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Abstract— In this work, we address the tracking problem
for an unknown reference comprised of two sinusoids. We
propose an adaptive servocompensator based on a pair of
frequency estimators. Slow adaptation is used to create three
time scales within the closed-loop system, corresponding to the
controller and plant dynamics, fast frequency estimate, and
slow frequency estimate. Stability of the boundary-layer system,
comprised of the servocompensator and plant dynamics, is
achieved with a stabilizing controller. Novel nonlinear analysis
is then performed on the average system to show global
asymptotic stability. The algorithm’s performance is verified
by experiments conducted on a commercial nanopositioner, and
its performance is shown to be comparable to that of iterative
learning control.

I. INTRODUCTION

Control of smart materials and other systems with hys-

teresis has seen much attention over the past few years

[1]–[4]. In particular, piezoelectric-actuated systems have

received a great deal of attention in the literature due to their

wide use in nanopositioning systems [5], such as Scanning

Probe Microscopy (SPM) [6]. An interesting approach to

the control of such systems exploits (internal model-based)

servocompensators [7], due to their performance at high

frequency and ability to attenuate the hysteresis [8].

Internal model-based regulators [9], [10] have been the

subject of ongoing research for the past several decades. Of

particular note are adaptive internal model controllers [11]–

[14], which can adapt their internal models to compensate

for unknown reference signals or disturbances. Despite their

merit, these adaptive servocompensators can require large

numbers of adapted variables to compensate for harmonics

generated by hysteresis, and can struggle to adapt these

parameters when the harmonics are small. To overcome

these problems, an adaptive internal model controller for

linear systems that are subject to harmonic disturbances

was proposed in [15]. This controller utilizes frequency

estimation coupled with slow adaptation to create an adaptive

servocompensator. The structure of the frequency estimator-

based adaptive servocompensator allows for compensation

of harmonics of the reference, without needing to adapt

any parameters other than those associated with the internal

model of the reference signal. An important example of such
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a case is when a pure sinusoidal reference is applied to

systems involving a nonlinear operator such as hysteresis.

In this paper, we design a multiple-frequency estimation

scheme combined with an internal model controller. Such a

controller is motivated by cases where the reference signal

is a sum of sinusoids of unknown frequencies. Since the

adaptation scheme is based on frequency estimator and ser-

vocompensator, harmonics of the reference signals generated

by nonlinear operators in the system can be compensated

by expanding the internal model controller, without the need

for additional adaptation variables, as done in [15]. While the

analysis presented in this paper deals with the case where the

reference is comprised of two different sinusoids, the method

can be easily extended to the case of a sinusoidal reference

and a sinusoidal matched disturbance of distinct frequencies.

We demonstrate the global stability of the algorithm through

rigorous analysis of the closed-loop system. The method is

then tested experimentally on a commercial nanopositioning

stage, and its performance is compared to iterative learning

control [16].

The basic framework of the controller is similar to that of

[15]. However the analysis is much more involved because

of the increased number of frequencies to be estimated. We

use slow adaptation and singular perturbation to split the

system’s dynamics into three timescales, for the dynamics of

the controller and plant, then the (relatively) fast adaptation

variable θ1, and finally the slower adaptation variable θ2,

respectively. The analysis of the average system is conducted

in two steps. First, we show that starting from any initial

condition, the adaptation variable θ = [θ1,θ2] enters an

arbitrarily small set Π around the point (ω1,ω2), where ω1

and ω2 are the frequencies to be estimated. We then show

that a sufficiently small set ∆ around the point (ω1,ω2) is

positively invariant, and trajectories in this set converge to an

equilibrium at (ω1,ω2). Since the size of Π can be chosen

independently of the set ∆, we can always find a sufficiently

small Π such that Π ⊂ ∆, and subsequently we can conclude

the asymptotic stability of the average system and ultimate

boundedness of the closed-loop system.

The remainder of the paper is organized as follows. In

Section II, we present the controller structure and discuss

stability of the boundary-layer system. Section III presents

the nonlinear analysis of the average system, and contains the

main result of the paper. Experimental results and analysis

are presented in Section IV, and concluding remarks are

provided in Section V.
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II. SYSTEM MODEL AND CONTROLLER DESIGN

The class of systems considered in this work consists of

a linear system Gp(s) = Gn(s)/Gd(s) with state x, subject

to an unknown reference comprised of a pair of sinusoids.

The control objective is to regulate the tracking error e(t) =
yr(t)− y(t) to zero, where

ẋ =Ax+Bu(t)

y(t) =Cx

yr(t) =R1 sin(ω1t +ψ1)+R2 sin(ω2t +ψ2) (1)

and the variables comprising the reference trajectory yr are

unknown. It is assumed that the values of ω1 and ω2 lie

within a known compact set Ω. The control signal u(t) is

formed using three components, illustrated in Fig. 1. First, a

stabilizing controller D(s) with state ξ will be designed to

stabilize the closed-loop system in the absence of C(s). This

controller will be represented by the dynamic system,

ξ̇ = Adξ +Bduξ (2)

The second component will be an internal model-based

controller (or servocompensator) C(s) with state η = [ηa,ηb]
′

where ′ denotes the transpose, and is given by

η̇a =C∗(σ1)ηa +B∗e(t) (3)

η̇b =C∗(σ2)ηb +B∗e(t) (4)

where

C∗(σi) =

[

0 −σi

σi 0

]

, B∗ =

[

0

1

]

For later use, we also define

C̄∗(σ) =

[

C∗(σ1) 0

0 C∗(σ2)

]

, B̄∗ =

[

B∗

B∗

]

The servocompensator is dependent on the third element of

the controller, the frequency estimator. This portion provides

the frequency estimates σ = [σ1,σ2] to the servocompensator.

Note that the structure of C∗ is such that if σ is known a

priori, the system will have zero tracking error at the steady

state [9]. The adaptation law, expanded from the design of

that in [15], is given by

σ̇1 =− γ1σ2
1 e(t)

1

s
[ηa2] (5)

σ̇2 =− γ2σ2
2 e(t)

1

s
[ηb2] (6)

where ηa2 and ηb2 denote the second components of ηa and

ηb, respectively. Projection is used to ensure that the estimate

σ ∈ Ωσ , where Ω ⊂ Ωσ . Throughout the paper, the notation

F(s)[g(t)] will denote filtering of the time-domain signal g(t)
by the transfer function F(s). The interconnection of the

servocompensator and the stabilizing controller is defined by

uξ = kη(σ)η +Dc(σ)e(t) (7)

and the applied control to the plant is given by

u(t) =Cdξ +Dd(kη(σ)η +Dc(σ)e(t)) (8)

Fig. 1. Block Diagram of the closed-loop system.

In (7), kη and Dc(σ) are chosen so that C(s) behaves like a

notch filter. This is done so that the added servocompensator

does not ruin the stability of the closed-loop system already

ensured by the stabilizing controller D(s), i.e. for σ =
(σ1,σ2),

C(s) =
s2 +2ζcσ1s+σ2

1

s2 +σ2
1

s2 +2ζ σ2s+σ2
2

s2 +σ2
2

(9)

ζ and ζc can be chosen to be identical, however we make

the distinction here for use in our analysis of the average

system.

A. Stability of the Boundary Layer System

Equations (1) to (8) form a complete description of the

closed-loop system. We now define the first boundary-layer

system, defined by setting γ1 = γ2 = 0 in (5) and (6). This

freezes the value of σ at σbl . Denoting the state variables of

the boundary-layer system as χbl = [x′bl ,η
′
bl ,ξ

′
bl ]

′, the closed-

loop boundary-layer system is then,

χ̇bl =Fbl(χbl ,σbl , t)

=





A−BDdDc(σbl)C BDdkη(σbl) BCd

−B̄∗C C̄∗(σbl) 0

−BdDc(σbl)C Bdkη(σbl) Ad



χbl

+





BDdDc(σbl)yr(t)
B̄∗yr(t)

BdDc(σbl)yr(t)



 (10)

This system is nearly identical to the boundary layer

system considered in [15]. Since we have chosen kη(σbl)
and Dc(σbl) such that C(s) behaves like a notch filter, we

can then design the stabilizing compensator D(s) to stabilize

this system over all σbl ∈Ωσ . We will denote the steady state

solution of χbl under a frozen σbl as χ̄(σbl).

III. AVERAGE SYSTEM ANALYSIS

After establishing the stability of the boundary-layer sys-

tem, we can now move to the computation and analysis

of the average system. The average system with state θ =
[σ1av,σ2av]

′ is formed as follows:

θ̇ =Fav(χ̄bl(θ),θ)

=







− lim
T→∞

γ1

T

∫ T

0
σ2

1ave(t)
1

s
[ηa2] dt

− lim
T→∞

γ2

T

∫ T

0
σ2

2ave(t)
1

s
[ηb2] dt






(11)
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To simplify the notation, we will write

θ = [θ1,θ2]
′ △= [σ1av,σ2av]

′

The evaluation of (11) is shown in equations (12) and (13)

on the next page.

We will assume 1 >> γ1 >> γ2, which will create a time

scale separation between the dynamics of θ1 and θ2. Our

task is to show the stability of the coupled average systems.

Looking at equations (12) and (13), it is tempting to simply

apply Lyapunov analysis in order to determine stability

without requiring multiple time scales in the adaptation.

However, this analysis breaks down fairly quickly. Consider

the Lyapunov function candidate

V (θ) =
(θ1 −ω1)

2

2
+

(θ2 −ω2)
2

2
,

θ̃ 2
1

2
+

θ̃ 2
2

2
(14)

Taking a derivative of V (t) along the solutions of (12)

and (13), we quickly run into the following issue; where

do the signs of θ̇1 and θ̇2 change? It is possible to find

the answer by computation of the resulting terms, but this

will imply that the stability of the plant depends on a

complicated relationship between plant parameters as well as

the unknown frequencies. Therefore, instead of proceeding

with a strictly Lyapunov-based analysis, we exploit the multi-

time-scale nature of the adaptation to show that θ1 will

converge to a point contained inside a particular collection of

compact sets. Then, we can investigate the behavior of the θ2

subsystem when θ1 is within these sets, which allows us to

argue that θ enters a neighborhood of the desired equilibrium

point, on which it is possible to show that the derivative of

(14) is negative definite. We will also require the following

assumption, which is commonly used in singular perturbation

and averaging theory [17].

Assumption 1: The dynamics of θ1 have distinct real

equilibria.

Following the singular perturbation theory outlined in [17],

we will now show that the dynamics for θ1 settle at a stable

equilibrium point. Our first step is to check for the exis-

tence and locations of equilibrium points. We compute the

denominator terms of (12) as D̄(θ1,θ2,ω1) and D̄(θ1,θ2,ω2)
for the first and second fractions respectively. This is done by

splitting up the transfer functions Gd( jω1) and Gn( jω1) into

real and imaginary components. This expansion is included

in equation (15) located on the next page.

As a shorthand, define for i = 1,2,

D1Re(ωi), Re(Gp( jωi))(θ
2
2 −ω2

i )

D2Re(ωi), Re(Gn( jωi)D( jωi)(θ
2
2 +2ζ ωiθ2 j−ω2

i ))

D1Im(ωi), Im(Gp( jωi))(θ
2
2 −ω2

i )

D2Im(ωi), Im(Gn( jωi)D( jωi)(θ
2
2 +2ζ ωiθ2 j−ω2

i ))

Dmag(ωi), D2
1Re( jωi)+D2

2Re( jωi)

+D2
2Im( jωi)+D2

2Im( jωi)

We can then use the above definitions to write D̄ in (15) as

D̄(θ1,θ2,ω1) =[(D1Re +D2Re)(θ
2
1 −ω2

1 )−D2Im2ζ ω1θ1]
2

+[(D1Im +D2Im)(θ
2
1 −ω2

1 )+D2Re2ζ ω1θ1]
2

(16)

The above expression implies that the shorthand terms have

been evaluated at ω1. Next, we define

c1 =γ1θ 2
1 |θ

2
2 −ω2

1 |
2|Gd( jω1)

2|

c2 =γ1θ 2
1 |θ

2
2 −ω2

2 |
2|Gd( jω2)

2|

Setting θ̇1 equal to zero, and multiplying both sides of (12)

by the denominators, we arrive at the equation

0 =−c2D̄(θ1,θ2,ω1)(θ
2
1 −ω2

2 )− c1D̄(θ1,θ2,ω2)(θ
2
1 −ω2

1 )
(17)

Canceling the θ 2
1 terms, we can expand this expression into

a 6th-order polynomial in θ1 with the form

0 = a6θ 6
1 +a5θ 5

1 +a4θ 4
1 +a3θ 3

1 +a2θ 2
1 +a1θ 1

1 +a0 (18)

The roots of this polynomial correspond to the equilibrium

points of the θ1 dynamics. We do not need to use the

exact form of this equation (indeed it is too complex to be

of much use); however, we will need to make use of the

fact that the notch filter parameter ζc will appear linearly

and quadratically as a parameter of the coefficients of this

polynomial, which can be seen from the form of (15). Letting

the notch filter parameter ζc in D̄(·) equal zero, we can

evaluate the aforementioned polynomial as

0 =− c1Dmag(ω2)(θ
2
1 −ω2

1 )|θ
2
1 −ω2

2 |
2

− c2Dmag(ω1)(θ
2
1 −ω2

2 )|θ
2
1 −ω2

1 )|
2 (19)

This equation possesses positive equilibrium points at

ω1,ω2 and a third between ω1 and ω2. We can now use

the continuity of polynomial functions in their parameters

to show that the equilibriums of the real system, given by

the roots of (18), must be near those of the equation (19).

In particular, if ri is the ith root of (18) and r′i is the ith

root of (19), for any ε1 > 0, there exists a δ such that when

ζ < δ , |ri − r′i|< ε1 [18]. Furthermore, since θ2 is bounded,

the effect of θ2 on the difference between (18) and (19) is

bounded, therefore ε1 can be chosen independently of θ2.

Remark 1: From (12) we know that θ̇1 is positive when

θ1 < ω1 and negative when θ1 > ω2. By the same logic, we

can see that θ enters the set [ω1,ω2]× [ω1,ω2] from any

bounded initial condition.

According to Remark 1, any root of the θ1 dynamics must

be within the closed interval [ω1,ω2]. From [18], we know

that for a sufficiently small ζc, (18) possess three roots within

the interval [ω1,ω2]. In addition, there must exist roots within

an ε1 interval of both ω1 and ω2. From Assumption 1, we

know that there are either one or three real roots within

this range of interest. Together with Remark 1, if there are

three equilibrium points, the first and third must always be

asymptotically stable and within an ε1-interval of ω1 and

ω2 respectively, with an unstable equilibrium point between

them. If there is one real root and one complex pair, we again
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θ̇1 =−
γ1θ 2

1 |θ
2
2 −ω2

1 |
2|Gd( jω1)

2|(θ 2
1 −ω2

1 )

|Gd( jω1)(θ 2
1 −ω2

1 )(θ
2
2 −ω2

1 )+D( jω1)Gn( jω1)(θ 2
1 +2ζcω1θ1 j−ω2

1 )(θ
2
2 +2ζ ω1θ2 j−ω2

1 )|
2

−
γ1θ 2

1 |θ
2
2 −ω2

2 |
2|Gd( jω2)

2|(θ 2
1 −ω2

2 )

|Gd( jω2)(θ 2
1 −ω2

2 )(θ
2
2 −ω2

2 )+D( jω2)Gn( jω2)(θ 2
1 +2ζcω2θ1 j−ω2

2 )(θ
2
2 +2ζ ω2θ2 j−ω2

2 )|
2

(12)

θ̇2 =−
γ2θ 2

2 |θ
2
1 −ω2

1 |
2|Gd( jω1)

2|(θ 2
2 −ω2

1 )

|Gd( jω1)(θ 2
2 −ω2

1 )(θ
2
1 −ω2

1 )+D( jω1)Gn( jω1)(θ 2
2 +2ζ ω1θ1 j−ω2

1 )(θ
2
1 +2ζcω1θ1 j−ω2

1 )|
2

−
γ2θ 2

2 |θ
2
1 −ω2

2 |
2|Gd( jω2)

2|(θ 2
2 −ω2

2 )

|Gd( jω2)(θ 2
2 −ω2

2 )(θ
2
1 −ω2

2 )+D( jω2)Gn( jω2)(θ 2
2 +2ζ ω2θ2 j−ω2

2 )(θ
2
1 +2ζcω2θ1 j−ω2

2 )|
2

(13)

D̄(θ1,θ2,ω1) =|Gd( jω1)(θ
2
1 −ω2

1 )(θ
2
2 −ω2

1 )+D( jω1)Gn( jω1)(θ
2
1 +2ζcω1θ1 j−ω2

1 )(θ
2
2 +2ζ ω1θ2 j−ω2

1 )|
2

=[Re(Gd( jω1))(θ
2
1 −ω2

1 )(θ
2
2 −ω2

1 )+Re(Gn( jω1)(θ
2
2 +2ζ ω1θ2 j−ω2

1 ))(θ
2
1 −ω2

1 )

− Im(Gn( jω1)D( jω1)(θ
2
2 +2ζ ω1θ2 j−ω2

1 ))2ζcω1θ1]
2

+[Im(Gd( jω1)(θ
2
1 −ω2

1 )(θ
2
2 −ω2

1 )+ Im(Gn( jω1)(θ
2
2 +2ζ ω1θ2 j−ω2

1 ))(θ
2
1 −ω2

1 )

+Re(Gn( jω1)D( jω1)(θ
2
2 +2ζ ω1θ2 j−ω2

1 ))2ζcω1θ1]
2 (15)

know from Remark 1 that the root is asymptotically stable. In

addition, for a sufficiently small ζc, |ω1−ω2|> 2ε1, therefore

since two roots must always be within ε1 intervals of ω1 and

ω2, the roots near ω1 and ω2 cannot both be complex. Thus,

when there is one real root, it is within an ε1-interval of

either ω1 or ω2.

We can then use this result to show that θ2 will always

converge to a neighborhood of either ω1 or ω2. For clar-

ity of presentation, we will now make the following two

assumptions; first, that the initial condition of θ is such

that θ1 converges to near ω1 and θ2 converges to near ω2,

and second that ω1 < ω2. We will remark on the first of

these assumptions following the statement of Theorem 1.

The second assumption can clearly be made without loss

of generality. Returning to the equation for θ2, we can now

treat the term related to |θ 2
1 −ω2

1 |
2 as being of order O(ε2

1 ).
This reduces the θ2 dynamics to those of a single-frequency

system with a small perturbation, a case that can be analyzed

by extending the techniques of [15].

If the initial condition of θ2 is such that it must pass

through ω1 to reach ω2 (i.e. θ2(0) < ω1), we require addi-

tional analysis. From (12), note that as θ2 approaches ω1 (say

ε3-close, i.e. θ2 ∈ [ω1 − ε3,ω1 + ε3]), the term |θ 2
2 −ω2

1 |
2 is

of order O(ε2
3 ). Furthermore, note that |θ 2

2 −ω2
2 |

2 is bounded

in an O(ε2
3 )-neighborhood of |ω2

1 −ω2
2 |

2 for θ2 ε3-close to

ω1. Next, for all ωc ∈ [ω1,ω2] and bounded θ , we can find

positive constants β3 and β4, and β5 such that

β3 ≤ D̄(θ1,θ2,wc)≤ β4 +β5ζc (20)

where the existence of β3 is guaranteed from the stability

properties of the boundary layer system. Therefore, if θ2 is

ε3-close to ω1, we can find positive constants ρ1 and ρ2 to

form the bound

θ̇1 ≥−
ρ1

β 2
3

ε2
3 +

ρ2

β4 +β5ζc

(21)

Also recall that from our stability discussions, we have

imposed the restriction ζc << 1. Thus, for a sufficiently

small ε3, if θ2 ∈ [ω1 − ε3,ω1 + ε3], θ̇1 is positive for θ1 ∈
(0,ω1+ε4), for any ζc << 1, where ε4 grows uniformly with

ε3. Since ε3 (and therefore ε4) can be chosen independently

of ζc, we can select ε3 > ε1, implying there is no real root

in the interval θ1 ∈ [ω1,ω1 + ε1]. However, from (19) and

[18], there must be a root of the θ1 dynamics r1 satisfying

|r1−ω1|< ε1; thus the root r1 is complex, which implies that

the θ1 dynamics posses an asymptotically stable equilibrium

point within an ε1 region of ω2. In effect, the condition of

both θ1 and θ2 being close to ω1 causes the equilibrium

point of the θ1 dynamics near ω1 to disappear; i.e., as θ2

approaches ω1, it causes a bifurcation within the system,

eliminating the equilibrium point at which θ1 had settled at,

and forcing θ1 to the region near ω1. Once this transition

occurs, the system has essentially returned to the first case

described above. Therefore, we have established that θ enters

a set Π, where either

Π , {θ : θ1 ∈ [ω1,ω1 + ε1],θ2 ∈ [ω2 − ε2,ω2]}

or

Π , {θ : θ1 ∈ [ω2 − ε1,ω2],θ2 ∈ [ω1,ω1 + ε2]}

Should θ1 converges to an equilibrium point near θ2, or θ2

must pass through ω1, convergence to one of the two options

for Π can be shown following the same logic as above.

We have now essentially proven ultimate boundedness of

the frequency estimates. However, we can conclude asymp-

totic stability of the combined average dynamics (12) and

(13) by investigating the behavior of the combined average

dynamics in a small neighborhood of (ω1,ω2). Consider

the set ∆ , {|θ̃1| < εc, |θ̃2| < εc}. Next, we consider the

Lyapunov function candidate (14). Taking the time derivative
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yields

V̇ = θ̃1θ̇1 + θ̃2θ̇2 (22)

We seek to find an εc such that V̇ is negative definite.

Assuming that the system is currently within the set ∆, we

substitute θ1 = ω1 + θ̃1 and θ2 = ω2 + θ̃2 where θ̃1, θ̃2 ∈
[−εc,εc]. Using these substitutions together with (12)-(13),

we can then bound V̇ by

V̇ ≤
−θ̃ 2

1

|D( jw1)|2
[−|2w1 + εc|

2|γ2Gd( jω2)
2||(w2 −w1 + εc)εc

+ |w2
1 −w2

2 +2w1εc + ε2
c |

2||γ1Gd( jω1)
2|]

+
−θ̃ 2

2

|D( jw2)|2
[|2w2 + εc|

2||γ1Gd( jω2)
2||(w1 −w2 − εc)εc

+ |w2
2 −w2

1 −2w2εc + ε2
c |

2||γ2Gd( jω1)
2|] (23)

Clearly, a sufficiently small εc guarantees that V̇ is negative

definite within the set ∆. Since the terms in the brackets of

(23) are independent of ζc, the value of εc (and therefore

the size of the set ∆) can be made independently of ζc, and

therefore independent of ε1 and ε2. Therefore we conclude

that trajectories starting in the set ∆ asymptotically converge

to the equilibrium point θ = [ω1,ω2]. Since the choice of εc

was made independent of the choice of ζc, we can always

find a ζc such that the trajectory of θ enters ∆. We make the

result formal with the following theorem.

Theorem 1: Let assumption 1 hold. Let ζ in (9) be such

that Π⊂ int(∆). Then θ asymptotically converges to [ω1,ω2].
With this result, we can then apply the averaging framework

of [19] to conclude stability of the closed loop system (χ ,σ)
and convergence of the tracking error to zero.

IV. EXPERIMENTAL RESULTS

We now verify the proposed method experimentally on

a commercial nanopositioner. The modeling procedure used

was detailed in [8], and is based on a modified Prandtl-

Ishlinskii (PI) [20] hysteresis operator cascaded with linear

dynamics. The adaptation gains used were 0.15 and 0.02 for

the fast and slow estimates respectively. In order to mitigate

the hysteresis, an inverse PI operator [20] is added to the

controller. Stabilization of the system is facilitated by the

following stabilizing controller,

D(s) =
2.083×107

s2 +4900s+1.225×107
(24)

We first test the steady-state performance of the proposed

method, which we will refer to as an Adaptive Servocompen-

sator (ASC), and compare its performance to that of Iterative

Learning Control (ILC), a popular and effective control

method used in nanopositioning research [16]. The reference

signal used for this experiment is a sum of two sinusoids.

The frequencies of the two sinusoids are determined in part

by the constant W , which we use to determine the overall

speed of the reference. For our first set of experiments, we

use sinusoids of frequency 1.3W and 0.7W , and two different

values of W , 2π10 and 2π100. Initial conditions were 1.2W

and .6W for the slow and fast frequency estimators respec-

tively. The error metric we will use is the mean tracking

error, computed as the mean of |e(t)| over one period of the

reference.
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Fig. 2. Output and tracking error for W = 2π10.

29.9 29.92 29.94 29.96 29.98 30
10

20

30

40

50

Time (s)

P
o

s
it
io

n
 (

µ
m

)

 

 

29.9 29.92 29.94 29.96 29.98 30
−0.5

0

0.5

Time (s)

T
ra

c
k
in

g
 E

rr
o

r 
(µ

m
)

ASC

ILC

Fig. 3. Output and tracking error for W = 2π100.

The results of these tests are shown in Fig. 2 and 3. For

W = 2π10, the methods provide very similar performance in

terms of the error metric, which comes out to be 0.035 µm

for the ASC and 0.034 µm for ILC. When the signal is

accelerated to W = 2π100, the difference between the two

controllers opens up, with 0.0723 µm mean error for ILC

and 0.1120 µm for the ASC. However, the nature of that

error is very different. With the ASC, the tracking error is

primarily comprised of the higher harmonics of the reference

signal, while much of ILC’s error comes from an offset in

the signal.

We now analyse the adaptation performance. For this test,

we will use a reference whose frequencies change at certain

points in time. Again, the overall speed of the reference

is tied to the constant W = 2π10. The initial reference is

1.3W and 0.7W . This changes to 1.3W and 0.5W at 20s,

then 1.2W and 0.6W at 40s. Fig. 4 shows the tracking error

and parameter values when this reference trajectory is used.

We first notice the difference in convergence times on the

fast and slow estimates. After the adaptation is turned on after
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at 2s, we can see that the fast estimate converges around 7s,

while the slow variable takes until just before the reference

switches at 20s. With the second reference trajectory (1.3W

and 0.5W ), we observe that the slow estimate moves away

slightly from the desired value, even though it started at

1.3W . This behavior is what would be expected from the

analysis of the system. Recall that we originally show that

for a given value of the slow variable θ2, the fast variable θ1

will settle to a small neighborhood of the desired frequency

due to continuity of the equilibrium locations with ζc. This

same line of thinking can be applied to the slow variable θ2

when θ1 is far away from either frequency.
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Fig. 4. Results for a changing reference signal W = 2π10. Adaptation
is turned on at 2s. Reference frequencies start as 1.3W,0.7W , then at 15s
switch to 1.3W,0.5W , then at 30s switch to 1.2W,0.6W .

V. CONCLUSION

We have extended the design of the frequency-estimator

based adaptive servocompensator proposed in [15] to the case

where the reference signal is comprised of a pair of unknown

sinusoids. Rigorous analysis of the resulting closed-loop

system has been conducted under a novel combination of

averaging and nonlinear analysis tools. We have verified

the effectiveness of the proposed method experimentally. In

addition, we have been able to observe nonlinear behaviors

expected from the analysis of the closed-loop system.

Experimental and simulation results seem to imply that the

restriction of multiple time scale adaptation, i.e. γ1 >> γ2,

may be unnecessary. Analysis of such a system will be

considered in our future work. Encouraged by the success of

implementing the proposed algorithm on a plant significantly

more complex than that considered in the analysis, we plan

to advance the systems considered in the analysis to include

linear dynamics preceded by hysteresis. Efforts to generalize

the proposed method to an n-frequency case, or when there

are unknown sinusoidal matched disturbances are underway.

In addition, we plan on expanding the internal model con-

troller to compensate for harmonics of the reference signal.
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