a security system. 

FIG. 2A is a flow diagram of the operation of an individual 
60 tracking computer. 

Darrell, "Simultaneous calibration and tracking with a net- 55 

work of non-overlapping sensors" (2004), IEEE Conf. on 
Computer Vision and Pattern Recognition, to reconstruct the 
complete path of an object as it moved in a scene observed by 
non-overlapping cameras and to recover the ground plane 
calibration of the cameras. They modeled the dynamics of the 
moving object as a Markovian process. Given the location 
and velocity of the object from the multiple cameras, they 
estimated the most compatible trajectory with the object 
dynamics using a non-linear minimization scheme. Their 
scheme assumes that the correspondence of the trajectories in 65 

different cameras is already known. In contrast, establishing 
correspondence is the very problem to be solved. 

FIG. 2B is a flow diagram of the operation of a server. 

FIG. 3 illustrates a person passing before one of plural 
cameras. 

FIG. 4A is an example of a directed graph. and 

FIG. 4B is a bipartite graph constructed from the graph of 
FIG. 4A. 
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DESCRIPTION OF THE PREFERRED 
EMBODIMENTS 

Before explaining the disclosed embodiments of the 
present invention in detail it is to be understood that the 
invention is not limited in its application to the details of the 
particular arrangements shown since the invention is capable 
of other embodiments. Also, the terminology used herein is 
for the purpose of description and not of limitation. 

To deal with the first problem, it is observed that people or 
vehicles tend to follow the same paths in most cases, i.e., 
roads, walkways, corridors etc. The system and method of the 
present system uses this conformity in the traversed paths to 
establish correspondence. The system learns this conformity 
and hence the inter-camera relationships in the form of mul­
tivariate probability density of space-time variables (entry 
and exit locations, velocities, and transition times) using 
Parzen windows. 

To handle the appearance change of an object as it moves 
from one camera to another, it is shown that all color transfer 
functions from a given camera to another camera lie in a low 
dimensional subspace. The tracking method and system 
learns this subspace by using probabilistic principal compo­
nent analysis and uses it for appearance matching. The 
present invention does not require explicit inter-camera cali­
bration, rather the system learns the camera topology and 
subspace of inter-camera color transfer functions during a 
training phase. Once the training is complete, correspon­
dences are assigned using the maximum a posteriori (MAP) 
estimation framework using both location and appearance 
cues. 

6 
to the server 200. The location and time the object enters and 
exits are recorded for calculating the time the object remained 
in the area and object velocity as the object exited the area as 
well as to determine the probability that the object is the same 
object detected by a preceding or successive tracking system. 

In step 540 of FIG. 2B, the server 200 receives tracking 
information from the tracking system. Using the tracking 
information and the learned probabilities, automatically ana­
lyzes the tracking information in step 550 to determine cor-

10 respondences between individual tracks. Tracks containing 
the same object, referred to as correspondences, are com­
bined into a set of tracks. When organized by time cues, 
represent a patch traveled by the object in the real world. The 
space-time and appearance features received at the server 200 

15 may, overtime, be used to further update to system in step 530 
following the learning process. 

The areas monitored by the cameras are known. The 
unknown areas are the areas between camera coverage, the 
inter-camera areas. For inter-camera areas, the system is 

20 required to collect space-time and appearance features in step 
510 of FIG. 2B for use learning path topologies (space-time 
probabilities) and appearance probabilities in step 520. One 
way learning is carried out is by assuming that the correspon­
dences are known. For example, a single person may be used 

25 to roam the walkway and the data collected from the indi­
vidual tracking system computers then used to determine the 
space-time probabilities. Another method for learning the 
probabilities is to use appearance matching to establish cor­
respondences since path information is unknown. While the 

30 system is learning, it is not necessary correspond to all objects 
across cameras. Instead, only those closest in appearance are 
used. In step 530 of FIG. 2B, the server updates the system 
space-time and appearance probabilities for use determining 

The method and system of the present invention uses prob­
abilities to find correspondences between objects tracked by 
individual cameras. Simply put, a conventional security cam­
era system tracks objects within view of individual cameras 35 

and records the tracks. The novel system and method dis­
closed herein, finds correspondences between the tracks 
recorded by individual cameras such that the two corre­
sponded tracks (tracks from one camera and tracks from 
another camera) belong to the same object in the same world. 
The resultant set of tracks represents the path traveled by the 
object. 

correspondences. 
To facilitate an understanding of the novel tracking system 

and method, an example is used to familiarize the reader to the 
terminology and the descriptors used in the calculation stage. 
Referring to FIGS. 1 and 3, the tracking system includes r 
cameras Cl, C2, C3, ... Cr and the area covered by the 

40 cameras 410, 420, 430 are not overlapping areas, leaving 
inter-camera areas 415, 425. In FIG. 3 for example, a person 
pl enters and exit's the area 420 covered by camera C2. The 
person pl is traveling a through an area monitored by cameras 
Cl, C2 and C3. As the person pl travels from one camera to 

For simplicity, the novel security system and method are 
discussed using the security system 100 configuration shown 
in FIG. 1. The security system 100 includes plural tracking 
systems 110, 120, and 130 each including a camera Cl, C2, 
C3 and an interconnected tracking computer 112, 122, 132 
respectively. The area covered by each successive camera is 
independent. The area covered by camera Cl does not overlap 
the area covered by camera C2 although the cameras may be 
physically adjacent to one another, leaving areas that are not 
covered. The areas between cameras that are not covered are 
referred to as inter-camera areas. The tracking security sys­
tem 100 further includes a server 200 for receiving a tracking 
data 114, 124 and 134 from each individual tracking systems 
110, 120 and 130. 

Each tracking computer monitors the incoming video 
stream to detect the entrance of an object into the area covered 
by the camera.As shown in the flow diagram of FIG. 2A, each 
tracking system monitors an area in step 320. In step 325, 
when an object is detected in the area covered by a camera the 
space-time features of the object, the time and location of the 
object entry and exit, and the object appearance are recorded 
in steps 330 and 335 respectively. In step 340 the space-time 
feature and appearance feature of the detected object are 
compiled into a track by the individual tracking computer and 
in step 350 the compiled tracking information is transmitted 

45 another camera, a set of observations 0 1 1 , 0 1 2 , ... 0 1 m 

for camera Cl, 0 2 u 0 2 2 , ... 0 2 m' for cm"nera C2 and 0 3 °1 , 

0 3 2 , ... 0 3 m for ~amer~ C3, are ~ecorded and a sequence ~f 
tra~ks Tl =l\ tu T 1 , 2 , ... T 1 tm are generated in the security 
system of c~mera~ at succ"essive time instances tm. For 

50 example a sequence of tracks T by camera Cl are identified as 
T 1 tu wherein T 1 refers to a track from camera Cl and t1 
indicates a time t1 for track Tu thus forming the descriptor 
T 1 , 1 . Each observation 0 recorded by the cameras Cl, C2 and 
c3 is based on two features, appearance O(app) of the object 

55 and space-time features O(st). For example, camera Cl obser­
vations are referred to as 0 1a(app) and 0 1a(st) for a first 
observation and 0 2 a(app) and 0 2 a(st) for a next successive 
observation. 

A Maximum A Posteriori (MAP) estimation framework 
60 uses the appearance and space-time cues in a principled man­

ner for tracking. Parzen window, also known as kernel density 
estimators, are used to estimate the inter-camera space-time 
probabilities from a predetermined data, i.e., probability of an 
object entering a certain camera at a certain time given the 

65 location, time and velocity of the objects exit from other 
cameras. The space-time features collected by each camera 
tracking system include the time the object entered the area, 
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the location at which the object entered and the time at which 
the object exited the area. The velocity of the object traveling 
through the area is calculated. The change in appearance as an 
object moves between certain cameras is modeled using dis­
tances between color models. 

The correspondence probability, i.e., the probability that 
two observations are of the same object, depends on both the 
space-time and the appearance information. Tracks are 
assigned by estimating the correspondences, which maxi-

10 
mize the posterior probabilities. This is achieved by trans­
forming the MAP estimation problem into a problem of find­
ing the path cover of a directed graph for which an efficient 
optimal solution exists. 

Turning your attention to the calculations to determine a 15 

correspondence between appearance and space-time features 
from different cameras, assume that the tracking system 
includes r cameras C1 , C2 , C3 , ... Cr and the view of the 
cameras are not overlapping views. Further assume that there 
are n objects Pv p2 , p3 , ... Pn in the environment such that 20 

each object generates a set of tracks Ti, Ti,tl, Ti,t2, Ti,tm in 
the system of cameras at successive time instances tm. Then 
let Oj={OJ.v OJ.2 ... OJ.m} be the set of mJ observations 
(tracks) that were observed by the camera CJ and is based on 

25 
two features, appearance of the object OJ.a(app) and the space 
time features of the object OJ.a(St) which represent location, 
velocity and time. It is reasonable to assume that OJ.a( app) 
and OJ.a( st) are independent of each other, i.e., the appearance 
of an object does not depend on its space-time feature and 

30 
vice versa. 

8 

P(K I OJ= P(K I 01, 02, ... , 0,) = n P(k!,: I O;.a, oJ.b). (l) 

kj,b EK ,_a 

where P(k,,,;1·6 10,,a,C},6 ) is the conditional probability of the 
correspondence k,,l' 'given the observations o,,a and oJ,b for 
two cameras C, and CJ in the system. From Bayes Theorem, 

(2) 

Using the above equation along with the independence of 
observations OJ,a(app) and OJ,a(st) (for all a andj), then 

P(KIO)= (3) 

n (( 1 
)P( O;.a(app), oj.b(app) I kf,:)Ii O;.a(st), 

,J.b EK P(0;.0 , Dj.b) 
,_a 

The prior P(k,,,;1·6
) is defined to be the probability P(C,,C) of 

a transition from camera C, to camera CJ. Moreover, assume 
that the observation pairs are uniformly distributed and 
hence, P(O,,a and OJ,b) is a constant scale factor. Then the 

The problem of multi-camera tracking is to find which of 
the observations in the system of cameras belong to the same 
object. Since the objects are time stamped and mutually 
exclusive (because of the non-overlapping field of view), it is 
helpful to view the set of observations of each object as a 
chain of observations with earlier observations preceding the 
latter ones. The task of grouping the observations of each 
object is finding the consecutive observations in each chain of 
observations. 

35 problem is reduced to the solution of 

40 

For a formal definition of the problem, let a correspon­
dence ka 6 c·dbe an ordered pair (Oa 6 ,0c d), which defines the 
hypothe~is that oa band oc dare co"nsec~tive observations of 
the same object in the envir~nment, with the observation 0 a 6 

preceding the observation 0 c d· The problem of multi-came;a 45 

tracking is to find the correspondences K={ka.bc.d} such that 
ka bc.dEK if and only if Oa 6 and Oc d correspond to consecu­
ti~e observations in the s~e envir~nment. 

Let ~ be the solution space of the multi-camera tracking 
problem as described above. Each observation of an 
object is preceded and succeeded by a maximum of one 
observation (of the same object). Hence, if K={k,,;1·6

} 

is a candidate solution in ~' then for all {k;.6c·d, 
kp./•5

} _.<::._ K,( a,b ),.(p,qrc c,d),.(r,s ). The solution of the multi­
camera tracking is defined as a hypothesis in the solution 55 

space ~ that maximizes a posteriori probability and is given 
by 

K' = argmaxP(K I 0). 
KcI 

60 

(4) 

This is equivalent to maximizing the following term (where 
the product is replaced by summation by taking the log of the 
above term) 

(5) 

In order to maximize the posterior, it is necessary to find 
space-time and appearance probability density functions. 

Leaming Inter-Camera Space-Time Probabilities 

Learning is carried out by assuming that the correspon-
dences are known. One way to achieve this is to use only 
appearance matching for establishing correspondences since 
path information is unknown. Note that during the training it 
is not necessary to correspond to all objects across cameras. Let K={k,_,;1·6

} be a hypothesis in~. Assuming that each 
correspondence, i.e., a matching between two observations, is 
conditionally independent of the other observations and cor­
respondences, then 

65 Only the best matches can be used for learning. 

The Parzen window technique is used to estimate the 
space-time Probability Density Functions (pdfs) between 
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each pair of cameras. Suppose a sample S consists of n, d 
dimensional, data points Xv x2 , x3, ... xn from a multivariate 
distribution p(x), then an estimate p(x) of the density at x can 
be calculated using 

(6) 

where the d variate kernel k(x) is a bounded function satisfy­
ing J K(x)dx= 1 and His the symmetric dxd bandwidth matrix. 
The multivariate kernel k(x) can be generated from a product 
of symmetric univariate kernels ku, i.e., 

d 

K(X) = n Ku(X!Jj). 
j=l 

(7) 

The position/time feature vector x, used for learning the 
space-time pdfs from camera C, and Ci' i.e., P(O,_a(st),OJ.b 
(st )lk,_j·6

), is a vector, consisting of the exit location and entry 
locations in cameras, indices of entry and exit cameras, exit 
velocities, and the time interval between exit and entry events. 
Univariate Guassian kernels are used to generate k(x). More­
over, to reduce the complexity, H is assumed to be a diagonal 
matrix, H=diag[h/, h/, ... , hi]. Each time a correspon­
dence is made during learning, the observed feature is added 
to the sample S. 

10 
eled. This is done to learn the change in the color of objects as 
they move between cameras from the learning data, and use it 
as a cue for establishing correspondences. A brightness trans­
fer function (BTF) fif is computed for each pair of cameras C, 
and CJ, such that fif maps an observed color value in camera 
CJ. Once the mapping is known, the correspondence problem 
is reduced to the matching of transformed histograms or 
appearance models. Unfortunately, the mapping is not unique 
and it varies from frame to frame depending on a large num-

10 ber of parameters that include illumination, scene geometry, 
exposure time, focal length, and aperture size of each camera. 
Additionally, mapping does not even exist ifthe objects have 
arbitrary geometrical shape or if they have spectral reflec­
tance. In these cases, two points with the same color in one 

15 image may have different colors in another image. To avoid 
such instances, it is assumed that the objects are planar and 
only have diffuse reflectance. 

Despite the large numberofunknown parameters, all BTFs 
from a given camera to another camera lie in a low dimen-

20 sional subspace. This subspace is learned from the learning 
data and is used to determine how likely it is for observations 
in different cameras belong to the same object. 

The Space of Brightness Transfer Functions 
Let L,(p,t) denote the scene reflectance at a (world) point p 

25 of an object that is illuminated by white light, when viewed 
from camera C, at time instant t. By the assumption that the 
objects do not have specular reflectance, L,(p, t) is a product of 
material related terms, M,(p,t)=M(p) (for example, albedo) 
and illumination/camera geometry and object shape related 

30 terms, G,(p,t), then 

L;(p,t)~M(p )G;(p,t). (8) 

The observations of an object exiting from one camera and 
entering into another camera is separated by a certain time 
interval. This time is referred to as inter-camera travel time. 35 

Observations that are modeled using the novel system include 
the dependence of the inter-camera travel time on the magni­
tude and direction of motion of the object; the dependence of 
the inter-camera time interval on the location of exit from one 

The above given Bi-directional Distribution Function 
(BRDF) model is valid for commonly used BRDFs, such as, 
Lambertain Model and the generalized Lambertain model as 
disclosed in M. Oren and S. K. Nayar, "Generalization of the 
lambertian model and implications for machine vision" 
(April 1995), International Journal of Computer Vision, 
14(3): 227-251. See Table 1. 

TABLE 1 

Commonly used BRDF models. 

Model M G 

Lambertian p I 
-cosBi 
7r 

Generalized Lambertian p 
I [ o.scf' 0.15cr

2 
] 

;;case; 1 - CT2 + 0.33 + CT2 + 0.09 cos(¢; - ¢, )sina: tan,B 

camera and location of entrance in a second camera; and the As used in Table 1, the subscripts I and r denote the incident 
correlation among the locations of exits and entrances in 55 and the reflected directions measured with respect to surface 
cameras. 

Since the correspondences are known during learning, the 
likely time intervals and exit/entrance locations are learned 
by estimating the pdf. The reason for using the Parzen win­
dow approach for estimation is that, rather than imposing 
assumptions, the nonparametric technique allows direct 
approximation of the d dimensional density describing the 
joint pdf. 

Estimating Change in Appearances Across Cameras 

In addition to space-time information, changes in the 
appearance of an object from one camera to another is mod-

normal. I is the source intensity, p is the albedo, a is the 

surface roughness, a=max (8,,8r) and ~=min (8,,8r). Note 

that for generalized Lambertain model, the surface roughness 

60 a is assumed to be a constant over the plane. 

By the assumption of planarity, G,(p,t)=G,(p,t)=G,(t), for all 

points p andq ona given object. Therefore, L,(p,t)=M(p )G,(t). 

The image irradiance E,(p,t) is proportional to the scene 
65 radiance L,(p,t) and is given as 

(9) 
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where 

"(d;(t))2 
4 "(d;(t))2 

Y(t) = - - cos a:·(p t) = - - c· 
' 4 h;(t) ' , 4 h;(t) ' 

is a function of camera parameters at time t. h,(t) and d,(t) are 
the focal length and diameter (aperture) of lenses respec­
tively, and a,(p, t) is the angle that the principal ray from point 
p makes with the optical axis. The fall off in sensitivity due to 
the term cos4 a,(p,t) over an object is considered negligible 
and may be replaced with a constant c. 

If X,(t) is the time of exposure, and gi is the radiometric 
response function of the camera C,, then the measured (im­
age) brightness of point p, B,(p,t), is related to the image 
irradiance as 

(10) 

12 
to compute an inter-camera BTF. One way to determine BTF 
is to estimate pixel to pixel correspondence between the 
object views in the two cameras. However, self occlusion, 
change the scale of geometry, and different object poses can 

5 make finding the pixel to pixel correspondences from views 
of the same object in two different cameras difficult. Thus, 
normalized histograms of object brightness values for the 
BTF are used for the computation. Object color histograms 
are relatively robust to changes in object pose. In order to 

10 compute the BTF, assume that the percentage of image points 
on the observed object O, aCapp) with brightness less than or 
equal to B, is equal to th~ percentage of image points in the 
observation OJ,a( app) with brightness less than or equal to BJ. 
A similar strategy was adopted by M. D. Grossberg and S. K. 

15 Nayar, "Determining the camera response from images: What 
is knowable?" (November 2003), IEEE Transactions on Pat­
tern Analysis and Machine Intelligence, 25(11): 1455-1467, 
to obtain a BTF between images taken from the same camera 
of the same view but in different illumination conditions. 

20 Now, H, and HJ are the normalized cumulative histograms of 
object observations I, and IJrespectively, then H,(B,)=H)B)= 
H)f iJ(B)). Then, 

(14) 

i.e., the brightness, B,(p,t), of the image of a world point pat 
a time t, is a nonlinear function of the product of its material 
properties M(p), geometric properties G,(t), and camera 
parameters, Y,(t), and X,(t). Consider two cameras, C, and CJ, 
assume that a world point p is viewed by cameras C, and CJ at 

25 time instances t, and~' respectively. Since material properties where H- 1 is the inverted cumulative histogram. 
As previously discussed, the BTF between two cameras 

changes with time due to illumination conditions, camera 
parameters, etc. The previous equation is used to estimate the 
brightness transfer function f iJ for every pair of observations 

M of a world point remain constant, the 

M(p) = gj
1

(B;(p, t;)) 

G;(t;)Y;(t;)X;(t;) 

g·./ (B1(p, tj)) 

G1(tj)Y1(tj)X1(tj) 

(11) 

Then, the brightness transfer function from the image of C, at 
time t, to the image of camera CJ at time ~ is given 

by 

B1(p, tj) = (12) 

( 
G1(tj)Y1(tj)X1(tj) _1 ) _ 1 

gi G;(t;)Y;(t;)X;(t;) g; (B;(p, t;)) = gJ(w(t;, tj)g; (B;(p, t;))), 

30 in the learning set. Let F iJ be the collection of all the brightness 
transfer functions obtained in this manner, i.e., { fCiJ)}, l]E 
{ 1, ... , N}. To learn the subspace of the collection, the 
Probabilistic Principal Component Analysis (PPCA) is used. 
According to this model a d dimensional BTF f iJ can be 

35 written as 

(15) 

Here y is normally a distributed q dimensional latent (sub-
40 space) variable, q<d, W is a dxq dimensional projection 

matrix that relates the subspace variables to the observed 
BTF, f,; is the mean of the collection of BTFs, and E is 
isotropic Gausian noise, i.e., E-N(O,a2I). Given that y and E 
are normally distributed, the distribution off iJ is given as 

where w(t,,~) is a function camera parameters and illumina- 45 
tion/scene geometry of cameras C, and CJ at time instants t, 
and~' respectively. Since Equation 12 is valid for any point p 

(16) 

where Z=WWr+a2I. Now, the projection matrix Wis esti­
mated as on the object visible in the two cameras, the argument p is 

dropped from the notation. Also, since it is implicit that the 
BTF is different for any two pair of frames, the arguments t, 50 
and~ are dropped to simplify the calculation f iJ denote a BTF 
from camera C, and CJ, then, 

B1=g)wg,- 1 (B;))~f u(B;). (13) 

(17) 

where the colunm vectors in the dxq dimensional U q are the 
eigenvectors of the sample covariance matrix of F iJ' Eq is a 
qxq diagonal matrix of corresponding eigenvalues A1 , ... , Aq, 
and R is an arbitrary orthogonal rotation matrix which is set to 

A non-parametric form of BTF is used by sampling f iJ 
at a set of fixed increasing brightness values B,(l)<B, 
(2)< ... <B,(n), and representing it as a vector. That is (B, 
(1), ... , B,(n))=(f iJ(B,(1)), ... , f iJ(B,(n))). The space of 

55 an identity matrix for computational purposes. The value of 
a2

, which is the variance of the information 'lost' in the 
projection, is calculated as 

brightness transfer functions (SBTF) from camera C, to cam­
era CJ is denoted by r iJ' The dimension of r iJ can be, at most 60 
d, where d is the number of discrete brightness values (for 
most imaging system where d=256). However, the following 
theorem shows that BTFs actually lie in a small subspace of 
the d dimensional space. 

1 d 

CT2= - ~Av. 
d-qv=q+l 

(18) 

Estimation oflnter-camera BTFs and their Subspace 
Consider a pair of cameras, C, and CJ. Corresponding 

observations of an object across this camera pair can be used 

65 Once the values of a2 and Ware known, the probability of a 
particular BTF belonging to a learned subspace of BTFs are 
calculated by using the distribution in Equation 16. 
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To this point, the calculations have been dealing with the 
brightness values of images and computing the brightness 
transfer functions. To deal with color images, each channel, 
i.e., is delt with separately. The transfer function for each 
channel (color transfer function) is computed as discussed 
above. The subspace parameters Wand a2 are also computed 
separately for each color channel. It is not necessary to 
assume any camera parameters and response functions for the 
computation of these transfer functions and their subspace. 

Computing Object Color similarity Across Cameras Using 
BTF Subspace 

14 
one preceding and one succeeding observations, each candi­
date solution is a set directed paths ( oflength 0 or more) in the 
graph. Also, since every observation corresponds to some 
object, every vertex of the graph is in one path of solutions. 
Hence, each candidate solution in the solution space is a set of 
directed paths in the constructed graph, such that each vertex 
of the graph is in one path of this set. Such a set is called a 
vertex disjoint path cover of a directed graph. The weight of a 
path cover is defined by the sum ofall the weights of the edges 

10 in the path cover. Hence, a path cover with the maximum 
weight corresponds to the solution of the MAP problem as 
defined in Equation 5. The observed color of an object can vary widely across 

multiple non-overlapping cameras due to change in scene 
illumination or any of the different camera parameters like 
gain and focal length. The learning phase provides the sub- 15 

space of color transfer functions between the cameras, which 
models how colors of an object can change across the cam­
eras. During a test phase, ifthe mapping between the colors of 
two observations is well explained by the learned subspace, 
then it is likely that these observations are generated by the 20 

same object. Specifically, for two observations O, a and O, 6 

with color transfer functions (whose distribution i~ given by 
Equation 16) f,/,f,J G and f,/, the probability of the obser­
vation belonging to the same object is defined as 

The problem of finding a maximum weight path cover is 
optimally solved in polynomial time ifthe graph is acyclic. 
Recall that ka 6 c,d defines the hypothesis that the observations 
Oa 6 and Oc d~e consecutive observations of the same object 
in the envir~nment, with the observation 0 a 6 preceding 0 c d· 

Thus, by the construction of the of the graph, the arcs are in 
the direction of increasing time, and hence, the graph is acy­
clic. The maximum weight path cover of an acyclic directed 
graph is found by reducing the problem to finding the maxi-
mum matching of an undirected bipartite graph. 

This bipartite graph is obtained by splitting every vertex v 
of the directed graph into two vertices v- and v+ such that each 

P;.J( 0;.0 (app), Oj.b(app) I kf,;;") = (19) 

n 1 
d 1 e 

colCE{R.G.B) (2Jr J 2 IZcolcl 2 

where Z=WWr +a2I. 
The color superscript denotes the color channel for which 

the value of Z and f,; were calculated. The values of Z and f,; 
are computed from the training data using Equation 17 and 
Equation 18 respectively. 

Establishing Correspondences 
As previously discussed, the problem of multi-camera 

tracking is to find a set of correspondences K', such that, each 
observation is preceded or succeeded by a maximum of one 
observation, and that maximizes the posteriori probability, 
that is, 

K' = ar~f ~ log(P( 0;.0 (app), 

kj'bEK ,_a 

(20) 

where each observation O, a consists of all the measurements 
of some object from its entry to the exit in the field of view of 
camerae,. 

The difficulty of finding the a posteriori probability can be 
modeled as a graph theoretical problem as follows. A con­
structed graph is constructed such that for each observation 

25 coming into the vertex v is sub estimated by an edge incident 
to the vertex v-, while the vertex v+ is connected to an edge for 
every arc going out of the vertex v in the directed graph. The 
bipartite graph obtained from the directed graph of FIG. 4A is 
shown in FIG. 4B. FIG. 4A is an example ofa directed graph 

30 that formulates the multi-camera tracking problem. Each 
observation Om n is assigned a vertex of the graph. For each 
pair of vertices, 'co, a,O, 6 ), there is an arc between them in the 
direction of increa~ing time and having weight P(k, }'6 10, a' 
01,6). FIG. 4B shows the bipartite graph constructed from the 

35 directed graph of FIG. 4A. Each vertex of the directed graph 
is split into + and - vertices, such that the +vertex is adjacent 
to an edge for each arc extending out of the vertex and the -
vertex is adjacent to an edge for each arc extending into the 
vertex. The weight of an edge is the same as the weight of the 

40 corresponding arc. The graph is bipartite since no + vertex is 
adjacent to a+ vertex and no -vertex is adjacent to a -vertex. 

The edges in the maximum matching of the constructed 
bipartite graph correspond to the arcs in the maximum weight 

45 
path cover of the original directed graph. The maximum 
matching of a bipartitie graph is found by an O(n2

·
5

) algo­
rithm as disclosed in J. Hopcroft and R. Karp, "An n2:5 
algorithm for maximum matching in bipartite graphs" (De­
cember 1973), SIAM J. Computing, where n is the total 

50 
number of observations in the system. 

The system and method of the present invention tracks 
objects across multiple non-overlapping cameras. Accurate 
tracking is possible even when observations of the object are 
not available for relatively long periods of time due to non-

55 overlapping camera views. Using the method of the present 
invention camera topology and inter-camera spatio-temporal 
relationships are learned by observing motion of people as 
they move across a scene. The relationship between the 
appearances of objects across cameras is also learned by 

60 estimating the subspace of brightness transfer functions. O, a' there is a corresponding vertex in the directed graph, 
while each hypothesized correspondence k, j·6 is modeled by 
an arc from the vertex of observation O, ~ to the vertex of 
observation O, 6 . The weight of this arc ofthe hypothesized 
correspondenc~ k, j·6 is computed from the space-time and 
appearance probability terms in Equation 4. These probabili- 65 

ties are computed using the above described methods. With 
the constraint that an observation can correspond to at most 

The spatio-temporal cues used to constrain correspon­
dences include inter-camera time intervals, location of exit/ 
entrances, and velocities. For appearance matching, the 
present invention uses a novel system and method of model­
ing the change of appearance across cameras. The novel 
appearance matching system and method uses the assumption 
that all brightness transfer functions from a given camera to 
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another camera lie in a low dimensional subspace. The sub­
space is learned by using probabilistic principal component 
analysis on the BTFs obtained from the learning data and it 
uses it for appearance matching. The space-time cues are 
combined with the appearance matching scheme in a Baye­
sian framework for tracking. 

While the invention has been described, disclosed, illus­
trated and shown in various terms of certain embodiments or 
modifications which it has presumed in practice, the scope of 
the invention is not intended to be, nor should it be deemed to 10 

be, limited thereby and such other modifications or embodi­
ments as may be suggested by the teachings herein are par­
ticularly reserved especially as they fall within the breadth 
and scope of the claims here appended. 

16 
9. The method of claim 7, further including the step of: 
establishing that the first observation is preceded and suc­

ceeded by only the second observation and vice versa. 
10. The method of claim 7, wherein the detecting step 

includes the steps of: collecting a space-time feature and an 
appearance feature of the object in the first observation and 
the second observation. 

11. The method of claim 1, further comprising the step of: 
using the updated learned probabilities to establish corre­

spondences between the first camera and the second 
camera over time. 

12. The method of claim 1, further comprising the step of: 
providing a third camera for the tracking of the object. 
13. A system for tracking an object passing between non-

We claim: 
1. A method of tracking an object passing before non­

overlapping cameras, comprising the steps of: 

15 overlapping cameras without calibrating the cameras or com­
pleting site modeling, comprising: 

tracking the object between a first camera and a second 
camera; and 

automatically determining whether the object is identical 20 

in both the first camera and the second camera without 
calibrating the cameras or providing a site modeling, 
wherein the determining step includes the steps of: 
learning inter-camera spatial temporal probability 

between the first camera and the second camera using 25 

Parzen windows; 
learning inter-camera appearance probabilities between 

the first camera and the second camera using distri­
bution of Bhattacharyya distances between appear-
ance models; 30 

establishing correspondences between the first camera 
and the second camera based on Maximum A Poste­
riori (MAP) framework combining both the spatial 
temporal and the appearance probabilities; and 

updating learned probabilities throughout over time. 
2. The method of claim 1, wherein the inter-camera spatial 

temporal probability learning step includes the steps of: 
assuming a known correspondence; and 

35 

estimating a space-time probability density function for the 
40 

first camera and the second camera using the Parzen 
windows. 

3. The method of claim 2, wherein the estimating step 
includes the step of: learning exit and entry locations, veloci­
ties, and transition times of the object between the first cam-

45 
era and the second camera. 

4. The method of claim 1, wherein the inter-camera appear­
ance probabilities learning step includes the step of: 

estimating a change in appearance of the object from the 
first camera to the second camera. 

5. The method of claim 4, wherein the estimating step 
includes the step of: generating color histograms of the object 
at the first camera and the second camera; and 

estimating the inter-camera brightness transfer function 
using the generated color histograms. 

6. The method of claim 5, further including the step of: 
using the inter-camera brightness transfer function to esti­

mate the probability that the object is identical in both 
the first camera and the second camera. 

50 

55 

7. The method of claim 1, wherein the tracking step 60 

includes the step of: detecting a first observation and a second 
observation of the object passing before the first camera and 
the second camera. 

8. The method of claim 7, further including the step of: 
establishing a correspondence between the first detected 65 

observation and the second detected observation to 
determine a path covered by the object. 

plural cameras for tracking the object; and 
means for automatically determining whether the object in 

both a first one of the plural cameras and a second one of 
the plural cameras are a same object, wherein the deter­
mining means includes: 
means for learning inter-camera spatial temporal prob­

ability between a first camera and the second camera 
using Parzen windows, wherein the spatial temporal 
probability learning means includes 
means for collecting plural space-time features from 

the first camera and the second camera; and 
means for estimating a space-time probability density 

function for the first camera and the second camera; 
means for learning inter-camera appearance probabili­

ties between the first camera and the second camera 
using distribution of Bhattacharyya distances 
between appearance models; 

means for establishing correspondences between the 
first camera and the second camera based on Maxi­
mum A Posteriora framework combining both the 
learned inter-camera spatial temporal and appearance 
probabilities; and 

means for updating the learned probabilities throughout 
overtime. 

14. The system of claim 13, wherein the plural cameras 
comprise: 

means for collecting plural observations of the object 
observed at the plural cameras; 

means for collecting a time-space feature and an appear­
ance feature for each of the plural observations. 

15. The system of claim 14, further comprising: 
means for grouping the ones of the plural observations to 

form a chain of consecutive observations of the object. 
16. A system for tracking an object passing between non­

overlapping cameras without calibrating the cameras or com­
pleting site modeling, comprising: 

plural cameras for tracking the object; and 
means for automatically determining whether the object in 

both a first one of the plural cameras and a second one of 
the plural cameras are a same object, wherein the deter­
mining means includes: 
means for learning inter-camera spatial temporal prob­

ability between a first camera and the second camera 
using Parzen windows; 

means for learning inter-camera appearance probabili­
ties between the first camera and the second camera 
using distribution of Bhattacharyya distances 
between appearance models wherein the appearance 
probability learning means includes: 
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means for estimating a change of appearance of the 
object from the first camera to the second camera; 

means for establishing correspondences between the 
first camera and the second camera based on Maxi­
mum A Posteriora framework combining both the 
learned inter-camera spatial temporal and appearance 
probabilities; and 

means for updating the learned probabilities throughout 
overtime. 

18 
17. The system of claim 16 wherein the change of appear­

ance estimating means comprises: 
means for generating color histograms of the object at the 

first camera and the second camera; and 
means for estimating an inter-camera brightness transfer 

function of the object using the generated color histo­
grams. 

* * * * * 
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