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The purpose of this paper is to track the air-to-air missile. Here we put forward the PN-GAPF (Proportional Navigation motion
model and Genetic Algorithm Particle Filter) method to solve the problem. The main jobs we have done can be listed as follows:
firstly, we establish the missile state space model named as the Proportional Navigation (PN) motion model to simulate the real
motion of the air-to-air missile; secondly, the PN-EKF and PN-PF methods are proposed to track the missile, through combining
PN motion model with EKF and PF; thirdly, in order to solve the particle degeneracy and diversity loss, we introduce the intercross
and variation in GA to the particles resampling step and then the PN-GAPF method is put forward. The simulation results show
that the PN motion model is better than the CV and CA motion models for tracking the air-to-air missile and that the PN-GAPF

method is more efficient than the PN-EKF and PN-PFE.

1. Introduction

The air-to-air missile is the main weapon in the air combat.
The aircraft been chased should maneuver to avoid the
attacking missile, after the air-to-air missile was fired by
an opposition fighter. The aircraft guidance method for
maneuver evasion is based on knowing the missile location
and the real-time track [1]. However, we cannot acquire
the exact location information of the missile because the
measurement for the missile location has great error. We need
an on-line filter method to eliminate the error and track the
air-to-air missile. How to effectively track the missile is the
research content in this paper.

This problem is the domain of the single target tracking.
The common target motion models such as the CV, CA, and
Current Statistical (CS) models cannot well and truly describe
the air-to-air missile maneuver because the missile has a good
maneuverability and a supersonic speed [2]. However, we can
research from the navigation law point to establish a smarter
motion model because the missile maneuver obeys some
navigation law [3]. The Proportional Navigation (PN) law is
the most common in the air-to-air missiles [4]. Therefore we
establish a new PN motion model in 3d Cartesian coordinate
system by analysis of the PN mechanism.

The state space model for tracking the air-to-air missile
is obtained further, through combining with the nonlinear
measurement equation in the radar spherical coordinate sys-
tem. The standard Kalman Filter (KF) cannot be used to track
the missile because of the nonlinear measurement equation.
The Extended Kalman Filter (EKF) and Unscented Kalman
Filter (UKF) are used to solve the nonlinear problem, but the
methods are not efficient enough in practice [5]. Recently, the
Particle Filter (PF) or Monte Carlo (MC) method is widely
applied in the nonlinear and non-Gaussian filter problem
because PF is to be able to represent the required unknown
probability density function by a scatter of particles sampled
from a known probability density function [6]. However, the
resampling of standard PF has a disadvantage of the loss of
particle diversity [7]. We are inspired by the evolution idea of
Genetic Algorithm (GA) to improve the performance of the
PF at resampling step [8]. We take the particles and weights
in the PF as the chromosomes and adaptability in the GA,
respectively. Then the intercross and variation steps in the
GA can be adopted to deal with the particles in resampling
step for avoiding the particle degeneracy and loss of diversity.
In this paper, Genetic Algorithm Particle Filter (GAPF)
combined with the PN motion model (PN-GAPF) is used to
track the air-to-air missile. PN-GAPF has better the estimate



accuracy and the tracking stability, in comparison with other
algorithms and models in computer simulation.

This paper is divided into five sections. Section 1 is intro-
duction. Section 2 presents the state space model for track-
ing the air-to-air missile and the method of establishing
the PN motion model. Section 3 describes the nonlinear
filter algorithms such as the EKE PE and GAPF proposed.
Section 4 discusses the performance of the PN motion model
and GAPF algorithm on the base of the simulation results.
Section 5 summarizes the main research content.

2. Problem Formulation

2.1. The State Space Model. The state space model for tracking
the air-to-air missile consists of the missile state equation and
the measurement equation. In order to simplify the problem,
the missile state equation is usually modeled linearly in Carte-
sian coordinate system and the measurement equation is
expressed nonlinearly in spherical coordinate system because
of the air-to-air missile measurements given in the radar
spherical coordinate system [9].

2.11. The Linear Missile State Equation. In general, we esti-
mate the state of the moving air-to-air missile with the
discrete-time linear state space in 3d Cartesian coordinate
system [10]:

X(k+1)=AX (k) +v(k), @

where X(k + 1) and X(k) are the state vector at time ¢ =
(k+ 1)T and t = kT respectively and T is a sampling period.
A is the state transition matrix. v(k) is the process noise
which is modeled as a zero-mean white Gaussian process with
covariance matrix Q(k).

The CV model and the CA model are the most common
motion models for tracking air-to-air missile [11]. The state
vector Xy (k) and the state transition matrix Ay of CV
model in 3d Cartesian coordinate system are

Xey (k) = [x (k) v, (K), y (), v, (k) 2 (K), v, ()],

T

2)

o o —- 8 o o
o - © ©o o o
- N4 © ©o o o

S O O O O =
o o o = O O

1
0
0
0
0
And the state vector X, (k) and the state transition matrix

A, of CA model are

Xea (k) = [x (k) v, (), a, (k) y (K), v, (K) @, (K),z (K),

v, (k),a, (k)]
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where x(k), y(k), and z(k) are the missile positions along each
axis of coordinates. Correspondingly, v, (k), vy(k), and v, (k)
are the velocities. a, (k), ay(k), and a, (k) are the accelerators.
If sampling the measurement in a very short time, we can
consider the missiles maneuvering as an approximate CV
model or CA model [11].

2.1.2. The Nonlinear Measurement Equation. In the real air
combat, the measurement of air-to-air missile is as follows in
the radar spherical coordinate system [12]:

Z(k) = [r(k),0 k), k)], (4)

where Z(k) is the measurement vector. r(k) is the distance

between the aircraft attacked and the air-to-air missile which

can be detected by the airborne laser range finder. 6(k) and

¢(k) are the pitching and azimuth angles, respectively, which

can be detected by the aircraft radar warning device [13].
The nonlinear measurement equation is

Z (k) =h (X (k) + w (k), (5)

where h(-) is the nonlinear measurement function which will
be given at the next section. w(k) is the measurement error
which is zero-mean white Gaussian noise with covariance
matrix R(k) [14].

2.2. The Proportional Navigation Motion Model. If the air-to-
air missile movement is modeled just simply as the CV or
CA motion model, it will produce great errors of the missile
state estimation [4]. It is known that the air-to-air missile
is designed to maneuver by the Proportional Navigation
law. Therefore, the motion model based on the Proportional
Navigation law is a smarter model to reflect the states in the
attack process. We describe the relative movement between
the aircraft attacked and the air-to-air missile in Figure 1.

2.2.1. 'The Geographic Coordinate System. We take “north-
sky-west” geographic coordinate system [15] as the 3d Carte-
sian coordinate system to describe the relative movement in
Figure 1. The origin of coordinates “O” is set at the firing
point of the air-to-air missile. The “OX” axis is tangent with
longitude and points to the north. The “OY” axis points to the
sky and the “OZ” axis points to the west.



Mathematical Problems in Engineering

= ==

FIGURE 1: The relative movement and variables.

2.2.2. The Relative Movement. We assume that the attacked
aircraft position and the missile position are (xf, yf,zf)
and (x,,,, ¥, Z2,,) in “OXYZ” coordinate system, respectively.
(r,0,,¢,) are the relative distance and the relative pitching
and relative azimuth angles between them in the spherical
coordinate system. The relationship of those variables is [16]

e ey =) )+ (220"

zZs—2z,
<p,=arctan( / )

Xf—xm

(6)

0, = arctan f 7 om

(Xf - xm)2 + (Zf - Zm)2

The velocity vectors of the aircraft and the missile are
(Vi Viys Vi) and (V0 Vyeys V) in the “OXYZ” coordinate
system; then (v, 0,,,, ¢,,,) and (v, 0, ¢ ) are in the spherical
coordinate system. The relationships of those variables are

d

% =V =V, SIn0,, cos @,

d

% = Vyy = Vpy €080, (7)
d

% =V, =V, Sin0,, sing,,,

de 0

7 = 'fo = Vf Sin fCOS(Pf,

e Vi = Vs c0s9f, (8)
de

o SV sinfsingy.

Popularly, the Proportional Navigation law can be decou-
pled in the “OXY” plane and “OXZ” plane [17]:

ém = K@ér,
e ©)
P = (p(Pr’

where Ky and K,, are the Proportional Navigation coeffi-

cients, 2 < K < 6.0,, ¢, 0, and ¢, are the derivations of
0,, ¢, 0, and @,, respectively.

2.2.3. Modeling the Proportional Navigation State Space Model.
We assume that the velocity v,, is a fixed value [18] because the
roll booster of air-to-air missile works in a short time. Then
we take derivative of (7):

Vi = 0¥y, 080, cos,, — ¢, v, sinb, sing,,

Vyy = 0,,v,,sinb,, (10)

Ve = —émvm cost, sing,, + ¢, v, sinb, cosg,,.
Combining (7) with (8), (10) will be changed to

Ving = meKeer CoOsS Py, — szKw(Pr’

Vpy = vmyKQQ, tan0,,,, )

1./mz = meKw(pr + meKGGr sin Pm-

Now we take the missile state vector as Xpy = [X,,5 Vo
V> Vs> Zm> Vmz)- According to (11), the continuous-time
linear state equation [19] can be established as

X =Fp X +V, (12)
[0 1 0 0 0 0 ]
0 0 0 Kgér cosp,, 0 Ky,
0 0 0 1 0 0
Fo. = ; (13)
Mlo 0 0 Kgf,tan6, 0 0
0 0 0 0 0 1
[0 K,p, 0 Kgb,sing,, 0 0 |

Then we convert (12) to the discrete linear state equation
as

X(k+1) = ApyX (k) +v (K),
(14)

— I:PNT
Apy=e ™.
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The precise analytic expression of Apy cannot be ac-
quired, but we use (15) to get an approximation by taking

k =3[20]:
0 k 272 373
FonT _ (FpnT) ~ FpnT7 BT
e —Z il ~I+FPNT+T+T, (15)
k=0
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0 0 1 t+ Et c+ gt C 0 0
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0 0 0 tc+ -2 + gt3c3 +1 0 0
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2 2 6 6
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b= _K¢¢r’
¢ =Ky, tan@,, (17)
d = Ky, sing,,
t="T.
The measurement equation can directly be modeled
in discrete form like (5) because the measurements of the
missile are detected discretely. According to (6), h(X(k)) is?
[ 2 2 2|
(37 (k) = x,, ()" + (37 (k) = 3,0 (k)" + (21 (K) = 2, (K))
V5 (k) =y, ()
h(X(k)=| &reen (18)

\/(xf k) =%, () + (27 (k) - 2,, ()
arctan < )

there are three approximate nonlinear filters to solve the
nonlinear problem in the paper.

27 (k) ~ 2, (K)
% (K) — %, (K)

3. Nonlinear Filtering Algorithm
3.1. The Extended Kalman Filter with the PN Motion Model.

The Kalman filter assumptions do not hold because the
measurement equation is a nonlinear function in the mea-
surement equation [21]. Therefore, for the tracking missile,

The EKF approximates the nonlinear function through uti-
lizing the first term in a Taylor expansion of the nonlinear
function [22]:



Mathematical Problems in Engineering 5
_ dh(X)
M= dX  [x=x(kik-1) )
'l or i or i or
Xy Wy Oy OVyy 0Z,, OV,
00, 06, 00, 00, 06, 06,
M= o e Dy Oy 92 OV (20)
0, 0p, O¢, 0¢, 09, 0p,
| 0x,, OV, OV, avmy oz, Ov,, ]
i _ Xf= Xy
ox, :
)+ O )+ (22
i __ Vi~ Vm
3, ’
P G+ () + (2 -2
i _ Zf =2y
0z,
T ) () (2
or  dor _ Or 0
OVypre avmy 0V, o
o, _ (s = 9m) (x5 = %)
ox,, ’
k=) (=) [y =)+ (=) + (=) ]
%, (xp = %0) + (2= 2) (1)
0V, ’
4 \j(xf =)+ (2= ) [Cep =)+ (= )+ (2= 20)]
9, _ (s = m) (27— 2m)
0z, 2 2 2 2 2
VG =)+ (2 = 2) [y~ (=) + (21 2]
o0, _ 00, _ o6, _,
OVypr vay 0V, B
a(Pr _ Zp =2y
0% (xf - xm)2 + (Zf Zm)2
% _ Xp= Xy
Oz (xf - xm)z + (Zf - Zm)2




Ky K, ¢ 0,, ¢, and 0, should be estimated on the
basis of the prior estimated information because they are
unknown variables in state transport matrix:
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The EKF with the PN motion model to track air-to-air
missile is shown in Algorithm 1.

3.2. The Particle Filter

3.2.1. The Sequential Importance Sampling (SIS) Algorithm.
The Particle Filter algorithm to deal with the nonlinear
tracking problem has been used on a wide consensus [6].
Let Z,;, = {Z(1),Z(2),...,Z(k)} denote a sequence of
observations and p(X(k) | Z,,) denote the posterior density
of X(k). We can acquire Bayesian estimation X(k) and P(k)

by
X (9 = [ X0 p(X(0) | 2, dX (W),

P (k) = I (X (k) - X (k) (X (k) - i(k))T (23)

p(X(K) | Zyy) dX (k).

(B k= 1) = x; (k= 1)) + (2, k= 1) =2 (k= 1))’
v

o k= 1) +7,, (k=1)+ 7, _(k—1)

(22)

The calculation of the posterior density requires integrals,
but the normalizing integral cannot be evaluated analytically
and numerical integration over possibly high-dimensional
spaces is infeasible. The ideal of SIS algorithm is that the
required posterior density function is represented by a set
of random samples with associated weight (x? k), 0®? (k)}f\j1
and to compute state estimates in the basis of these samples
and weights. According to SIS algorithm, the posterior
density p(X(k) | Z,,) can be approximated as

Ns . .
PX(K) | Zyy) = Yo k)8 (X (k) -xP (K),  (24)
i=1
where the weights 0 (k) are defined in
w® (k) oc w® (k-1)

p(2G) 1 ®) p(x? ) | x0 (k-1)) )
GO W IO k-1,2(k)
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NT is the total tracking time
Initialize the variables when k = 1 and k = 2
FORk=3:N
X(k|k-1)=AnX(k-1)
P(k | k—1) = ApP(k - DAp" + Qk - 1)

END FOR

K(k) = P(k | k- DH,"[H,P(k | k- 1)H," + R(k - 1)]™*
Z(k) = Z(k) - h(X(k | k - 1))

X(k) = X(k | k- 1) + K(k)Z(k)

P(k) = [I- K(k)H,]P(k | k- 1)

Calculate (22) to update Apy

ALGORITHM 1

where q(x(i)(k) | x?(k — 1), Z(k)) is termed the importance
sampling proposal distribution. It is easy to draw samples
from the distribution defined by g(x” (k) | x” (k - 1), Z(k)),
but it is hard to draw samples directly from the posterior
density p(X(k) | Z,,). In standard Particle Filter, we set

gx" (k) | xD(k - 1), Z(k)) as p(x? (k) | P (k - 1)):

q(x? (k) | x (k- 1),Z (k)
' ' (26)
=p(x? (k) 1x? (k- 1)).

Then
w? (k) oc o (k-1 p(2(k) 157 (k).  (27)

Assuming that v(k) and w(k) are mutually independent
zero-mean white Gaussian processes [7] in (1) and (5), the
prior density p(x(i)(k) | x? (k1)) and the likelihood density
p(Z(k) | x¥(k)) become

p(x7 () 1 x7 (k- 1))
= N (x7 (k); Apx” (k- 1),Q(K)), (28)
p(Z(k) 1x9 (k) =N (2 k);h(x? (%)), R(K)).

3.2.2. The Resampling Step. After a few iterations with SIS, the
variance of the importance weights increases because most
particles will have negligible weights. This is called particle
degeneracy. Fixing on an importance sampling proposal
distribution, one way to mitigate the particle degeneracy is
to adopt the resampling step. The effective sample size N g
denotes an index variable of degeneracy introduced in [6].
N.g can be estimated approximately by

€

1
RS
Zi (@ )
If N falls below a threshold N, the resampling algo-

(29)

rithm will sample from (24) to generate a new set x®~ (k)}fis1
and reset the weights 0?* (k) to 1/N. 5

The standard PF with the PN motion model to track the
air-to-air missile is shown in Algorithm 2.

NT is the total tracking time
Initialize the variables when k = 1 and k = 2
FORk=3:N
FORi=1:N,
Draw x® (k) ~ p(x? (k) | ¥ (k - 1))
Assign the particle a weight according to (27)
END FOR
FORj=1:N,
Normalize the weights by
@ (k) = 0P (k)/35 (@ (k))?
END FOR
Estimate X (k) and P(k) by
X(k) = T2 @ (x" (k)
P(k) = 3% @7 (k) (k) - X (k) (x (k) - X(K))'"
Calculate (22) to update Apy
Calculate N4 using (29)
IF Nz < Ny
Take resampling algorithm
End FOR

ALGORITHM 2

3.3. The Genetic Algorithm Particle Filter. The standard Parti-
cle Filter can solve the particle degeneracy, but the resampling
algorithm relying on the high weight particles leads to the
loss diversity [7]. The evolution idea of Genetic Algorithm
(GA) [8] can be adopted in the resampling step to solve
the problem. The chromosomes and adaptability in the GA
are corresponding to the particle and weight in the PE
respectively. So we can use the selection, intercross, and
variation steps to deal with the particle in resampling step to
increase the diversity.

GA for the resampling step is shown in Algorithm 3.

The GAPF uses the GA to replace the standard resampling
step in the PN and increases the diversity, which is validated
by simulations.

4. Simulation Results

4.1. Hardware Condition

An Intel®Core™i3-2100@3.10 GHz CPU is used with
2.00 GB RAM and MATLAB 2010b.
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Chose randomly two particles x9(k) and x® (k) from {x (k), 0" (k)}f\:"1 to intercross by

IF N, < Ny
FORi=1:N,
£ (k) = ex (k) + (1 - &) x¥ (k)
0 (k) = ex® (k) + (1 - &) x (k)
@ (k) = 2w (k) + (1 - &) 0® (k)
@ (k) = ew® (k) + (1 - &) 0@ (k)
where e ~U(0,1) and a,b € {1,2,... N}
END FOR
Create a new set {x”(k), (T)(i)(k)}f\i‘l
FORi=1:N,
Chose randomly a particle (k) from {x? (k), " (k)}fzs1 to vary by
(k) =x9(k) + 1
where 5 ~ N(X(k), P(k))
If p(Z(k) | 9 (K)) > p(Z(k) | £ (K)), accept X (k)
Else if p(Z(k) | 9 (k))/p(Z(k) | 9 (k)) > u u ~ U(0, 1), accept X (k)
Otherwise accept 9 (k)
END IF
END FOR
Create a new set {x? (k), (D(’l)(k)}f‘r\f1
Else leap over the resampling step
END IF

ALGORITHM 3

4.2. The True Ballistic Trajectory of the Air-to-Air Missile. We
assume that the aircraft attacked flies along a straight line at a
constant velocity [v¢| = 200 m/s with the pitching angle 6, =
7/120 and the azimuth angle ¢ = 7/6 at the original point
(10000, 500, 10000) in north-sky-west geographic coordinate
system. We take the firing point of the air-to-air missile as
the coordinate origin (0,0,0) and assume that the missile
moves following the Proportional Navigation law, whose
proportional parameter K, = K, = 4, at a constant speed
v,, = 500 m/s with the pitching angle 8,, = 0 and the azimuth
angle ¢,, = 0. Through the missile dynamics equation set
(refer to [3]), we can acquire the ballistic trajectory of the
missile and the measurement set Z with a second sampling
interval in Figure 2.

4.3. The Simulation Results. In Figure 3, we show the missile
state estimates filtered by the CV, CA, and PN models
with EKF, respectively. In CV model, we assume that the
original state is X(k = 1) = (0,0,0,0,0,0); the estimate
covariance matrix is P(k = 1) = diag(100, 100, 100, 30,
30, 30); the state noise covariance matrix is Q = diag(0, 0,
0, 50, 50, 50); the measurement noise covariance matrix is
R = diag(200,0.04,0.04). In CA model, we assume that the
original state and covariance matrix are X(k = 1) = (0,0,
0,0,0,0,0,0,0) and P(k = 1) = diag(100, 100, 100, 30, 30, 30,
10,10, 10) separately; the state noise covariance matrix is
Q = diag(0,0,0,0,0,0,30,30,30); the measurement noise
covariance matrix is R = diag(200, 0.04, 0.04). In PN model,
we assume that the proportional parameters is Ky(k = 1) =
Ky(k = 2) = 3 and K¢(k = 1) = k(k = 2) = 2.5; the angles

Y (m)

g
R PUBPIEFP PP e b

10000

2
(o

< \(Y\\

- — - The missile
—— The target
v The measurements

FIGURE 2: The true ballistic trajectory and the measurements.

are initialized by the measurement vectorsatk = 1 and k = 2.
Figure 3 shows that the three models are all convergent, but
the state estimate performances are different among them.
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-+~ CV-EKF
+- CA-EKF
—+— PN-EKF

FIGURE 4: The RMSE with the CV CA and PN.

Using 100 times Monte Carlo simulations for every model
with EKEF, the estimate effects are given in the form of the
position Mean Square Error (RMSE) [21]. In Figure 4, we
record the RMSE according to the models with EKE for
models comparison purposes. In Figure 5, we show that the
average estimated values of proportional parameters K, and
K, are close to the true values gradually. The plot shows that
PN is the best model among them for tracking the air-to-air
missile.

In Figure 6, we adopt three filter algorithms, such as EKE,
PE and GAPEF to track the missile with the constant PN
model. The PN-EKF algorithm is a comparison which is the
same in Figures 3 and 4. The number of particles is N, =
3000 and the resampling threshold is Ny = 1000 in the

Average proportional parameters

0 5 10 15 20 25 30 35 40 45 50
T (s)

— K

— K,

—— True values

FIGURE 5: Average proportional parameters.

Y (m)

15000

5000 ‘ 10000

5000 ()

—— PN-GAPF
vV The measurements

PN-EKF
--- PN-PF

FIGURE 6: The track with PN-EKF PN-PF and PN-GAPE.

PN-PF and PN-GAPE The number of intercross particles is
N, = 0.3N, and the number of variation particle is N, =
0.005N; in the PN-GAPE. Figure 6 shows that the GAPF
performance is better than EKF and PE. The RSME curves
in Figure 7 directly prove it. In Figure 8, we show that the
average computation time of per step in the EKF is shortest
among them, but GAPF needs more time in intercross and
variation steps than the standard resampling algorithm in the
PE. Further improvements in performance can be acquired by
increasing the number of particles, but the computation time
also becomes longer, which heavily leads to not meeting real-
time tracking requirement.
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5. Conclusion

This paper aims to solve the problem of tracking the air-
to-air missile. Firstly we establish the PN motion model
based on the PN law to preferably track the air-to-air missile
in 3d Cartesian coordinate system. Secondly, the nonlinear
filter problem should be solved because of the nonlinear
measurement equation in the state space model for tracking
the missile. In the nonlinear filter algorithms, we take the
standard EKF and PF to track the missile with the PN motion
model. However, both filters results are not good because
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the linear approximate degree is inadequate for EKF and the
diversity of particles is deficient for the standard resampling
step. We introduce the intercross and variation steps in the
GA to the resampling step in the standard PF for increasing
the diversity. The simulation results show that the GAPN,
which replaces the standard resampling step with the GA,
can obtain a better performance for tracking the missile with
PN. Meanwhile, the PN model proposed in this paper is a
more suitable model for the air-to-air missile than CV and
CA models.

Notations

A: The state transition matrix

a,(k): The accelerator on x-axis

a,(k): The accelerator on y-axis

a,(k): The accelerator on z-axis

h(-): The nonlinear measurement function

H,;: The first-order Taylor expansion of the
nonlinear function h(-)

Ky: The Proportional Navigation coefficient
in the “OXY” plane

K, The Proportional Navigation coefficient
in the “OXZ” plane

Ng: The effective sample size

N;: The true sample size

T: The sampling period

Pk | k-1): The prediction state covariance matrix

P(k-1): The estimation state covariance matrix

pC1): The conditional probability

q(): The importance sampling proposal
distribution

Q(k): The process noise covariance matrix

R(k): The measurement noise covariance
matrix

r(k): The distance between aircraft attacked
and air-to-air missile

v, (k): The velocity on x-axis

v, (k): The velocity on y-axis

v, (k): The velocity on z-axis

X(k): The state vector

x(k): The position on x-axis

y(k): The position on y-axis

z(k): The position on z-axis

Z(k): The measurement vector

{x(i)(k), w(i)(k)}f\:]‘l: The set of random sgmples x(i)(k) with
associated weight 0 (k)

0(k): The pitching angle
@(k): The azimuth angle
w(k): The measurement noise
v(k): The process noise.
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