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Abstract— Speaker location estimation techniques based on 5
time-difference-of-arrival (TDOA) measurements have attacted 5 } Microphone pair 2
much attention recently. Many existing localization ideasassume
that only one speaker is active at a time. In this paper, we fats on

a more realistic assumption that the number of active speaks is Speaker source

unknown and time-varying. Such an assumption results in a me@ * Microphone pair 1
complex localization problem, and we employ the random finie —
set (RFS) theory to deal with that problem. The RFS concepts o

provide us with an effective, solid foundation where the mui-

speaker locations and the number of speakers are integratetb

form a single set-valued variable. By applying a sequentiaionte Fig. 1. TDOA microphone array system.
Carlo (SMC) implementation, we develop a Bayesian RFS filter

that simultaneously tracks the time-varying speaker locabns and

number of speakers. The tracking capability of the proposedilter The TDOA single-speaker localization approach mentioned
is demonstrated in simulated reverberant environments. above isvulnerableto reverberation, a problem that is quite
common in room environment3he rich multipaths result-
ing from reverberation can lead to anomalous GCC TDOA
|. INTRODUCTION estimates. Under such circumstances it is suggested to em-
rRloy the phase transform (PHAT) GCC method for reducing

problem in microphone array processing, driven by applicg-DOA estimation error [7]. To furthe_r Suppress the ef_fgct _Of
tions such as automatic camera steering in video-confargnc anomalous TDOA measurements, blind channel identification

By localization, one can consider estimating the directioh methods have been introduced to replace the role of GCC [5],

the speaker sources, or estimating the Cartesian cooedinzﬂ‘l]' [12]. An alternan\_/e that. has em_erged more recently
of the sources. In this paper we are interested in the Car _to_ apply the Baye3|qn QbJeCt tracking f_ramework [13],
sian coordinate localization, with particular emphasistioa 14] n .the source Iocallzatlon_stagg. .In this approgch the
time-difference-of-arrival (TDOA) approach. Readers véfe possibility of GCC TDOA outliers is incorporated in the

interested in the direction finding approach (which present problem formulation, thereby making the resultant speaker

rather different signal processing framework compareché& tlocatjon_estimator less prone to reverberation (compaged t
TDOA) are referred to the literature such as [1]-[4] and tHacalization methods that do not assume the presence of TDOA
references therein outliers). Another salient feature of the Bayesian appndac

Fig. 1 depicts a microphone placement for the TDO,E\hat the speaker location is sequentially tracked with eesp

approach. Essentially microphones are grouped into paits aio (w.r.t.) time, by following a Markov speaker motion model
a

those pairs are distributed in the room (note that one can 8% other words, the Bayesian approach exploits the coreeiat
e

choose to place those pairs in proximity to each other; s s.peaker motions w.r.t. tlm_e, which can help improve local
the setting in [5] for example). For each pair the TDOA iézatlon accuracy. The Bayesian tracking approach has been

measured independently. Assuming single speaker actividy ;umerlcally demonstrated [13], [14] to be robust against th
no reverberation, the TDOAs can be reliably measured usi Pthe Bayesian approach with the blind channel identiforati

a generalized cross correlation (GCC) method [6], [7]. Th o . )
: Lo ; - hased localization approach have been examined irt.[14]
measured TDOASs, which embed location information reIa‘uv% The objective of this paper is to deal with TDOA based lo-

to the microphone pair locations, are then fused to estithate lizati th unk i . ber of Kerd
Cartesian coordinate of the speaker. This second stagesproga zation with UnkNown time-varying numoer of speakers an

. . : ith reverberation, by applying a Bayesian tracking framew
E:;E[kig]done by some simple, effective algorithms such as [ ised on the random finite set (RFS) formulation [15]-[18].

Speaker localization using voice activity is an importa

ffects of reverberation. Moreover, performance compass

1t is interesting to mention that conceptually, the Bayestiacking idea
can be applied to the blind channel identification method®itiher improve

This work was supported in part by a research grant awardébebgustralian/0calization accuracy. However, no such work has yet agpkar the speaker
Research Council. localization literature.




This multi-speaker localization problem presents a chgke that the multi-speaker tracking problem considered hdis fa
in signal processing, and very recently some attempts [18jio such caseSection V deals with track association in
[20] have been made to tackle that problem for known numbttie RFS framework. The presently available track associati
of speakers. Our attempt for locating unknown time-varyingsolutions work by combining the RFS module with some
numbers of speakers is based on the multi-object trackinther tracking modules [29], [30], but in this work we exploi
approach, a generalization of the single-object trackipg athe ‘at-most-one-birth’ assumption to come up with a simple
proach. There is a variety of techniques for multi-objedtack association method. The idea is to augment the speaker
tracking; see the reviews in [16], [21], [22]. The RFS apjgioa state vector by a discrete variable that records track &sfmt
employed here is a recently emerged framework that has bésfiormation. It is interesting to point out that such an idea
found to be promising for multi-object tracking [15]-[18].has been alluded to in [31].1t is further shown that by
RFS is a rigorous mathematical discipline for dealing withsing the proposed track association method, the respectiv
random spatial patterns [23]-[26] that has long been used R¥S state estimation process can be greatly simplified. To
statisticians in many diverse applications including agliture, demonstrate the performance of the Bayes RFS SMC filter,
geology, and epidemiology; see [25] and the referencesitherin Section VI we provide two sets of simulation results based
for further details.In essence, an RFS is a finite collectioron relatively realistic room simulations. In particular,ane of
of elements where not only each RFS constituent elemehée simulation examples we tested the robustness of thesBaye
is random, but the number of elements is also random. TRES SMC filter against the effects of model mismatch.
RFS approach to multi-object tracking is elegant in that the This work is a more complete version of the conference
multiple object states and the number of objects are intedrapaper [32]. In particular, [32] did not consider the track
to a single RFS. More importantly, RFS provides a solidassociation method and the respective RFS state estimation
foundation for Bayesian multi-object tracking, that is fmind method in Section V.
in traditional multi-object tracking approaches. For fat
discussions of the differences between the RFS and tradltio
approaches, please read [15], [16], [27]. An exposition of This section provides a brief review on TDOA speaker
RFS theory is rather involved particularly when it comes tacking, by considering the simple case of single speaker
the constructions of probability densities for RFSs; seg,[1 activity and no reverberation. We should point out that the
[18], [25] for the details. Fortunately, for most enginegri method reviewed in the following subsections is a simplified
applications it suffices to know how to apply several keyersion of the TDOA single-speaker location tracking metho
concepts and results, which in our opinion are presently niat [13], [14], in which the reverberation problem was also
well publicized for the generally knowledgeable readerd amddressed.
therefore will be demonstrated in this paper. In the first subsection, some aspects regarding TDOA mea-
The summary of this paper, together with the organizatioprements are described. Then, in the second subsection we
are as followsAfter a background review in Section Il, inconsider some basic concepts of Bayesian tracking.
Sch_on [l we propose an RFS model for the multl-speakg\r. TDOA Measurement
tracking application. Section Il also lays several readna
assumptions for the application, that turn out to greatly fa In the scenario of a single speaker without reverberation, t
cilitate the RFS tracking implementation. Those assumgtioreceived signals at a microphone pair can be modeled as [7]

include yi(t) =s(t) +u1(t), yot) =s(t—71)+1a(t) (1)

b : .
Wﬁeres(t) is the signal due to the sourceyt), : = 1,2 are

Il. BACKGROUND

i) At each time instant, at most one speaker source can

born. . .
i) The number of simultaneously active speaker sourceslqg‘Ckground noise, an;d|25 the TDOA between_thest and2nd
small. microphones. Letx € R* denote thegz, y) position vector of

the speaker source. The TDOAIis dependent omx through
The assumption in ii) is particularly true in applicationgb as  the following nonlinear relation:

video-conferencing, in which the most frequently encorede
ice actv ice activi r =t~ sl ~ o~ w) @
events are no voice activity, one speaker voice activityl an c 2 1

one speaker _interrupting another. _Sec_:tion v des.cribes.t\;\we]ereul andu. are the positions of the two microphones,
Bayes RFS filter (or tracker) and its implementation UsiNg s the 2-norm, andc is the speed of sound (note that

the sequential Monte Carlo (SMC) method in [18]. The Bayggtension to the 3-dimensional coordinate is straightéod):

RFS SMC filter is known to be computationally expensivee Tpoa can be measured by a generalized cross-correlation
for large number of objects [18], [22]. For those cases bCC) estimator [6], given as follows:

would be appropriate to consider computationally efficient

approximations such as the probability hypothesis density T = arg max Rgee(T) 3)
method [16], [18], [28]. Fortunately for small number of 0076[77’””’“”‘”]

objects it is still computationally affordable to employeth Ryee(T) :/ D (W) Sy, o (W) duw (4)
Bayes RFS SMC filter (see, for example, [22]), and it appears o0



Here, Ry..(7) is called the GCC functions,,.., = |[uz — density function (p.d.f.) ok;, conditioned onx;_1, which we
u;||/c is the maximum admissible TDOA valué,, ,,(w) denote by
is the cross spectral density ¢f(¢t) and y»(t), and ®(w) is

a weighting function; see [6], [7] for details regarding the

choices of ®(w). A popular choice of®(w) is the phase
transform (PHAT), wher@(w) = 1/[S,, . (w)]. In this work
we will employ the PHAT. (a]

In practice the speaker positiam can change over time, 9a(2)." [X8)- (13)

in which case it is appropriate to estimatdrom a relatively .

short time frame so that is (almost) static over each frameEdS- (12) and (13) are called the state transition den-

Thus, we replace,, ,,,(w) in (4) by a short-time estimate sity and the likelihood function, respectivelBy letting
" N(.; u,P) denotes the Gaussian density function with mean

f(xk|xk-1), (12)

and the p.d.f. ofz,[f] given x;, which we denote by

Sy e (Wi k) = Y1 (w; k)Y (wi k) (5) p and covarianceP, the expressions (12) and (13) are
kT ot ' f(xplxp_1) = N(xx;Axy_1,BBT) and gq(z,Eq]|xk) =
il = /(kl)T vilt)e™dt, i=1,2 (6) N (29 7,(Cxy), 02), respectively. Let 2" define the se-
quence containing;” fori =1,...,k and forg =1,...,Q.

whereT' is the time frame length, and is the time frame

index The Bayesian approach considers finding the posterior.p.d.f

B. Sequential State Estimation (i)
We consider a standard state space model [13], [14] for th

single-speaker TDOA problem mentioned above. We use t E'_'Ch the?] aIIovgs us to estimate, u;lnEgAsPom_trahopUmaI er-
notationay, to represent the speaker location at #tk time terion such as the expectecposteriori ( )- The posterior

frame. By defining a state vecto, — | a£’¢f |Te R p.d.f. obeys the following recursion [33], [34]:

wheren is the state dimension angl,, contains some kine-

matic variables for the speaker motion (e.g., velocity), we p(xx|zl:%) = /f(XkIkal)p(kalIzg,ﬂl)qu (15)
modelx; by a dynamic process:

: (14)

; T2, g4 (A2 Ixi)p (il 2152 )
X, = Axp_1 +Bwy, (7) p(xk|2£1;kQ]) = —— [;] 11:53] - (16)

- | , ST 9a(22 o) p (il 2452
where A and B are some pre-specified matrices, ang is

a time-uncorrelated rando@aussianvector with zero mean To solve (15) and (16) exactly is not easy due to the non-
and covariancé. In speaker location tracking, it is popular tdinearity of 7,(.). Presently, in TDOA single-speaker tracking,
employ the Langevin model [13], [14] in whiclp, consists a promising approach to approximating (15) and (16) is the
of the (x,y) velocities. The state space equations for theequential Monte Carlo methods [33], [34]; see [13], [14] fo
Langevin model are given by the details.

_ Our proposed RFS method follows the same paradigm as
= ap-1 + Ty (8) the above Bayesian tracking framework. This is illustrated
oL =e T, | +vV1—e20Tw, (9) in the following sections. Moreover, we should point out

Here, 5 and v are model parameters called the rate constatrqt"jlt in [13], [14], the above Bayesian framework has been

and the steady-state root-mean-square velocity, resphgcti extended to handle single-speaker tracking in the presehce

Next. we consider the TDOA measurements. We denote [)everbera'uon. In those works, the GCC method was slightly

lq] : ) . odified to cater for the possibility of false TDOA peaks
2z, the TDOA measured from thgh microphone pair at time : . : :
frame k. The measured TDOAs are modeled by: caused by reverberation. Since this work will employ theesam

modified GCC method (which will be described in the next
Z,[f] = 7,(Cxx) + UI[C‘ZL g=1,...,0. (10) section), the proposed method may be considered as a multi-

a speaker generalization of [13], [14].
Here,C = [ I 0] so thatCx;, = o,

— |lok =y 4l)) (11) I1l. RFS FORMULATION FOR MULTI-SPEAKER
LOCALIZATION

Tq(a) = %(”ak — U4
is the true TDOA value{u; 4,us,} are the position vectors

of thegth microphone pair, and;” is time-uncorrelated noise.  Thjs section describes our problem formulation for TDOA
We assume thatl’' is independent of " for any ¢ # p, and multi-speaker tracking in the presence of reverberatismg
that eachv,[f] follows a Gaussian distribution with zero mearthe random finite set (RFS) framework. In the first subsection
and variancer?. we outline the characteristics of our multi-speaker proble

Our goal is to estimatec;, over time. In the sequential An RFS formulation for the problem is then presented in the
Bayesian framework, we assume knowledge of the probabilggcond subsection.



A. The Multi-Speaker Problem to the nonstationarity of speech signals. LHiQ] may contain
The multi-speaker scenario considered here has the folld@Se TDOAs; i.e., TDOAs that are not generated by the direct

ing characteristics: i) each speaker follows the state esp&@ths- Such an effect can also be seen in Fig. 2.
motion model described in Section 1I-B, but his/her owB. The RFS Formulation
voice activity interval is unknown to the system; and ii) leac We consider an RES formulation that models the multi-
fgggkzjer\éoe'(r::tig:dﬁ]r%ﬁgspfogiggﬁggﬁgztﬁgﬁp’erui%tggfeaker, multi-measurement problems described in the last
resent the state vectors of the speakers by a single finite sgtbsectlon. The multi-speaker finite S8t is modeled by
given by:

X = {X1k, -+ XN K 17) Ay = By, (b)) U U Sk(Xik-1, Wi,k (19)

whereN;, = | X% (|.| stands for the cardinality) is the number ) ) ,
of active speakers at timg and eaclx; ;, represents a distinct vyhere By, (bx) contains _state _ve_ctors of spegkers t_)orn at
speaker state vector. We assume 8t < N,.q. for some tlme_k, Sk(xik—1,w; ) is a finite set associated with the
given N,,qz, and thatiX;| is unknown. In the next subsectionP'€V!0US speaker state;;_;, and the vectorsv; ; and by
we will develop a statistical finite set model fat;, which are random var|ables independent of one other. &rwe
describes not only the state space motion mechanism, lmut Jlé“’e the following hypotheses:
the appearance and disappearance events for each speaker. S - { 0, Hyecarn
k(xi,kflywi,k) = ) ) i
{sz,k—l + sz,k} P Hdeath

3001 True TD‘OA of Speaker 1‘ ‘ Trle TDOA of Spea‘ker 2 ] )
where Hy.q:n and Hgeqs, are respectively the death and no-
death hypotheses. Note that for the no-death hypothess, th
state space process is exactly the same as that of the simple
single-speaker case in (7). The hypothd$ig,;;, occurs with

‘ ‘ ‘ probability Pj...,. For the birth process, we assume that at
TDOA (insec) e most 1 speaker is born at a time. Jf;_1| = N,,q. then we

have B, = (). Otherwise, the following hypotheses apply:
Fig. 2. GCC function response in the presence of multi-spreaktivity and _
reverberation. The response was obtained by using recoedé¢speech, and B (b ) _ (/), Hyiren (21)
by simulating a room environment where reverberation iseme k\Pk) = {bk}7 Hyirin

In the presence of multi-speaker, reverberation-inducddf€"€Hvirn andHy;,., are respectively the birth and no-birth
multipath signal propagations, the GCC function in (4) itgypothes_es, anth; is an initial state_ yector under the birth
composed of the cross-correlations of the various pathsceje NYPOthesis. We denote the probability &fy;,« by Poirin-

some of the peaks of the GCC function are expected to Noreover,by, is assumed to follow an initial state distribution

contributed by the direct path components of the speaRBrWhiCh the(z, y) position is uniformly distributed within the

sources. This can be seen from the illustration in Fig soom enclosure and the other kinematic variables are zero.

which shows a GCC function response in the presence of © the m[e?surement model, we [a]ssume Bt is inde-
multi-speaker multipath propagation. We follow the TDoAendent of2,” for any ¢ # p. EachZ,” is modeled by
extraction scheme in [13], [14] where multiple TDOAs are

measured from one GCC function by picking more than one Z}[Cq] _ U %[q] (x; kw[q]]c) UC,[f] (22)
peak (or locally maximum point) in (4). By collecting those T

TDOAs to form a finite set, we have the following finite-set-
valued measurement at tinkefor the qth microphone pair: wherec,[f] is the finite set of false TDOAS, anzjj‘” is given

by
Z][Cq] = {Zk]ka ey ZKZI]I[C’;]’]C} ’ (18) { Qv Hmiss

[d] laly _

@ _ | zld ; T (i vig) = {Tq(cxi,k) +v£,qk}, Hmiss
where M, = |Z,"| is the number of measured TDOAs.
We are now faced with the following problems: i) Giveny;in vl[ql]c ~ N(0,02). Here, 7,(Cx;) is given in (11), and
an x; in A, we expect that one of the measured TDOAg; ~ “ang [, . are respectively the detection and miss
in 2" is generated byx;, but we do not know which hypotheses. The hypothesi,.;ss happens with probability
element inZ,[f] is due tox; . ii) It may occasionally turn P,;... For the false TDOAs, we follow the standard assump-
out thatx; , does not contribute a measuremenlﬁ,b]. This tion in [13], [14] that eacr‘cgf] € C,[f] independently follows
measurement miss situation can occur when one speaker crassiniform distribution over the admissible TDOA interval
correlation response masks that of another, and/or when the 4z, Tmaz], Wherer,, .. = ||us ¢ —ui 4||/c (For simplicity
speech signal powers are too weak in certain time frames dhe inter-sensor distandpi, , — u; 4|| for every microphone

GCC function

-100 L L
-15 -1 -0.5

i=1,...,| X

(23)



pair is assumed to be the same). In addition, the numberarfd RFS likelihood functions, denoted by
false TDOAS|C,[€‘1]| is assumed to follow a Poisson distribution (al
with an average rate o,. 9q( 2" | Xk) (25)

Somekrer.narI:]s ars nOV\:j'n or_(ta)le:j: S model i licab or g = 1,...,Q. To construct these p.d.f.s, some involved
Remark 1. The above described RFS model is applicablg o matical concepts are required and the details arasndeyo

o "?‘”VNW? that is, the maximum number of simultaneousl¥he scope of this application paper. Readers are referred to
active speakers. However, the performance of the GCC TD fS], [18], [25] for complete descriptions of the RFS p.d.f.
measurement method in practice incurs a limitation on t ncepts. From an application viewpoint, we are more in-
choice ofNrq.. .GCC beneﬁt.s from its s_lmpI|C|ty, but it 1S NOlierested in the results, particularly the expressions 24) (

a super resolution method in the multiple TDOA estimatiop (25). The derivations of (24) and (25) are given in the
context. When there are many speakers or when the TDO pendix. Second, many ideas in RFS Bayes estimation are

of two speakers are close, GC.C may only be ab_le to obtairé entiallythe same athose of the standard Bayes framework
few true TDOAs that are associated with the dominant sourc?éf Section II-B). To explain this 1159 define a sequence
Ly : 1&g

Fortunately, for speech applications it is generally tieg the L - ld] .
number of simultaneously active speakers is small, such agon5|st|ng of the finite sets£;™ for all i = 1,...,k and

(some justification for this has been presented in Section 7&: 1_’ o Cg Inan R_FS Bzyeman f{f}ge"frk' \t/)ve copmd_er de-
Hence, in this TDOA speaker localization application, it jlermining the posterior p. B(X;|2,,,™) thereby estimating

pertinent to focus on a smal,,a.. X, over time. Moreoverp()(k|zﬁ,;Q]) has a recursive relation

Remark 2: The probability of birthPy;,.;, and the prob- reminiscent of the prediction and update formulae in (1%) an
ability of death Pyeq:, are not known in reality. In practice (16), given as follows:

it is reasonable to make a guess B¥),;;, and Pyeqp, and (1:0] [1:Q]
such parameter adjustments generally lead to some trade8ffts|Z1..51) = / S (X | Xre—1)p(Xe—1[ 21,25 ) (d Xy —1)

on the performance of multi-speaker tracking (presenteden F@)

next sections). Increasing;.;, is expected to improve the (26)
change of.iden'Fifying a newly born speaker source. Li.kewise 1) H§:1 gq(Zz[cq]|Xk)P(Xk|ZE;£]l)

to quickly identify speaker source death is advised to imsee P(tk[Z1..") = 0 20 v o | 259 L)
Pyearn. However, increasing®yirn and/or Pyeq:n may also Jr @ =1 9021 X0)p( X5 | 21,5 ) n(d Xy
increase the chance of over-estimation and under-estimati (27)

on the number of speakers, especially_in the presence @f fa\}\ﬁwere}'(R") is the class of all finite subsets &f*, andy is
measurements. In other words, the tuning®f.;, and Pcqn, a measure ot (R"); see [18], [35], [36] for the details.

is a tradeoff between sensitivity and robustness. _ The next section considers the implementation of (26) and
Remark 3: Like Py;¢n, and Pyeqin, In practice the probabil- (27) using SMC.

ity of miss P,,;ss is decided by some rough guess. Increasing
Priss is expected to improve the robustness against tBe sequential Monte Carlo Implementation
measurement miss situations. However, increasings may

also reduce the accuracy of speaker state estimation. The Bayes recursion in (26) and (27) can be com-

puted, in an approximate manner, by applying an RFS SMC
IV. BAYESIAN RFS RALTER method [18], [37]. In the single-speaker scenario, SMC has

been shown [13], [14] to be effective in handling the nonlin-

a \évghetsr;Zna?r(;\r/‘re]el\Tvsz %Libfs?rrfgtwétl?gi Wsee ngn?iz\lllelogarity of the TDOA function. In this multi-speaker extensio
Y ko 1-€., SEQ Y where the p.d.f.s. exhibit even more complicated strusture

estlm:?mng both the multl—speaker Iocapons and the. ““mbcff., the Appendix), the SMC implementations are partciyl
of active speakers. In the first subsection, we examine so

e
probabilistic results that are essential to the Bayesia® R vorable.

framework. Then, the second subsection proposes an im The implementation employed here is the RFS bootstrap
o o IDSECion prop . pgfwc method, which is a special case of the generic RFS SMC
mentation for Bayesian RFS estimatiasing the sequential

. ._method in [18] but is particularly easy to use (note that the
;\i/lltc()e rr1te Carlo (SMC) technique, also known as the partic FS bootstrap SMC method here is not related to the method
' in [37]). The RFS boostrap SMC method is briefly described

A. Bayes Recursion for RFSs as follows. We use a random measu[r&’,gz),w,(j) L, to

The RFS theory provides two important tools for the multi@pproxmate the posterior p.d.f.

speaker tracking application. First, we can constructfs.d. . L
for the RFSX;, and 2% according to the model outlined in (X 2159 ~ Zw;(f)lsxkgu (Xk).- (28)
the previous section. In particular, we can determine aimult i=1

speaker RFS state transition density, denoted by Here, X,Ei) is the ith (finite set) particle,w,(f) is the weight

f (X | X—1), (24) associated witie | L is the number of particles applied, and



. . . TABLE Il
0. 1S a set-valued version of the standard Dirac delta func-
Xy PARTICLE GENERATION.

tion?. As an approximation to probability densities, the weights
have the properties that{” > 0 for all i andY>/" | w{” = 1.
The particles{X,ﬁZ)}iL:1 are randomly drawn conditioned on

Particle Generation Algorithm for Xy ~ f(.|Xk—1)

. (4) G) 1L . SetX), = 0.
the imek—1 random measurg,”,, w;” , ;. Specifically,  Sien1. Source Death and Survival:
for eachi = 1,..., L we generate for eachxy_1 € Xp_1
i i Draw a random number, uniformly distributed over
X9~ ra)). (29) 0D y
|f u > Pdeath

By the notion of importance sampling [33], [34] and by
applying the timek — 1 counterpart of (28) to the Bayes
recursion in (26) and (27), one can obtain

draw a random vectow;, according to the state space
model assumed;
computexy := Axi_1 + Bwyg; and

i i t X, = A U .
v e % a1l [ bal
P2~ Y W0 Ox (Xk)- en
im1 i1 g 9a(Z57 1 X w2y end

(30) Step 2. Source Birth
Table | summarizes the RFS bootstrap SMC filter. It shouldif |X,£Z)1| < Nmaz
be noted that in Table | there is an additional step called Draw a random numbewr uniformly distributed over
resampling. This step is used to reduce the degeneracygpnobl [0,1).
commonly encountered in SMC approximations; see [33], [34] i w < Poiren o ) .
for more details. The essential ingredients for the boapstr draw an initial state. according to the initial state
. . . distribution assumed; and

SMC filter are the particle generation at Step 1 of Table I, and setX), := X, U {by}

. i k= Ak I3
the expressions faf, (25| X% ). In Table Il we show the particle end
generation algorithm. The general expressioryfgEy | Xs) is end
shown in the Appendix. Some useful equationg 2| X%)
for N,,.. = 2 are shown at the top of the page.

TABLE | Remark 4: An asymptotic convergence property for the RFS
RFSBOOTSTRAPSMCFILTER FOR MULTI-SPEAKER TRACKING SMC filter, such as the above described bootstrap filter has
been considered in [18]. Specifically, it has been provenh tha
for sufficiently largeL, the mean square approximation error

RFS Bootstrap SMC Filter of the RFS SMC filter is inversely proportional f&* for some
Given a particle sizeL. constanD < « < 1. This implies that the RFS bootstrap SMC
for k=1,2,... filter is an accurate approximation for larde
Step 1. Sampling: o o Remark 5: If we chooseN,,ue = 1, Pyearn = 0, and
Eg:nlut: 1,...,L, generate ;" ~ [f(|X.",) and  p. 1 the RFS SMC filter reduces to a form very similar
P to the single-speaker SMC filter in [13], [14].
Wl — 19[ Go(Z19 D) Remark 6: The computational complexity of the RFS boot-
k 2 Tk 1Tk ST R—1 strap SMC filter is linearly dependent on the particle size
- _ _ Moreover, for each particle, the complexity depends on the
Then, apply normalizatiom(” := w|” /(¥;_, w;”) for  evaluation of the likelihood functiom,(Z;|X:). It can be
all . seen in the Appendix that the computations ¢gf 2| ;)

Step 2. Resampling:

Apply a  resampling algorithm  [33],/34] on &€ exponential inXy|. In this application where.Xy| are
{(x9 w®}E | to obtain a resampled S{%??,Ei),w,?)}f—l- small (see the argument in Section | aRémark 1), this
Then updat;{)(,i“ wE = (X0 YL a computational issue is insignificant.

end

V. REFINEMENT OF THEBAYES RFS HLTER

We should point out that Egs. (31), (32), (33) represent ) ) N )
speakers, respectively. Also, recall that the paramatein further enhance the effectiveness of the proposed RFS-multi
(31) to (33) represents the average number of false TDGReaker tracking method. The first subsectiescribes the

simple method, calledrack labeling, is proposed to handle

2A set-valued Dirac delta functiody (X) is a function such that given that problem.Then, in the second subsection, we propose a
every A C F(R™), we have [, y(X)u(dX) = 14(Y). Here, 1 4(Y) . .
is an indicator function wherd 4(Y) = 1 if ¥ € A, and14(y) = o State estimation scheme that takes advantage of track label
otherwise. information to simplify the estimation process.



|z
ga(Z710) = e (52) (16)

9a(Z71001) = 9 (Z000) | Prvies + (1= Prins) Y (35 ) 0y 47 0) )
Z[Q]ez[q]
k k
gq(Z][cq] |{X17ka X2,k}) = gq(Z][cq] |®){ Pmiss + (1 — Pmiss) Z (—QTS\TW) gq(zl[cq”xi_’k)
=12 Jal
k k
2
— (1 = Priss)? Z (—27;’1‘”) gq(z,[cq]|X1,k)9q(z,[cq]|x2_,k)} (18)
ezl
A. Track Association using Track Labeling in which the track label at timgé—1 is directly carried forward
A problem with the RFS state formulation described if ime k.

the previous sections is that it gives no information on the Trac_k quellng not only h.elps_ identify speaker track_s, I
track association betweedt, and X, ;. That is, given an also simplifies the state estimation process as shown in the
elementx; 1 € X1, we do not know which element in 0llowing subsection.

X, is originated fromx,_;. It follows that a Bayesian RFS B, sate Estimation Incorporating Track Labels

filter based on this model will not provide such information. . . .
- : L . Our algorithm development in the last section has focused
For the general RFS multi-object tracking scenario in which

. ) . ... on the particle posterior density approximation:
target birth can be quite compfxhandling track association P P y app

is non-trivial; see, for example, [29], [30].In this multi- 1:0] L @)

speaker tracking problem where at most one speaker source is PG| 21 = > wy 0 (o (Xr) (34)
allowed to be born at one time, track association can be quite i=1

easily handled by considering the following idea. for some Weightsu,(j) and for some (set-valued) particWéi).

To avoid notational inconsistency, let us re-define theestathjs subsection describes our proposed method for estigati
vector used in Sections Il and Il to &, = [ af ¢ |” €  x, from (37), in which the track labeling idea in the previous
R™, in place ofx;. We define a new state vector subsection is exploited to simplify the estimation process

X = | €7 T (31) In the current RFS framework_ (i.e._, with_out_ track label-

k ko Tk ing), a number of Bayesian estimation criteria have been

where we augment the state vector by a variahléo indicate Proposed [15], [27]. Here we are interested in theensity
the track identity of the speaker state. The variabjeis Mmeasure [16], [18]. * The following quantity
set to the birth time of the speaker source. Since no two A [1:Q]
speakers share the same birth timg,will provide adequate Nk(8) = E{|Xk : S”Z”“ } (35)
information for resolving track association when in (34) = / X N S|p(Xx | 29 u(d ) (36)
is used in the RFS framework. We call. a track label of
a speaker source. Moreover, we refer to a state vector as defined for any seS C R”, is called an intensity measure
track-¢ speaker state if its track labg}, takes the valué. of X, conditioned onzﬁ,;Q]. The intensity measure is the

To incorporate track labels into the previously developdist-order moment ofY),. Physically, Ni(S) describes the
RFS framework, we only need minor modifications on thexpected number of state vectors lying $h e.g., Ni(R"™)
state space equations. For the birth hypothesis proceg4)n (is the expected total number of speaker sources at time
the birth state vector is modified as given the measurememgﬁ,’f?]. From (37), Ni(S) can be
approximated by

br = [ it pr b 17 (32) .
whereg,, ;, . € R™ is the random initial state vector described Ne(S) = > w|x n S| (37)
in Section 11I-B. For the survival process in (20), we have i=1
A 0O B Roughly speaking, an intensity-measure-based stateasiim
Xik = [0 1] Xi k-1t {0} Wi k (33) method [18], [38], [39] consists of two steps: i) Obtain an

4The density of the intensity measure is called the prolghiiypothesis
3In a general RFS multi-object tracking framework, multifaegets can be density (PHD). It is worth mentioning that PHD is an impott@oncept in
born at one time. In addition, one target can split to form twamore . RFS multi-object tracking; see [16], [18] for the details.



estimate of the number of speake¥q = [N, (R")| where
[.] is the rounding operation. ii) Determine a number of sets
Sir fori=1,..., Ny, such that the intensity; (S; ) shows

TABLE IlI
STATE ESTIMATION ALGORITHM WITH TRACK LABELING .

good response for eachwhilst S; , NS = 0 for i # j
andeV:k1 Ni(Si k) = Ni(R™). iii) For eachi, determine the
center ofS; 5, denoted byk; .. The centersf(>A<Z-7,g}£\Qf1 are then

RFS state estimation algorithm

Given a random measureX,”, w(” }L | at timek.
Seth = (Z)

taken as the state estimates. The challenge of this approachtep 1. Extract the track label set

lies in Step ii), where some clustering algorithm is usually
used to numerically determine those sets. Since clustésing
a nonlinear nonconvex optimization problem, poor datanfjtti
could occur.

The state estimation process can become simpler when trac
label information is available. Recall that a state vectithw
track labeling is in the form ok, = [ &1, |7 € R" x Z.
Hence, we can define the intensity measure for the tfack-
speaker state:

N 2 M ¢ () -
B / S HE N A 21 u(dy)

[ &7 v 1Texy
4

(39)

L

Iy = U U {7}

el 1Tex”

tep 2.
or eachl € Ty

Obtain a particle approximation W (R"; £), denoted by
N (£), by summing the weights associated with the track-
£ speaker source:

Ni(0) = waj) >

[eF v 1Tex?

{ye = £}

If N.(0) > 0.5, compute a particle approximation to
&,.(0), denoted byg, (¢), by making a particle weighted
average

for any A C R™, and for{ < k. This track-label-dependent i 1 I
intensity measure allows us to perform state estimation on a £:(0) = Nio(0) Z;wk > »
speaker-by-speaker basis. First, we note that = [€F v 1Tex)!

e = 03¢y,

and then updatety, := X, U {[ &, (¢),¢]"}.

Interpretation 1 The quantity N,(R™;¢) is the expected end

number of times that the traaksFeaker source is present at
time k, given the measuremen&j,;"?].

In other words, we can detect the traClsource by testing rig. 3 also shows the trajectories and birth/death times of
whetherN(R"; £) is above certain threshold, say. the speaker sources. The speaker sources are all female. The

acoustic image method [40] was used to simulate the room

Interpretation 2 The vector impulse responses. The reverberation time of the room isepul

N 1 responses is abol, = 0.15s (see the literature such as [7],

&.(0) = W an €. N1 (d€p; ) (40) [14] for the definition ofT},). The speech-signal-to-noise ratio

. . is about20dB. The time frame length for measuring TDOAS is
IS the_z_expected state vector_ of the tratkource at timek, 128ms, and the time frames are non-overlapping. Fig. 4 plots
F:ond|t|oned on the hypothe5|-s. that the t{g%c}kpeaker SOUICe the measured TDOAs against the time frame index (we only
is present at time;, and conditioned o, ;. displayed the measured TDOAs for two of the microphone

It is interesting to note that (43) is reminiscent of th@airs due to page limitation). We can see that the measured

expecteda posteriori (EAP) estimate in the single—objectdata is not very informative: For each time frame the largest
tracking scenario. GCC peak does not always represent one of the true TDOASs.

Based on Interpretations 1 and 2, we propose an RFS stylgreover, in the presence of two active speakers (from time
estimation procedure in Table IIl. 20 tq 30), the accuracy_of the measured TDOAs tend to
deteriorate due to mutual interference between the twockpee

VI. SIMULATION RESULTS signals.

Two room simulation examples are used to test the trackingThe parameter settings for the RFS SMC filter are as
performance of the proposed multi-speaker RFS SMC filtefollows. The state space model is the Langevin model [cf.,
Egs. (8) and (9)], with the model paramete¥s= 10s~*
A. Bxample 1 and v = 1ms~'. The standard deviation of the TDOA
Fig. 3 illustrates the room settings for this example. Thmeasurement error ts, = 125us (which is also the sampling
dimensions of the enclosure are 3m 3m x 2.5m. We period). The other parameters afg, .. = 2, Pyirn = 0.05,
employ four microphone pairs, each of which has an inteR;..;;, = 0.01, P,,;ss = 0.25, A\, = 3, and L = 500. Fig. 5
sensor spacing @¢f.5m (which corresponds to,,,, = 1.5ms). illustrates the tracking performance of the multi-spedRES



sensor pair 3 3 T

@ :
A s — True
) 250 ‘ -O- Multi-speaker RFS SMC L
O O . 8
k730’ g ol |
J / \
L st | | ]
= !
& 1 ; EXe) b
o II,,/’Q‘Vk:AS < 2 osf ! |
g p g . 9 = S .
2 { ) speaker Lwajectoly q } 2 . 5 10 15 20 25 30 35 0 5
e \ 2 time step ()
k=1 @ - 3 ‘ ‘
speaker 2 Irajecrpry
! 251
° A
—~ 2F Ach
k=21
€
— £ 15 —— True (2 speakers in total)
~ x Multi-speaker RFS SMC
-O-  track label=3 il
sensor pair 1 -0~ track label= 21
0.5 A~ track label= 22 m
. . . . . . % Single-speaker SMC
Fig. 3. Geometric settings for the room simulation in Exaenpl 0 s = = = Py - = o -
time step (b)
x10°
15 T 5o ool T T T
o ° 095 @ Of = True TDOA tracks (2 speakers in total)
—_ 1+ Og O GCC peaks (or measured TDOAs)
S L ° g %o 4 * _Largest GCC peak .
8 o5 o © o o & ®®0 B £
c o o © °%ee00 ° c
S 00 o ®00 o o o4 =
< a 0° N s o° 90 o_oo >
O -ost N 2o © ®® e
E o > o O ©
b ]
[e]
oo o 000 o . . . . . . . .
-15 5 1‘0 1‘5 2‘0 ps 0 pes XZ} 5 5 10 15 20. 25 30 35 40 45
time step (@) time step (©)
x10° . . . . .
15 55 P PR e s 08,700 Fig. 5. Location tracking performance in Example 1. (a) RABCSfilter
° : : W
~ 1° oo %o ogoo® oo °J estimates of the number of active speakers. (b)—(c) Poséstimates of the
§ 0510 5 0 %0 0 909 T e o RFS SMC filter and the conventional single-speaker SMC filter
T—el
£ Te o
=g 0 o =
g o5 o 00 © o ; e © ® sensor pair 4 sensor pair 6
E ' = 2 Opeein 2 Q
= 00 g [} ©
T " @00 g o o © ;‘ { } g
15 s o \ ,
5 5 10 15 20 25 30 35 40 45 g ¢ g
time step (b) b speaker 3 &

active from k=51 to 75
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speaker 2
active from k=11 to 59

SMC filter. The figures show that the RFS SMC filter is able e
to determine the two speakers’ locations and their respecti .
activity intervals. Recall that in the legend of Fig. 5(t)et { }
term ‘track label’ also represents the birth time of theraated - -
speaker track. From Figs. 5(b)—(c) we can see that the RFS sensor pair 2 sensor pair 8
SMC filter produces two tracks with track lab&lsand22, but _
these two tracks actually correspond to the same speakier. Th Fig. 6.
is because the RFS SMC filter can have estimation error on

the birth time variables. For the readers’ interest, Figb)-5

(c) also show the performance of the existing single-spteaPE

sensor pair 1
sensor pair 7

Geometric settings for the room simulation in Exaenpl

pe measured TDOAs, which are illustrated in Fig. 7. In

SMC filter [13], [14]. Fig. 7(b) we observe_ that from timél t_o 60, there is a
false TDOA that persistently appears with a value of about
B. Example 2 1 x 1073 second. One can also find a few other persistent

This example considers a situation where some modslse TDOA tracks in the figures. Those false TDOAs are
assumptions are not well satisfied. In other words, we aggused by room reverberation. Since the speaker positiens a
interested in testing the robustness of the proposed mettixgéd, so do those reverberation-induced false TDOAs. This
against model mismatch. The room setting is shown in Fig. ghenomenon violates the assumption that false TDOAs are
where the room dimensions afen x 3.5m x 2.5m. The time uncorrelated.
reverberation time is aboufsy = 0.35s, and the rest of the In this example we increase the number of microphone pairs
simulation parameters are the same as those in the previtu8. The rationale is that the effect of model mismatch might
example. In this example all the speakers are stationalighwhbe reduced when more sensors are available. Fig. 8 shows the
violates the assumption that the speakers are moving filgpw localization results of the proposed multi-speaker RFS SMC
the Langevin motion model. Another model mismatch is witfilter. The figures indicate that inaccurate position estéaao
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happen sometimes; e.g., the track from time 59 to 61 withktrac
label 11. But it is also seen from the figures that the propose
method provides reasonable tracking performance on agera time step ©

C. Average Performance Fig. 8. Location tracking performance of the multi-speaR&S SMC filter

N in Example 2. (a) Estimates of the number of active speakigys(c) Position
The above two examples show the localization performangsqimateg (@) peakejs(c)

for one trial. In this subsection we are interested in thealloc

ization performance averaged over many trials. To do so it is

important to consider measures for comparing the diffezencThe figures illustrate that at the time instants where source
between the true finite set stafg, and the estimated statebirth/death occurs, the RFS method yields a transient behav
setX;. First, it is useful to evaluate the probability of correcAt those birth/death time instants, the probability of etr
speaker number estimation: speaker number estimation decreases and the conditioaal me
distance error increases. Then, the localization perfooma
improves gradually with time.

Second, we are concerned with the location errors for the
state vectors inY;,. When thq speaker number estimate is _ _
incorrect such thaiXy| # |X| , defining a localization  Using the RFS theory and the SMC implementation tech-

error is a problem on its own; see [41]. Now, let us suppo&éque, we have developed a TDOA multi-speaker location

P[ || = | ] (41)

VII. CONCLUSION AND DISCUSSION

that | x| = |)2k| = n, and thatX), = {X14, ..., X0k}, tracking algorithm that can handle unknown, time-varying
X, = {X1.4,..., %, }. We consider the following multi- number of active speakers. We have used simulations to show
speaker distance error: that the proposed algorithm can correctly determine nog onl
the speaker locations, but also the voice activity intefeal
. 1 & each speaker.
d( Xy, X)) = e mni}ni:1 Ay > 1ICxik — Cxj 12 The proposed RFS algorithm is suitable for many speech
itk =1 applications where the number of active speakers is usually

. ) (42) small. As a technical challenge, it will be worthwhile to
whereC = [I 0] is such that given a state,, Cx OUtpUtS gyamine the case of large number of speakers. This direction
the (z,y) position of that state. The idea of the minimizationeads to several open questions. First, our method (as well
in (45) is to find a proper assignment between element&in 5 the other methods in [13], [14], [20]) has been relying on
and X.. Moreover, we should mention that theoretically, (45he Gcc TDOA measurement scheme, which has a modest
is a special case of théasserstein distance [41]. With (45), yegojution that generally cannot handle a large number of
we can measure eonditional mean distance error, given by active speakers. To deal with the case of large number of
speakers, it appears that we need to employ some more so-
phisticated microphone array structures and signal psitgs

The performance measures (44) and (46) were evaluatedthods, such as those in the direction-of-estimation (POA
for Examples 1 and 2 withl,000 trials. The results for estimation context[1]. Second, the RFS multi-speakekinac
Examples 1 and 2 are shown in Figs. 9 and 10, respectivadyinciple is applicable to any number of speakers. However,

E ¢ {d(Xy, X )|correct speaker number estimpate (43)



_1':’ oo e | Lemma 1 [15] Consider
TIZ:: C=AUB (44)
;0:4, where A and B are two independent RFSs. Then, the p.d.f. of
& 021 C IS ~ ~
0 s 0 I 20 2 20 3 20 45 p(C) = Z p('A = C)p(B =C— C) (45)
time step (a) éce

A. The Sate Transition Density
Consider the finite set state structure in (19). By applying
Lemma 1 to (19), the state transition density is given by:

F(XlXe1) = D fol Xl Xeo1) fo(Xe — XeXi_1) (46)
X, CX
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5; 1‘0 1‘5 z‘?'me Stés 3‘0 3‘5 4‘0 45 where
i
P (b) Fo(Xe| Xp—1) 2 p(B(by) = Xp|Xy—1) (47)

Xk—l)

(48)

Cond. Mean Distance Error (in m)

Fig. 9.  Average location tracking performance of the msjteaker RFS s the p.d.f. for the birth states, and
SMC filter in Example 1.

‘ ‘ ‘ ‘ ; — fo(Xi| Xr—1) ép( U Sk(Xiw—1,Wik) = X

2 spkrs.

is the transition density for the previous states.
The expression for the birth state p.d.f. is as follows. For
|Xk—1] = Nmaz Where no speaker birth is allowed, we have

1‘0 2‘0 3‘0 4‘0 5‘0 60 7‘0 that
fime step @) Jo(Xi|Xi—1) = { o, othern

0, otherwise

(49)

N
2

As for the case ofX;—1| < Nyaz, it can be shown from (21)
that

N

=
o

1 — Pyirtn, X =10
Fo(X|X—1) = PoirinB(xx), X = {xx} (50)
0, otherwise

-

o
o

o

0 @ 50 time step 0 o0 0 where3(x;) £ p(bx = x;) is the initial state distribution.
(b) To construct the density,(Xx|X;—1), it is instructive to
Average location tracking performance of the mibaker RFS consider a one-speaker set-valued state transition glensit

Cond. Mean Distance Error (in m)

Fig. 10.
SMC filter in Example 2. fs,i(Xk|Xk—l) A p(Sk (Xi,k—hwi,k) _ Xk|Xk—1)
= p(Sk(Xi k-1, Wir) = X|xix—1) (51)
the RFS Bayesian filter becomes more expensive to implemwﬂerex, L_1 is an element inX;, with x; x_1 # %, 51 for
1, K— 1R JsR—

as the number of speaker increasgs. In those cases it milggtj' From (20), it is shown that
be appropriate to apply approximations such as the firstrord

moment method [16], [28]. Third, it will be interesting to Paeatn, X =10
extend the present method to deal with more complicatdeli(Xk|Xk—1) = ¢ (1 = Pacarn) f(Xk[xin-1), Xk = {xx}
situations, such as when multiple source births are allowed 0, otherwise
at one time instant. . ) (52)
where f(xy|x;—1) is the single-speaker, vector-valued p.d.f.
APPENDIX considered in Section II-B. Let
The purpose of this section is to illustrate, in a concise Xr = {X1k,---, Xmk}, Xee1 = {X1k-- Xnp—1}

manner, the derivations of the set-valued state transi&m
sity f(Xx|X,—1) and the set-valued likelihoag (25| X% ). The
principles of the derivations essentially follow those aésed
in [15]. Readers are referred to [15] for further detailseTh
following lemma will be frequently used:

with m < n. By applying Lemma 1 to (51) repeatedly and by
exploiting (55), it can be shown that

fs(XkP(k—l) = P;et_ll?;b(l—Pdeath)m Z H .f(xj-,k|xij7k—1)
1<y i <n j=1
(53)



where the summation term in the above equation means that

n

2

i =

i FElm— 1# Fi1

1<y #. Aim <n

B. The Likelihood Functions

(54)

(1]

(2]

The ideas behind deriving the likelihood functions are simi(3]
lar to those in the previous subsection. By applying Lemma 1
to the measurement model in (22), the likelihood function fo (4]

the TDOAs of thegth microphone pair is shown to be

(Z[q |Xk Z Jtrue, q ;[Cq] |Xk>0q (Z][Cq] _zl[gq]) (55)
Zlalczld
where
Grue,a( 21| 20) 2 U T o) = 29 2
=1, | X
(56)

is the likelihood function of the true TDOAs, and

(Z[Q) A (C[q Z}[;Z])

is the p.d.f. of the false TDOAs. It can be shown, in a w
similar to that for the state transition density in (55) t®&)5

that for

Z}[Cq] — la]

l,k""’Zm,k y Xk:{xlﬂk,...,xnyk}

(57)

aMo

(5]

(6]

(7]

(8]

El

(11]

with n < m, the true TDOA likelihood function is given by (12

NE: LIPS e OB L S | P
1<ii #...Fipym<n j=1
(58

where g,(21%1x,) = N (217 7,(Cx;),02) is the single-

[14]

speaker likelihood function described in Section II-B. As f [15]

the false TDOA p.d.f., it is shown that

m! H Ii(zl[q]]c)
i=1

C‘Z({Zg?]ka s ’Z/,[Z]_’k ) = ‘P|Z’£4]‘(m)

where P‘ ()] (m) =

(59)

[16]

[17]

P[|2}] = m] is the probability of the [1g]
number offalse TDOASs, angl(z) is a uniform density with an

interval [—Tinaz, Tmaz |- Under the assumption that the numbe[ﬁg]
of false TDOAs is Poisson distributed with an average rate

Ae, WE haveP|
re-expressed as

‘(m) -

(Z[q

H/\FL

Adezld

e~ <A™ /m! and Eq. (62) can be

(60)

20]

[21]

Substituting (63) into (58), the likelihood function can b&*?

simplified as

gtrue,q(

5 a]
Z 1A
_ Cq( Z}[;Z] ) 2 : k | )

lq]
94(Z5" | X) .
sz ez Aek(57)

[23]
24]

[25]

] Y. Huang, J. Benesty, G. Elko, and R. Mersereau,
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