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Abstract
In prior work, we developed a speaker tracking system based

on an extended Kalman filter using time delays of arrival (TDOAs)
as acoustic features. While this system functioned well, its util-
ity was limited to scenarios in which a single speaker was to be
tracked. In this work, we remove this restriction by generalizing
the IEKF, first to a probabilistic data association filter, which in-
corporates a clutter model for rejection of spurious acoustic events,
and then to a joint probabilistic data association filter (JPDAF),
which maintains a separate state vector for each active speaker. In
a set of experiments conducted on seminar and meeting data, the
JPDAF speaker tracking system reduced the multiple object track-
ing errror from 20.7% to 14.3% with respect to the IEKF system.
In a set of automatic speech recognition experiments conducted
on the output of a 64 channel microphone array which was beam-
formed using automatic speaker position estimates, applying the
JPDAF tracking system reduced word error rate from 67.3% to
66.0%. Moreover, the word error rate on the beamformed output
was 13.0% absolute lower than on a single channel of the array.
Index Terms: acoustic source localization, Kalman filter, person
tracking, far-field speech recognition, microphone arrays

1. Introduction
In prior work on acoustic speaker tracking [1], we used an ex-
tended Kalman filter to directly update the speaker position esti-
mate based on a set of observed time delays of arrival (TDOAs). In
particular, the TDOAs comprised the observation associated with
an extended Kalman filter whose state corresponded to the speaker
position. Hence, the new position estimate came directly from the
update formulae associated with the Kalman filter. We tested our
algorithm on seminar data involving actual human subjects, and
found that our algorithm provided localization performance supe-
rior to the standard techniques such as [2]. In other work [3], we
enhanced our audio localizer with video information.

Although the systems described in our prior work functioned
well, their utility was limited to scenarios wherein a single subject
was to be tracked. In this work, we seek to remove this limitation
and develop a system that can track several simultaneous speakers,
such as might be required for meeting and small conference sce-
narios. Our approach is based on two generalizations of the IEKF,
namely, the probabilistic data association filter (PDAF) and the
joint probabilistic data association filter (JPDAF). Such data asso-
ciation filters have been used extensively in the computer vision
field [4], but have seen less widespread use in the field of acoustic
person localization and tracking [5]. The JPDAF is able to track
multiple, simultaneous speakers, which is not possible with the
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le IEKF. As we show here, this capacity for tracking multi-
active speakers is the primary reason why the JPDAF system
ides tracking performance superior to that achieved with the
F.
One of the primary uses of an acoustic person tracking or lo-
ation system is for beamforming the multi-channel output of
crophone array to focus on the speech of a given speaker. This
formed output can be used as the input of a speech-to-text

T) or automatic speech recognition system. In addition to re-
illustrating the accuracy of the source localization procedures

ussed here, we also report the results of a set of STT experi-
ts conducted on the beamformed output of a 64 channel mi-
hone array. The latter set of experiments demonstrates that
mproved speaker tracking accuracy of the JPDAF leads to im-
ed accuracy of a far field STT system.
The balance of this work is organized as follows. In Section 2,
eview the process of source localization based on time-delay
rrival estimation. In particular, we formulate source localiza-
as a problem in nonlinear least squares estimation, then de-
p an appropriate linearized model. Section 3 provides a brief
sition of the extended Kalman filter, as well as it variants, the
F and JPDAF. Section 4 presents the results of our initial ex-

ments comparing the tracking performance of the IEKF and
AF, as well as the performance of far field STT systems based
he two.

2. Source Localization
sider the i-th pair of microphones, and let mi1 and mi2 re-
tively be the positions of the first and second microphones in
air. Let x denote the position of the speaker in R3. Then the
A between the pair of microphones is

Ti(x) = T (mi1,mi2,x) =
1

s
(di1 − di2) (1)

re dij = ‖x − mij‖ is the distance from the source to micro-
ne mij and s is the speed of sound.
Source localization based on a maximum likelihood (ML) cri-
n [6] proceeds by minimizing the error function

ε(x) =

N−1X
i=0

1

σ2
i

[τ̂ i − Ti(x)]2 (2)

re τ̂ i is the observed TDOA for the i-th microphone pair, σ2
i is

rror covariance associated with this observation, and N is the
ber of unique microphone pairs. The TDOAs can be estimated
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with a variety of well-known techniques [7, 8]. Perhaps the most
popular method involves phase transform (PHAT), a variant of the
generalized cross correlation (GCC) which can be expressed as

R12(τ) =
1

2π

Z π

−π

X1(e
jωτ )X∗

2 (ejωτ )

|X1(ejωτ )X∗
2 (ejωτ )| ejωτ dω (3)

The TDOA estimate is then given by τ̂ i = maxτ R12(τ).
In earlier work [1], we showed how the nonlinear least squares

criterion (2) can be linearized about the current position estimate.
In particular, we defined

Σ = diag
ˆ
σ2

0 σ2
1 · · · σ2

N−1

˜
(4)

and derived the linearized criterion

ε(x; t) = [τ̄ (t) − C(t)x]T Σ−1 [τ̄ (t) − C(t)x] (5)

where τ̄ (t) and C(t) are defined in [1].
While (5) is sufficient to estimate the position of a speaker at

any given time instant, it takes no account of past observations,
which may also be useful for determining the speaker’s current
position. This can be achieved, however, by defining a model of
the speaker’s dynamics, and applying an extended Kalman filter to
this nonlinear regression problem.

3. Kalman Filters
Here we briefly review the extended Kalman filter (EKF) and its
variations, the PDAF and JPDAF.

3.1. Extended Kalman Filter

Let x(t) denote the current state of a Kalman filter and y(t) the
current observation. As x(t) cannot be observed directly, it must
be inferred from the time series {y(t)}t; this is the primary func-
tion of the Kalman filter. The operation of the Kalman filter is
governed by a state space model consisting of a process and an
observation equation, respectively,

x(t + 1) = F(t + 1, t)x(t) + ν1(t) (6)

y(t) = C(t,x(t)) + ν2(t) (7)

where F(t + 1, t) is a known transition matrix. The term
C(t,x(t)) is the known observation functional, which can rep-
resent any arbitrary, nonlinear, time varying mapping from x(t)
to y(t). In (6–7) the process and observation noise terms are de-
noted by ν1(t) and ν2(t) respectively. These noise terms are by
assumption zero mean, white Gaussian random vector processes
with covariance matrices Qi(t) for i = 1, 2.

In the sequel, it will prove useful to define two estimates of the
current state: Let x̂(t|Yt−1) denote the predicted state estimate of
x(t) obtained from all observations Yt−1 = {y(i)}t−1

i=0 up to time
t − 1. The filtered state estimate x̂(t|Yt), on the other hand, is
based on all observations Yt = {y(i)}t

i=0 including the current
one. The predicted observation is then given by

ŷ(t|Yt−1) = C(t, x̂(t|Yt−1)) (8)

which follows readily from (7). By definition, the innovation is the
difference

α(t) = y(t) − ŷ(t|Yt−1) (9)

between actual and predicted observations. Generalizing the clas-
sical Kalman filter to the EKF entails linearizing C(t,x(t)) about
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predicted state estimate x̂(t|Yt−1). Let us denote this lin-
ation as C(t).

The correlation matrix R(t) = E ˘
α(t)αT (t)

¯
of the inno-

ns sequence can be calculated from [9, §10.3]

R(t) = C(t)K(t, t − 1)CT (t) + Q2(t) (10)

re K(t, t−1) = E ˘
ε(t, t − 1)εT (t, t − 1)

¯
is the correlation

rix of the predicted state error, ε(t, t−1) = x(t)−x̂(t|Yt−1).
Kalman gain for the EKF is defined as [9, §10.10]

GF (t) = F−1(t + 1, t) E
n
x(t + 1)αT (t)

o
R−1(t)

= K(t, t − 1)CT (t)R−1(t)

alculate GF (t), we must know K(t, t − 1) in advance. The
r is available from the Riccati equation, which can be stated
, §10.4]

(t + 1, t) = F(t + 1, t)K(t)FT (t + 1, t) + Q1(t) (11)

K(t) = [I − F(t, t + 1)G(t)C(t)]K(t, t − 1) (12)

re K(t) = E ˘
ε(t)εT (t)

¯
is the correlation matrix of the fil-

d state error, ε(t) = x(t) − x̂(t|Yt).
An update of the state estimate proceeds in two steps: First, the
icted state estimate x̂(t|Yt−1) = F(t, t − 1)x̂(t − 1|Yt−1)
rmed and used to calculate the innovation α(t) as in (8–9),
ell as the linearized observation functional C(t). Then the

ection based on the current observation is applied to obtain the
red state estimate according to [9, §10.4]

x̂(t|Yt) = x̂(t|Yt−1) + GF (t)α(t) (13)

the sake of simplicity of exposition, we shall base our devel-
ent on the EKF in the sequel; details of IEKF can be found
].
To construct a speaker tracking system, we need only associate
observation y(t) with the TDOA estimate τ (t) for the audio
res. The observation functional C(t, x̂(t|Yt−1)) required for
alman filter is formulated as a mapping from the speaker po-

n x to a vector of time delays τ (t), as in (1). The TDOA error
riance matrix Σ in (4) can be associated with the observation
e covariance Q2(t). Hence, we have all relations needed on
observation side of the Kalman filter. We need only supple-
t these with an appropriate model of the speaker’s dynamics
evelop an algorithm capable of tracking a moving speaker, as
osed to finding his position at a single time instant.
Consider the simplest model of speaker dynamics, wherein
speaker is “stationary” inasmuch as he moves only under the
ence of the process noise ν1(t). The transition matrix is
F(t + 1|t) = I. Assuming the process noise components
e three directions are statistically independent, we can set
t) = σ2 T 2I where T is the time since the last state update.

e that T can vary given that a speaker does not always speak,
no update is possible when the speaker is silent.

Probabilistic Data Association Filter

PDAF is a generalization of the Kalman filter wherein the
ssian probability density function (pdf) associated with the lo-
n of the speaker or target is supplemented with a pdf for ran-
false alarms or clutter [10, §6.4]. Through the inclusion of

clutter model, the PDAF is able to make use of several ob-
ations {yi(t)}mt

i=1 for each time instant, where mt is the total



number of observations for time t. Each observation can then be
attributed either to the target itself, or to the background model.
Let us define the association events

θi(t) = {yi(t) is the target observation at time t} (14)

θ0(t) = {all observations are clutter} (15)

and the posterior probability of each event

βi(t) = P{θi(t)|Yt} (16)

As the events {θi(t)}mt
i=0 are exhaustive and mutually exclusive,

we have
Pmt

i=0 βi(t) = 1. Moreover, invoking the total probability
theorem, the filtered state estimate can be expressed as

x̂(t|Yt) =

mtX
i=0

x̂i(t|Yt)βi(t)

where x̂i(t|Yt) = E{x(t)|θi(t),Yt} is the updated state estimate
conditioned on θi(t). It can be readily shown that this state esti-
mate can be calculated as

x̂i(t|Yt) = x̂(t|Yt) + GF (t, x̂(t|Yt−1)) αi(t, x̂(t|Yt−1))

where

αi(t, x̂(t|Yt−1)) = yi(t) − C(t, x̂(t|Yt−1)) (17)

is the innovation for observation yi(t). The combined update is

x̂(t|Yt) = x̂(t|Yt−1) + GF (t, x̂(t|Yt−1)) α(t, x̂(t|Yt−1))
(18)

where the combined innovation is

α(t, x̂(t|Yt−1)) =

mtX
i=1

αi(t, x̂(t|Yt−1)) βi(t) (19)

The Riccati equation (11–12) must be suitably modified to account
for the additional uncertainty associated with the multiple innova-
tions {αi(t)}, as well as the possibility of the null event θ0(t); see
Bar-Shalom and Fortmann [10, §6.4] for details.

3.3. Joint Probabilistic Data Association Filter

The JPDAF is an extension of the PDAF to the case of multiple
targets. Consider the set Y(t) = {yi(t)}mt

i=1 of all observations
occuring at time instant t and let Yt−1 = {Y(i)}t−1

i=0 denote the
set of all past observations. The first step in the JPDA algorithm is
the evaluation of the conditional probabilities of the joint associa-
tion events

θ =

mt\
i=1

θiki

where the atomic events are defined as

θik = {observation i originated from target k}
for all i = 1, . . . , mt; t = 0, 1, . . . , T . Here, ki denotes the index
of the target to which the i-th observation is associated in the event
currently under consideration. A feasible event is defined as an
event wherein

1. An observation has exactly one source, which can be the
clutter model;

2. No more than one observation can originate from any target.
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he acoustic person tracking application where the observa-
s are peaks in the cross correlation function for pairs of mi-
hones, the second point must be interpreted as referring to the
rvations for any given pair of microphones. Applying Bayes’

, the conditional probability of θ(t) can be expressed as

P{θ(t)|Yt} =
P{Y(t)|θ(t),Yt−1}P{θ(t)}

P{Y(t)|Yt−1} (20)

re the marginal probability P{Y(t)|Yt−1} is computed by
ming the joint probability in the numerator of (20) over all
ible θ(t). The conditional probability of Y(t) required in (20)
be calculated from

P{Y(t)|θ(t),Yt−1} =

mtY
i=1

p(yi(t)|θiki(t),Yt−1) (21)

individual probabilities on the right side of (21) can be eas-
valuated given the fundamental assumption of the JPDAF,
ely,

yi(t) � N (ŷki
(t|Yt−1),Rki(t))

re ŷki
(t|Yt−1) and Rki(t) are, respectively, the predicted ob-

ation (8) and innovation covariance matrix (10) for target ki.
prior probability P{θ(t)} in (20) can be readily evaluated

ugh combinatorial arguments [10, §9.3]. Once the posterior
abilities of the joint events {θ(t)} have been evaluated for all

ets together, the state update for each target can be made sepa-
y according to (17–19).
As the JPDAF can track multiple targets, it was necessary to
ulate rules for deciding when a new target should be created,

n two targets should be merged and when a target should be
ted. Details of the heuristics used for this purpose can be found
1].

4. Experiments
test set used to evaluate the algorithms proposed here contains
oximately three hours of audio and video data recorded dur-

18 seminars held by students and faculty at University of Karl-
e (UKA) in Karlsruhe, Germany. An additional hour of test
was recorded at Athens Information Technology in Athens,
ce, IBM at Yorktown Heights, New York, USA, Instituto
tino di Cultura in Trento, Italy, and Universitat Politecnica
atalunya in Barcelona, Spain. These recordings were made

onnection with the European Union integrated project CHIL,
puters in the Human Interaction Loop. In the sequel, we de-
e out speaker tracking and STT experiments.

Speaker Tracking Experiments

r to the start of the recordings, four video cameras in the
ers of the room had been calibrated with the technique of
ng [12]. The location of the centroid of the speaker’s head in
images from the four calibrated video cameras was manually
ked every second. Using these hand-marked labels, the true
tion of the speaker’s head in the three dimensions was calcu-

using the technique described in [12]. These “ground truth”
ker positions are accurate to within 10 cm. For the speaker
ing experiments described here, the seminars were recorded
several four-element T-shaped arrays. A precise description
e sensor and room configuration at UKA is provided in [1].
Tracking performance was evaluated only on those parts of the
inars where only a single speaker was active. For these parts,



Filter Test Set MOTP % Miss % FP % MOTE
(cm)

IEKF lecture 11.4 8.32 8.30 16.6
IEKF interactive 18.0 28.75 28.75 57.5
IEKF complete 12.1 10.37 10.35 20.7

JPDAF lecture 11.6 5.81 5.78 11.6
JPDAF interactive 17.7 19.60 19.60 39.2
JPDAF complete 12.3 7.19 7.16 14.3

Table 1: Speaker tracking performance for IEKF and JPDAF sys-
tems.

it was determined whether the error between the ground truth and
the estimated position is less 50 cm. Any instance where the er-
ror exceeded this threshold was treated as a false positive (FP) and
was not considered when calculating the multiple object tracking
precision (MOTP), which is defined as the average horizontal po-
sition error. If no estimate fell within 50 cm of the ground truth,
it was treated as a miss. Letting Nfp and Nm, respectively, denote
the total number of false positives and misses, the multiple object
tracking error (MOTE) is defined as (Nfp + Nm)/N where N is
the total number of ground truth positions. We evaluated perfor-
mance separately for the portion of the seminar during which only
the lecturer spoke, and that during which the lecturer interacted
with the audience. Shown in Table 4.1 are the results of our exper-
iments. These results clearly show that the JPDAF provided better
tracking performance for both the lecture and interactive portions
of the seminar. As one might expect, the reduction in MOTE was
largest for the interactive portion, where multiple speakers were
often simultaneously active.

4.2. STT Experiments

For the purpose of beamforming and STT experiments, the semi-
nars were also recorded with a 64 channel Mark III microphone ar-
ray developed at the US National Institute of Standards and Tech-
nologies (NIST); see [1] for the placement of the various sensors.
The training procedures and data sets used for training the acoustic
and language model components of the STT systems used for the
experiments undertaken here are described in Fügen et al [13], as
are the automatic speech segmentation and speaker clustering pro-
cedures. Our STT experiments were conducted on two sets of data:
the first was the development data distributed to all participants in
the NIST RT06 speech-to-text evaluation, which consisted of ap-
proximately 3.5 hours of CHIL seminar data recorded with the T-
arrays as well as the Mark III. The second set was the NIST RT06
evaluation data, which was similar in nature and duration to the
development data. Experiments on the evaluation data, however,
were “blind” in that no transcriptions were available for system
development. Rather, the raw STT hypotheses were submitted to
NIST as part of the RT06 evaluation. NIST then scored the hy-
potheses against undisclosed references, tabulated the scores, and
distributed the results to all RT06 participants.

Shown in Table 4.2 are the results of our STT experiments,
wherein we compared word error rates (WERs) for a single chan-
nel of the Mark III, as well as the beamformed output of the entire
array using automatic position estimates based on the IEKF and
the JPDAF. Clearly, both beamformed outputs provided word er-
ror rates more than 12% absolute lower than the single channel.
Moreover, it is apparent that beamforming based on the position
estimates returned by the JPDAF provides significantly better STT
performance than beamforming on the IEKF position estimates.
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% Word Error Rate
Test Set Single Channel IEKF JPDAF

RT06 Dev 61.8 49.4 48.8
RT06 Eval N/A 67.3 66.0

e 2: STT performance for single channel and beamformed ar-
output using IEKF and JPDAF position estimates.
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