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Abstract

For urban driving, knowledge of ego-vehicle’s position is a critical piece of infor-

mation that enables advanced driver-assistance systems or self-driving cars to execute

safety-related, autonomous driving maneuvers. This is because, without knowing the

current location, it is very hard to autonomously execute any driving maneuvers for

the future. The existing solutions for localization rely on a combination of Global

Navigation Satellite System (GNSS), an inertial measurement unit, and a digital map.

However, on urban driving environments, due to poor satellite geometry and disrup-

tion of radio signal reception, their longitudinal and lateral errors are too significant

to be used for an autonomous system. To enhance the existing system’s localization

capability, this work presents an effort of developing a vision-based lateral localization

algorithm. The algorithm aims at reliably counting, with or without observations of

lane-markings, the number road-lanes and identifying the index of the road-lane on the

roadway that our vehicle happens to be driving on. Testings the proposed algorithms

against inter-city and inter-state highway videos showed promising results in terms of

counting the number of road-lanes and the indices of the current road-lanes.
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1 Introduction

Knowledge of ego-vehicle’s position is a critical piece of information for advanced

driver-assistance systems (ADASs) or self-driving cars to execute safety-related, au-

tonomous driving maneuvers. For example, to alert human drivers about lane depar-

tures, an ADAS needs to know a vehicle’s position within the road-lane that the vehicle

happens to be driving on [8, 9]. To avoid an impending collision, a vehicle may take

over its control from a human driver to swerve to a neighboring lane if a braking dis-

tance is too short to achieve. Such an automatic control would be very hard to achieve,

if the vehicle’s location is unknown. The problem of identifying a vehicle’s location

has been tackled by using a combination of GNSS (e.g., GPS for U.S., GLONASS for

Russian federation, Galileo for the European union), an inertial measurement unit, and

a digital map (e.g., “NavTeq”). Most of the existing GNSS receivers used in consumer

cars, however, using a single-channel antenna, provides only roughly accurate infor-

mation about vehicles’ longitudinal and lateral locations. Their location estimates are

about 10 to 30 meters off from road’s driving direction (i.e., longitudinal direction) and

are not precise enough to tell which road-lane a vehicle is currently driving on (i.e.,

lateral direction) [7, 12, 16]. On urban driving environment, due to poor satellite ge-

ometry and disruption of radio signal reception by urban structures, their accuracies get

worse, and result in unreliable and inconsistent provision of vehicle’s location infor-

mation. To overcome such challenges of localization problems at urban streets, many

researchers, with an eye on cheaper costs and installation flexibility, have studied vi-

sion sensor usages. In this paper, we presents an effort of developing a computer vision

algorithm that analyzes a stream of images acquired from a forward-looking, monoc-

ular camera to extract information for lateral localization. Particularly, this algorithm

aims at producing information regarding 1) the number of road-lanes, 2) the index of a

road-lane and 3) the lateral distances of our vehicle to the left and right boundaries of

the road-lane that our vehicle happens to be driving on. To do so, our algorithm first de-

tects longitudinal, lane-markings and represents them on road-plane coordinates. Our

algorithm then uses the detected lane-markings as measurements for a Bayes filter to

track the vehicle’s lateral locations over frames. And finally our algorithm solves a

homography between the image plane and the road plane to compute the actual metric

distances within in a road-lane.

The pipeline of our algorithm begins with a detection of longitudinal lane-markings.

Many excellent works have been done in the area of lane-marking detection. We re-

fer to [8, 9] for a comprehensive literature survey and here we briefly discuss only the

work relevant to ours. To detect longitudinal lane-markings, some investigated lane-

markings’ appearances (e.g., regularity in shapes [14] and homogeneity in color [4]).

Others including ours have utilized the fact that there are intensity contrasts between

lane-marking pixels and their neighboring pixels [1, 3, 10]. However, because other ob-

jects appearing on input images of urban street scenes (e.g., skid-marks, lane-marking

patches, parts of vehicles) might exhibit such intensity contrasts, the performances of

these approaches can be degraded due to many false positives. Other methods have

used extra information, such as geometric structures of road lanes or road scenes, to

improve lane-marking detection results [17, 19]. Similarly, we utilize the result of

vanishing point detection to improve an initial result of our intensity-contrast based
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Figure 1: (a) A model of a road-plane. (b) An example output of lateral localization.

At the top-left, the information about ego-vehicle’s lateral location is displayed. The

green pixel blobs are the detected lane-marings. The red numbers on the green pixel

blobs represent lane-marking group identifiers.

lane-marking detection [18].

The task of vehicle localization is to estimate a vehicle’s position with respect to

landmarks on a map built a priori. Such a localization information is a prerequisite for

an ADAS or a self-driving car to provide intelligent and autonomous driving maneu-

vers. Because of its importance, the vehicle localization at urban driving environments

has been extensively studied for the past decades [12, 5, 11, 13, 6]. These localization

methods are different from one another in terms of the characteristics of maps, sensor

measurements, methods of estimation and tracking vehicles’ states. Most work esti-

mated vehicles’ locations by fusing sensory measurements from multiple sensors in

different modalities and tracked the estimated locations over time [5, 11, 12, 13]. For

example, Tao et al. used a commercially available lane-departure warning system for

correcting the location estimation based on GPS and inertial measurements [13]. Simi-

larly, Rose [12] employed an extended Kalman filter to fuse the detected lane-markings

with inertial measurements for lane-level vehicle localization. Our work is closely re-

lated to these two works [12, 13], but is different in that our work focuses on solving

the problem of lateral localization without using any maps.

Our contributions include 1) the development of a novel representation of road

geometry, 2) the enhancement of longitudinal lane-marking detection using the result

of a vanishing point detection, 3) the development of a Bayes filter for tracking ego-

vehicle’s state, and 4) the empirical validation of the proposed method’s usefulness.

In what follows, we detail a model of a road-plane, a method for detecting longi-

tudinal lane-markings in Section 2.1, a Bayes filter for tracking our vehicle’s lateral

location in Section 2.2, and, in Section 2.3, a solution for the homography between

image plane and road plane to compute the world coordinates of road-plane’s location.

We then discuss experiments and their findings in Section 3.
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2 A Computer Vision System for Lateral Localization

To accomplish the goal of vision-based lateral localization, we first detect longitu-

dinal lane-markings and use them as measurements to estimate ego-vehicle’s lateral

location. We assume that road is flat and develop a road plane model to represent

multi-lane roads. Figure 1 (a) illustrates our road-plane model. There are nine red,

vertical lines numbered from -3 to 4 that depict boundaries of road-lanes. Each red

line corresponds to a longitudinal, lane-marking and its painting is determined by its

traffic-control function, either dashed or solid in different colors (e.g., yellow, white or

blue) [15]. We assign the index “0” to the lane-markings detected from the very left to

our vehicle and increase (or decrease) the number based on the relative distance from

our vehicle image coordinates. The range of these indices is determined by the setup

(e.g., CCD size and lens) of our vision sensor – our lane-marking detector is capable

of detecting up to four lanes in the same driving direction. For example, suppose our

vehicle is driving on the rightmost lane of a four road-lanes highway, then the verti-

cal lines between “-3” and “1” will be the leftmost and rightmost boundaries of four

road-lanes. A gray rectangle represents an image plane where a red triangle represents

the camera location in the image plane (i.e., the image coordinates of vehicle center)

and a white thick line represents a detected longitudinal lane-marking. A detected

lane-marking is represented by a triplet of the image coordinates of its centroid and

orientation, lbl = [xl, yl, φl]
T

. In our road-plane model, the vehicle’s lateral location

is represented by 1) the index of the road-lane that the vehicle happens to be driving

on and 2) the lateral offsets from the left and the right boundaries of that road-lane.

Figure 1 (b) shows an example of the output image where the detected lane-markings

are depicted in green. At the top left, our algorithm outputs the information about our

vehicle’s lateral location: the number of road-lanes (i.e., 4) and the index of the current

road-lane (i.e., 3) where the index of a road-lane begins to count from the leftmost. At

the bottom of the same figure, the lateral distances to the left and right boundary of the

current road-lane are computed.

2.1 Longitudinal Lane-marking Detection

We detect lane-markings by applying a simple filter to an input image. The filter is de-

signed to identify the intensity contrast between lane-marking pixels and their neigh-

boring pixels [10]. We define a region of interest (ROI) for lane-marking detection

and apply this spatial filter to the ROI, to obtain a new intensity image about lane-

markings. An example of such an intensity image is shown at Figure 2 (a). The

rectangle in a yellow-dashed line represents the boundary of the ROI. To identify a

set of lane-marking blobs, we first do an intensity thresholding to this new intensity

image, to produce a binary image of lane-markings. We then apply a connected-

component grouping, resulting in a number of lane-marking, pixel blobs. To repre-

sent each pixel blob as a line segment, we compute the eigenvalues and eigenvectors

of the pixel coordinates’ dispersion matrix. The eigenvector, e1, associated with the

largest eigenvalue is used to represent the orientation of a line segment and its length,

l = (φ, ρ) = (atan2(e1,2, e1,1), x̄ cosφ + ȳ sinφ), where x̄ = 1
n
Σixi, ȳ = 1

n
Σiyi.

A pixel blob, lbl, is then represented as a triplet of the coordinates of its centroid, xl
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Figure 2: Examples of longitudinal, lane-marking detection results. (a) A spatial filter-

ing results in a new intensity image about lane-markings. (b) An intensity thresholding

produces a binary image about lane-markings. (c). A example of the lane-marking

detection before removing false-positives. (d) The green line depicted at the center of

image illustrates the approximated, using the result of a vanishing point detection, in-

stantaneous driving direction. (e) Removal of the erroneously detected lane-markings.

(f) An improved lane-marking detection results.

and yl, and its orientation, φl. To fit a line to a pixel blob, we tried three methods: the

line-fitting based on eigen-analysis, the probabilistic, and the standard Hough trans-

form. We found the eigen-analysis method to work best in terms of the number of

resulting lines and representation fidelity to the patterns of low-level features. Figure 2

(b) shows examples of the identified blobs in a binary image. We remove some lane-

marking blobs if their lengths are too short or long. Figure 2 (c) shows an example of

the lane-marking detection results. The outputs of our lane-marking detector are useful

because their false negatives are, depending on the intensity thresholding, very small.

At the same time, however, the number of false positives increase because there are

other objects on the input images that have the same intensity contrast. For example, in

Figure 2 (c), four parts of a car have such intensity contrasts, that satisfy the intensity

contrast, resulting in being incorrectly detected lane-markings.

To remove such false positive detections in a principled way, we use the result of

vanishing point detection. We detect, using the extracted line segments, the vanishing

point on a horizon. On Figure 2 (f), the green circle with red “X” mark shows the

detected vanishing point and the yellow, slanted line represents the estimated horizon

line [18]. The line between the image coordinates of the image bottom mid-point (i.e.,

the image coordinates our camera is projected on) and the vanishing point on a hori-

zon line is used to approximate an instantaneous driving direction of the road that our
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vehicle happens to be driving on. This is an instantaneous approximation because it

linearly approximates a polynomial driving direction at the location where the input

image is acquired. The green vertical line in Figure 2 (f) shows an approximated road

driving direction in a perspective image. Figure 2 (d) in fact clarifies the idea of lin-

early approximating the driving direction where the detected lane-markings, the results

of driving direction approximation and the image subregions defined by the ROI are

projected on an inverse perspective image. Our idea is then to filter out some of the

lane-marking blobs if their orientations are not aligned with this instantaneous driving

direction. We do this because the orientations of any true, longitudinal lane-markings

should be aligned with this instantaneous driving direction. Two figures at Figure 2 (e)

shows an example of applying this idea to the initial result of the lane-marking detec-

tion. We first compute the difference between a blob initial orientation (e.g., β7) and a

new orientation linking the blob’s mid-point to the detected vanishing point. And then

we remove the blob under investigation (e.g., lb7) if the computed orientation differ-

ence is greater than a predefined threshold (e.g., 20 degrees). By executing these two

procedures, our method is able to remove those four false positive detections on the car.

Figure 2 (f) shows the refined output of the longitudinal, lane-marking detection, where

the red-blobs are the false-positive lane-marking detection that are removed from the

final results.

The last step of the lane-marking detection is to determine the class of a detected

lane-marking based on its color and shape. We trained a random-tree classifier [2]

to assign a detected lane-marking with one of the predefined color classes, {White,

Yellow, Other}. For the lane-marking’s style classification, we consider the length of a

detected lane-marking and assign one of the predefined style classes, {Solid, Dashed,

Other}. We have “Other” class for both classification to handle a class other than the

main target classes (e.g., “White” and “Yellow”).

2.2 Tracking and Estimating of Ego-Vehicle’s Lateral Location

The previous section describes how our method detects longitudinal, lane-markings.

In this section, we detail how our method tracks, using the detected lane-markings,

ego-vehicle’s state and compute, using the tracked state, lateral location.

As illustrated in Figure 1 (a), we define the state of ego-vehicle at time step k as

xk = [xk, θk, wk]
T

, where xk is the distance from the ground coordinates’ origin,

θk is the orientation difference between the vehicle’s driving direction and that of the

ground, wk is the width of road-lane in pixels. We develop an unscented Kalman filter

(UKF) for modeling a non-linear state transition of our vehicle’s lateral location. Our

filter begins with predicting what the next state will be, based on the following process

model.

x̂−

k =





xk+1

θk+1

wk+1



 =





xk + v sin θkdt
θk + ωdt
wkdt



 (1)

where v is a speed, and ω is a yaw rate, and dt is a discretization unit for a numerical

integration.

5



At a predicted state x̂−

k , a measurement model is used to predict an expected mea-

surement. For our case, a measurement is a lane-marking, lbl = zl. We define the

measurement model as:

ẑk = h(xk) =

[

φ̂
x̂

]

(2)

=

[

π/2− φl
1

cosφl

(lbindex − xl + yl sinφl)

]

(3)

where [xl, yl, φl]
T

is the coordinates of the lth detected lane-marking’s centroid and

orientation. The measurement model aims to transform these values of a detected lane-

marking in the image coordinates into ones (φ̂,x̂) in the road-plane so as to use them

for ego-vehicle’s state update. lbindex ∈ {−3,−2,−1, 0, 1, 2, 3, 4} is the lane-marking

group index of the detected lane-marking shown at Figure 1 (a). To compute a lane-

marking’s group index, we first, to determine which side of our vehicle a lane-marking

is detected, compute a cross-product between a detected lane-marking’s centroid and

two end-points of the approximated driving direction line. The lane-marking is located

at left (right) to our vehicle if the determinant of the cross-product is greater (less) than

zero. With this relative location and two variables from the current state, xk and wk,

the lane-marking’s index is computed by

lbindex =

{

round(idx+ 0.5) if idx ≥ 0
round(idx− 0.5) Otherwise

(4)

where idx = ±dk+xk

wk

, dk is a lateral distance between a detected lane-marking lbl and

the vehicle image coordinate, and −dk (dk) if lbl is found from left (right). In a state

update step, the state, x̂k (and its covariance matrix Pk) is estimated by investigating

the difference between the expected measurement, h(x̂−

k ) and the actual measurement,

zl (i.e., a detected lane-marking), x̂k = x̂−

k +Kk(zl − ẑk), (Pk = P−

k −KkPzK
T
k ).

Where K is the Kalman gain that determines how much the innovation (zl − ẑk) is

used to compute the estimate, x̂k.

Given an estimated ego-vehicle’s state x̂k, for the lateral localization, we 1) deter-

mine, based on their color and style classification, which of the detected lane-marking

groups should be the left and right boundaries of the road, 2) count the number of road-

lanes, and 3) compute, using the tracked state the index of the current road-lane. For

example, in Figure 1 (b), the lane-marking groups labeled “-2” and “2” are determined

as the left and the right boundary of the road based on the color and style classification,

i.e.x) “Yellow” and “Solid” for the lane-marking group “-2” and “White” and “Solid”

for the lane-marking group “1.” Given the result of this computation that there are five

longitudinal lane-markings and thus four road-lanes, our algorithm analyzes the value

of xk (i.e., 47.9010) to estimate the index of our vehicle, i.e.) the value of xk indicates

that our vehicle drives between the lane-marking group “0” and “1.” However, such

a logic may fail to work when lane-markings are not clearly visible at a given time.

At urban driving environment, lane-markings may not be visible due to neighboring

cars, poor quality of lane-marking paintings, bad weather, etc. When this happens,

the algorithm may fail to correctly count the number of road-lanes, resulting in incor-

rect computation of the index of the current road-lane. To handle with such cases, we
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Figure 3: (a) A model of the homography between the image and ground planes. (b)

An experimental setup to verify the accuracy of our homography model.

create, to record a history of lane-marking detections, a matrix, H = T × 9 matrix,

where T = 1, ..., t, ..., |T | and initializes its value with −1. A column corresponds

to a longitudinal lane-marking (or a lane-marking group) and a row corresponds to a

time step. Specifically, the algorithm records what type of lane-markings are observed

at which lane-marking groups in the time step t, at the tth row with the values 0 for

“Yellow-Dashed,” 1 for “Yellow-Solid,” 2 for “Yellow-Other,” 3 for “White-Solid,” 4

for “White-Dashed,” and 5 for “White-Other.” The row of the oldest history is replaced

with the newest history about lane-marking detection and its content is exponentially

decayed.

2.3 Metric Measurement

To know where our vehicle is in a road-lane, we need to compute the lateral distances

(in meter) of our vehicle to the left and the right boundaries of a road-lane. To do

so, it is necessary to compute the world coordinates of points on the road plane. To

this end, we solve a homography between an image plane and a road plane. Figure 3

(a) illustrates the homography model between the image, π, and the road plane. We

assume that there are no roll and yaw, but pitch, ψ between the road-plane and the

image-plane. We represent, using a parametric line equation, the geometric relation

between a point, l1 on an image plane and its projection, P and solve this equation to

compute the coordinates of the point on the ground.

P = l0 + d(l1 − l0) = d11 + l0 = d11, (5)

=
[

hc
xcam

ycam cosψ+sinψ , hc, hc
−ycam sinψ+cosψ
ycam cosψ+sinψ

]T

(6)

where d = (P0−l0)·n
l1·n

= P0·n

l1·n
= hc

ycam cosψ−sinψ and l1 =





xcam
ycam cosψ + sinψ
−ycam sinψ + cosψ



.

Figure 3 (b) shows a setup for verifying the accuracy of our homography between the

image and the ground plane. We manually measure the distances between the camera
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and markers on the ground to evaluate the accuracy of the pitch angle computation. We

found that the distance measurements have, on average, a sub-meter accuracy (i.e., less

than 30 centimeter).

3 Experiments

This section details the settings and the results of the experiments that we carried out to

evaluate the performance of the proposed algorithm. The goal of this work is to develop

a computer vision algorithms that produces information for lateral localization, such as

1) the index of the current road-lane, and 2) the lateral distances of our vehicle to the

left and right boundaries of the current road-lane.

To collect data including videos and information about vehicle’s motion, we drove

our robotic vehicle on a route about urban streets, inter-city, and inter-state highways.

Our vehicle is equipped with a high-end navigation system (i.e., Applanix LV) that, in

root-mean-square sense, the error of pitch angle estimation is 0.02 with GPS signals

(with RTK corrections) or 0.06 degree with GPS outage, when driving more than one

kilometer or for longer than one minute. The vision sensor installed on our vehicle is a

PointGrey’s Flea3 Gigabit camera, which can acquire an image frame of 2448×2048,

maximum resolution at 8Hz. For a faster, real-time processing, we rescaled the origi-

nal resolution into half, detected line segments and longitudinal, lane-markings from a

predefined ROI, x1 = 0, x2 = Iwidth−1, y1 = 1300 and y2 = 1800.1 We used such

a high-resolution camera not just for lateral localization, but also for moving object

detection and tracking and for traffic light detection. Thus each vision algorithm needs

to rescale the original resolution of input images to guarantee of a real-time response.

For producing a binary image of lane-markings, we set the intensity threshold 10. We

implemented the proposed algorithm in C++ with OpenCV libraries. Our implemen-

tation of longitudinal, lane-marking detection ran about 7Hz and the vanishing point

detection 8Hz on a 2.7 GHz quad core. While driving the route, we ran a data logger

for collecting images and information about vehicle’s motion. When we replay the log

or evaluate the proposed algorithms with the log, the data logger automatically synced

the high-rate, motion data (i.e., 100Hz) with the low-rate, image data (i.e., 8Hz). For

the UKF, we used the Bayes++ package2 to implement our filter and initialized the

state and its error (or covariance) matrix, x0 = [x0, θ0, w0]
T

= [50, 0, 100]
T

and

P0 = diag
(

[102, 0.12, 102]
)

, where the values of x and w are in pixels and that of θ is

in radian. In addition, the noises of the process model, Q = diag
(

[52, 0.12, 52]
)

and

the measurement model, R = diag
(

[0.12, 52]
)

.

We tested the proposed algorithm with seven video data about urban streets, inter-

city, and inter-state driving. All of the testing results are available from the web: the

1These y-values are in the original resolution. If the image is scaled to a half of the original, these

y-values are scaled as well.
2http://bayesclasses.sourceforge.net/Bayes++.html
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1 2 3 4 5 6 7

Images 343 302 163 700 500 1,000 368 3,376

Correct 333 284 80 539 332 650 305 2,523

MSE 0.05 0.30 0.37 0.09 0.07 0.15 0.11 0.16

Table 1: Summary of the experimental results.

video 13, 24, 35, 46, 57, 68, and 79. Table 1 summarizes the experimental results. The

first row represents the number of images in each video data; the second row is about

the number of images that our algorithm correctly counted the number of road-lanes;

the last row is about the mean-squared error of the road-lane width estimation. To the

best of our knowledge, no prior work about vision-based lateral localization is publicly

available and thus no comparison with existing work. While recording each video,

our algorithm outputs the number of road-lanes, the index of the current road-lane,

the estimation of the current road-lane’s width, and the lateral distances of our vehicle

to the left and right boundary. Later, human annotators manually assigned individual

videos with the number of road-lanes and the index of the road-lane that our vehicle

happened to be driving on. For example, in the first video, there were 333 out of 343

image frames that our algorithm correctly counted the number of road-lanes. On the

Table 1, we reported only the outputs of counting the number of road-lanes. This is

because we found that the computations of the current road-lane’s index were always

correct when the number of road-lanes was correctly computed. To evaluate the road-

lane width estimation and the lateral distance computation, we did our best to drive our

vehicle at the center of the road-lane to utilize a nominal road-width in the U.S. This is

because no ground truths were available for the routes – our vehicle does not have any

sensors looking down to detect lane-markings for lateral distance computation. Thus,

to evaluate the accuracy of our algorithm’s road-lane with estimation, we used the

nominal road-width recommended by the U.S. traffic authority [15] (i.e., 12 feet=3.65

meters), even though the widths of some testing routes (e.g., a ramp) are wider than

that of the nominal lane. The mean-squared error of the road-lane width estimation

was 0.05 meter.

For most of the video data, the states of the lane-marking paintings were somewhat

obsolete, but generally in fair conditions for a detection. On about 30% of the images,

lane-markings were partially and completely occluded by vehicles passed by our ve-

hicle. As we recorded the videos without color calibration, the images acquired while

passing overpasses were washed out. On overall, for the (inter-city and inter-state)

highway driving data (i.e., the video 1, 2, 4, and 7), our algorithm showed a promising

performance in that it correctly computed the number of road-lanes over 85% and com-

3https://www.youtube.com/watch?v=WmCCKCUX070
4https://www.youtube.com/watch?v=ommbRxYlmS8
5https://www.youtube.com/watch?v=2wj5aHOOlLA
6https://www.youtube.com/watch?v=0VjuhsrZNKs
7https://www.youtube.com/watch?v=Q7_C2cJRXco
8https://www.youtube.com/watch?v=LJ5va0ALEJg
9https://www.youtube.com/watch?v=f1i-dCZXRAw
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Figure 4: Experimental results of a route of inter-city and inter-state highway driving

are shown.

puted the width of a road-lane with smaller error (i.e., less than 0.1 meter). Figure 4

shows some example outputs. The first and second rows show examples that our algo-

rithm worked well. In particular, the images at the second row show examples that our

algorithm was able to detect lane-changing maneuvers. Such a capability of recogniz-

ing lane-changing maneuvers would be very useful to correct incorrect localization if a

map is available. The performance of our algorithms degraded when the frequency of

the occluded lane-markings was high and the qualities of lane-marking paintings were

low. This is because there is no history of road geometry to remember and re-use if 1)

the road-geometry is changed frequently and 2) the traffic is high. For example, for the

video data 3, the vehicle drove on a ramp to merge with a road with multiple-lanes. At

the end of the ramp, there were four lanes, immediately after this, four lanes became 3

lanes, and then ended up two road-lanes. In addition to such a complex road geometry,

the vehicle drove diagonally, over a short period of time, to change its lane from the

leftmost to the rightmost. This challenging driving scenario and maneuver caused our

algorithm fail to correctly identify the index of the current road-lane and estimate the

widths of the road-lanes.

4 Conclusions and Future Work

This paper presents an effort of developing a computer vision algorithm that identifies

our vehicle’s lateral location. To do so, our algorithm first detects, using a spatial fil-

ter, longitudinal, lane-markings and uses the results of a vanishing point detection to

enhance the lane-marking detection results. To reliably and consistently estimate our

vehicle’s lateral location, we developed a model of road-plane and in this model, our

10



algorithm, using an unscented Kalman filter, tracks and estimates our vehicle’s lateral

location. To handle with the case where no lane-markings are observed, we maintained

a matrix of lane-marking detection history. Through testings with a collection of im-

ages acquired from driving on streets, inter-city, and inter-state routes, our algorithm

demonstrated promising results in terms of counting the number of road-lanes and of

identifying the index of the current road-lane.

As future work, we would like to determine the limits of our algorithm and so

continue testing it against various driving environments. Particularly, we would like to

test our algorithm against 1) urban and rural streets, 2) dusk and night driving scenarios,

and 3) under raining and snowing.
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