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Abstract

This paper presents a novel solution for flow-based

tracking and 3D reconstruction of deforming objects in

monocular image sequences. A non-rigid 3D object under-

going rotation and deformation can be effectively approxi-

mated using a linear combination of 3D basis shapes. This

puts a bound on the rank of the tracking matrix. The rank

constraint is used to achieve robust and precise low-level

optical flow estimation without prior knowledge of the 3D

shape of the object. The bound on the rank is also ex-

ploited to handle occlusion at the tracking level leading

to the possibility of recovering the complete trajectories

of occluded/disoccluded points. Following the same low-

rank principle, the resulting flow matrix can be factored to

get the 3D pose, configuration coefficients, and 3D basis

shapes. The flow matrix is factored in an iterative manner,

looping between solving for pose, configuration, and basis

shapes. The flow-based tracking is applied to several video

sequences and provides the input to the 3D non-rigid re-

construction task. Additional results on synthetic data and

comparisons to ground truth complete the experiments.

1. Introduction

This paper addresses the problem of 3D tracking and

model acquisition of non-rigid motion in video sequences.

We are specifically concerned with human motion, which is

a challenging domain. Standard low-level tracking schemes

usually fail due to local ambiguities and noise. Most re-

cent approaches overcome this problem with the use of a

model. In those techniques optical flow vectors or the mo-

tion of feature locations can be constrained by a low degree-

of-freedom parametric model. For instance, to track joint-

angles of human limb segments an approximate kinematic

chain model can be used. The models lose many details

that cannot be recovered by simple cylinder or sphere shape

models and fixed axis rotations. Non-rigid torso motions,

deforming shoe motions, or subtle facial skin motions are

problem areas. Alternatively, such non-rigid motions can

be captured with basis-shape models that are learned from

example data. Most of the previous work is based on PCA

techniques applied to 2D or 3D training data. For exam-

ple, human face deformations have been tracked in 2D and

3D with such models. For 3D domains, prior models are

aquired using stereo cameras or cyber-scan hardware. Care-

fully labeled data have to be provided to derive the PCA

based models.

We are interested in cases where no such 3D models are

available, or existing models are too restricted and would

not be able to recover all subtleties. The input to our tech-

nique is a single-view video recording of an arbitrary de-

forming object, and the output is the 3D motion AND a 3D

shape model parameterized by its modes of non-rigid defor-

mation.

We are facing three very challenging problems:

1. Without a model, how can we reliably track ambigu-

ous and noisy local features in this domain?

2. Without point feature tracks or robust optical flow,

how can we derive a model?

3. Given reliable 2D tracks, how can we recover 3D

nonrigid motion and shape structure?

We have previously demonstrated that single-view 2D

point tracks are enough to recover 3D non-rigid motion and

structure by exploiting low-rank constraints [7]. Based on

the same assumption, we show in this paper that it is also

possible to constrain the low-level flow estimation and to

handle occlusion without any model-assumption. Irani [14]

has demonstrated that model-free low-rank constraints can

be applied to overcome local ambiguities in flow-estimation

for rigid scenes. We show that this can be extended to 3D

non-rigid tracking and model-acquistion. Our new tech-

niques do not need 2D point tracks, can deal with ambigous

and noisy local features, and can handle occlusion. By ex-

ploiting the low-rank constraints in low-level tracking and

in 3D non-rigid model acquisition we are able to solve all

three challenges mentioned above in one unified manner.



We demostrate the technique on tracking several video se-

quences and on deriving 3D deformable models from those

measurements.

2 Previous Work

Many non-rigid tracking solutions have been proposed

previously. As mentioned earlier, most techniques use an

a-priori model. Examples are [16, 5, 9, 19, 3, 4]. Most

of these techniques model 2D non-rigid motion, but some

of these approaches also recover 3D pose and deformations

based on a 3D model. The 3D model is obtained from 3D

scanning devices [6], stereo cameras [10], or multi-view

reconstruction [18, 11]. The multi-view reconstruction is

based on the assumption that for a specific deformed con-

figuration all views are sampled at the same time. This is

equivalent to the structure from motion problem, that as-

sumes rigidity between the different views [22]. Extensions

have been proposed, such as the multi-body factorization

method of Coseira and Kanade [8] that relaxes the rigid-

ity constraint. In this method, K independently moving ob-

jects are allowed, which results in a tracking matrix of rank

3K and a permutation algorithm that identifies the subma-

trix corresponding to each object. More recently, Bascle

and Blake [1] proposed a method for factoring facial ex-

pressions and pose during tracking. Although it exploits the

bilinearity of 3D pose and nonrigid object configuration, it

requires again a set of basis images selected before factor-

ization is performed. The discovery of these basis images is

not part of their algorithm.

In addition, most techniques treat low-level tracking and

3D structural constraints independently. In the following

section we describe how we can track and reconstruct non-

rigid motions from single views without prior models.

3 Technical Approach

The central theme in this paper is the exploitation of

rank-bounds for recovering 3D non-rigid motion. We first

describe in general why and under what circumstances 3D

non-rigid motion puts rank bounds on 2D image motion

(section 3.1). We then detail how these bounds can be used

to constrain low-level tracking in a model-free fashion (sec-

tion 3.2). We then describe how this technique can also be

used for prediction of occluded features (section 3.3), and

we then introduce three techniques that are able to recon-

struct 3D deformable shapes and their motion from those

2D measurements (section 3.4.1, 3.4.2, and 3.4.3).

3.1 Low-rank constraints for non-rigid motion

Given a sequence of F video frames, the optical flow of

P pixels can be coded into two F ×P matrices, U and V.

Each row of U holds all x-displacements of all P locations

for a specific time frame, and each row of V holds all y-

displacements for a specific time frame. It has been shown

that if U and V describe a 3D rigid motion, the rank of [ U
V
]

has an upper bound, which depends on the assumed camera

model (for example, for an orthographic camera model the

rank is r ≤ 4, while for a perspective camera model the rank

is r ≤ 8) [22, 14]. This rank constraint derives from the fact

that [U
V
] can be factored into two matrices: Q× S. Q2F×r

describes the relative pose between camera and object for

each time frame, and Sr×P describes the 3D structure of the

scene which is invariant to camera and object motion.

Previously we have shown that non-rigid object motion

can also be factored into 2 matrices [7] but of rank r that is

higher than the bounds for the rigid case. Assuming the 3D

non-rigid motion can be approximated by a set of K modes

of variation, the 3D shape of a specific object configuration

can be expressed as a linear combination of K basis-shapes

(S1,S2, ...Sk). Each basis-shape Si is a 3×P matrix describ-

ing P points. The shape of a specific configuration is a linear

combination of this basis set:

S =
K

∑
i=1

li ·Si S,Si ∈ IR3×P, li ∈ IR (1)

Assuming weak-perspective projection, at a specific time

frame t the P points of a configuration S are projected onto

2D image points (ut,i,vt,i):

[
ut,1 ... ut,P

vt,1 ... vt,P

]

= Rt ·

(
K

∑
i=1

lt,i ·Si

)

+ Tt (2)

Rt =

[
r1 r2 r3

r4 r5 r6

]

(3)

where Rt contains the first two rows of the full 3D cam-

era rotation matrix, and Tt is the camera translation. The

weak perspective scaling ( f/Zavg) of the projection is im-

plicitly coded in lt,1, ...lt,K . As in [22], we can eliminate Tt

by subtracting the mean of all 2D points, and henceforth can

assume that S is centered at the origin.

Weak perspective projection is in practice a good approx-

imation if the perspective effects between the closest and

furthest point on the object surface are small. Extending this

framework to full-perspective projection is straight-forward

using an iterative extension. All experiments reported here

assume weak perspective projection.

We can rewrite the linear combination in (2) as a matrix

multiplication:

[
ut,1 ... ut,P

vt,1 ... vt,P

]

=
[

lt,1Rt ... lt,KRt

]
·







S1

S2

...
SK







(4)



We stack all point tracks from time frame 1 to F into

one large measurement 2F ×P matrix W. Using (4) we can

write:

W =







l1,1R1 ... l1,KR1

l2,1R2 ... l2,KR2

...
lF,1RF ... lF,KRF







︸ ︷︷ ︸

Q

·







S1

S2

...
SK







︸ ︷︷ ︸

B

(5)

Since Q is a 2F ×3K matrix and B is a 3K×P matrix, in

the noise free case W has a rank r ≤ 3K.

In the following sections we describe how this rank

bound on W can be exploited for 1) constrained low-level

tracking 2) recovery of occluded feature locations 3) 3D

reconstruction of pose, non-rigid deformations, and key-

shapes.

3.2 Basis Flow

The previous analysis tells us why W is rank bounded

and how W can be factored. In this section we discuss how

to derive the optical flow matrix W from an image sequence

and how the rank-bound can be used to disambiguate the

local flow.

Features can usually be tracked reliably with local meth-

ods, such as Lucas-Kanade [17] and extensions [21, 2], if

they contain a distinctive high contrast pattern with 2D tex-

ture, such as corner features. For traditional rigid shape

reconstruction, only a few feature locations are necessary.

Non-rigid objects go through much more severe motion

variations, hence many more features need to be tracked. In

the extreme case it might be desirable to track every pixel

location. Unfortunately, many objects that we are interested

in, including the human body, do not have many of those

very reliable features.

Our solution to the tracking dilemma builds on a tech-

nique introduced in [14] that exploits rank constraints for

optical flow estimation in the case of rigid motion.

Since W is assumed to have rank r, all P columns of W

can be modeled as a linear combination of r “basis-tracks”,

Q. The basis is not uniquely defined, but if there are more

than r points whose trajectories over the F frames can be

reliably estimated, then we can compute with SVD the first

r eigenvectors Q̂ of the reduced tracking matrix Wreliable.

Q̂2F×r is an initial estimate of the basis for all P tracks. Our

next task is to estimate all P tracks (the entire W ) using this

eigenbase Q̂ and additional local image constraints.

As in the original Lucas-Kanade tracking, we assume

that a small image-patch centered at a track-point location

will not change its appearance drastically between two con-

secutive frames. Therefore the local patch flow [u,v] can

be computed by solving the following well known equation

[17]:

[ut,pvt,p] ·

[
c d

d e

]

= [g,h] (6)

where

[
c d

d e

]

=

[

∑ I2
x ∑ IxIy

∑ IxIy ∑ I2
y

]

is the second mo-

ment matrix of the local image patch in the first frame,

g = ∑ IxIt , and h = ∑ IyIt . (for further details see [17, 21, 2]).

If all F×P flow-vectors across the entire image sequence

are coded relative to one single image template, the follow-

ing equation system can be written [14]:

[U |V ] ·

[
C D

D E

]

= [G|H] (7)

where C, D, E are diagonal P×P matrices that contain

the corresponding c, d, and e values for each of the P local

image patches. Accordingly, G and H are F ×P matrices,

that contain the g and h values for all P local patches across

all F time frames. This system of equations is a rewriting of

the Lucas-Kanade linearization for every flow vector, with

no additional constraints yet applied. The number of free

variables is equal to the number of constraints. If a local

patch has no 2D texture, the single equation describing its

motion in the system will only provide an accurate estimate

of its normal flow (aperture problem).

Now we split Q̂ into Q̂U that contains all even rows of Q̂,

and Q̂V that contains all odd rows of Q̂. Since Q is a basis

for W , there must exist some r×P matrix B̂ for which the

following equations hold:

Q̂u · B̂ = U Q̂v · B̂ = V (8)

Using (7) we can write [14]:

[Q̂u · B̂|Q̂v · B̂] ·

[
C D

D E

]

= [G|H] (9)

This is a system with r×P unknowns (the entries in B̂)

and 2F ×P equations. For long tracks (F >> P) the system

is very over-constrained (in contrast to (7)). We can exploit

this redundancy to derive the optical flow for points difficult

to track and for features along 1D edges.

Since [G|H] is computed based on the Lucas-Kanade lin-

earization, the resulting flow [U |V ] = [Q̂u · B̂|Q̂v · B̂] will

only be a first approximation. We rewarp all images of the

sequence using the new flow and then iterate equation (9).

3.3 Dealing with Occlusion

By reordering the elements of B̂ into a r ·P-dimensional

vector b̂, equation (9) can be rewritten in the form:

L2PN×rP · b̂rP×1 = m2PN×1 (10)



where now each row describes one point in one particular

frame. If we have occlusion, or the tracker used for initial-

ization has lost some points at certain time frames, then the

corresponding entries in the m vector will not be measur-

able. We eliminate those rows from the L matrix and the m

vector. If the number of missing points is not overly large,

we are still left with an overconstrained system that can give

us an accurate solution for b̂. As long as the disappearing

features are visible in enough frames, the product Q̂ · B̂ pro-

vides also a good prediction of the displacements for the

missing points.

3.4 3D Reconstruction

As mentioned earlier, the factorization of W into Q and B

is not unique. Any invertible r×r matrix A applied to Q and

B in the following way leads to an alternative factorization:

Qa = Q ·A, Ba = A−1 ·B (11)

Qa and Ba multiplied together approximate W with the

same sum-of-squared error as Q and B.

Using SVD, we compute a Q̂ (with orthonormal

columns) and B̂. In general Q̂ will not comply to the struc-

ture we described in (5):

Q =







Q1

Q2

...
QF







with Qt = [lt,1Rt |...lt,kRt ] (12)

For the general case, transforming Q̂ into a Q that com-

plies to those constraints can not be done with a linear least-

squares technique. For the specific case of rigid scenes,

each sub-block is equal to the first 2 rows of a rotation

matrix (Qt = Rt). Tomasi-Kanade [22] suggested a linear

approximation schema to find an A that enforces the sub-

blocks of Q to comply to rotation matrices.

3.4.1 Sub-block factorization

For the non-rigid case, we previously proposed a second

factorization step on each sub-block that transforms every

Q̂t onto a Qt that complies to the constraints (5) [7]. Q̂t can

be rewritten as:

Qt =
[

l1Rt ... lKRt

]

=

[
l1r1 l1r2 l1r3 ... lKr1 lKr2 lKr3

l1r4 l1r5 l1r6 ... lKr4 lKr5 lKr6

]

We reorder the elements of Qt into a new matrix Q̄t :

Q̄t =







l1r1 l1r2 l1r3 l1r4 l1r5 l1r6

l2r1 l2r2 l2r3 l2r4 l2r5 l2r6

...
lKr1 lKr2 lKr3 lKr4 lKr5 lKr6







=







l1
l2
...
lK






·
[

r1 r2 r3 r4 r5 r6

]

which shows that Q̄t is of rank 1 and can be factored into

the pose Rt and configuration weights li by SVD.

After the second factorization step is applied to each of

the individual sub-blocks Q̂t , a non-linear optimization over

the entire time sequence is performed to find one invertible

matrix A that orthonormalizes all of the sub-blocks. The re-

sult is that each sub-block is a scaled rotation matrix. In the

presence of noise and ambiguities, the second and higher

eigen-values of many sub-blocks do not vanish. In those

cases, it results in bad rank-1 approximations, and bad esti-

mates for Rt . We therefore propose a second alternative in

the next section that overcomes this limitation.

3.4.2 Iterative Optimization

Instead of local factorizations on the sub-blocks, we pro-

pose a new iterative technique that solves (5) directly.

Many non-rigid objects have a dominant rigid compo-

nent and we take advantage of this to get an initial estimate

for all pose matrices (R1, ... , RF ). Given an initial guess of

the pose at each time frame, we can solve for the configura-

tion weights and the basis shapes.

To initialize the pose, we factor W into a 2F × 3 rigid

pose matrix Q̂rig and a 3×P matrix B̂rig (as originally done

by Tomasi-Kanade). As usual, we transform Q̂rig into a ma-

trix Qrig, whose sub-blocks have all weak-perspective rota-

tion matrices (as outlined in section 3.4.1).

Using Qrig as an initial guess for the pose of the non-

rigid shape, we solve for the non-rigid lt,i and B terms in

(5). We do this iteratively by first initializing lt,i randomly

and then iterating between solving for B, then for lt,i, and

then refining Rt again1.

1. Given all Rt and lt,i terms (the Q matrix), equation (5)

can be used to find the linear least-square-fit of B.

2. Given B and all Rt , we can solve for all lt,i with linear

least-squares.

3. Given B and L, we can rewrite (5) to:

Wt = Rt ∑
k

lt,kSk (13)

Solving for all Rt such that they fit this equation and

remain rotation matrices can be done by parameter-

izing Rt with exponential coordinates. A full rotation

1Alternatively we can use the sub-block factorization described in sec-

tion 3.4.1 for initialization



matrix can be described by 3 variables [ωx,ωy,ωz] as:

R(ω) = exp





0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0



 (14)

Assume ω̄ is the estimate of Rt at the previous itera-

tion, we can then linearize (13) around the previous

estimate to:

Wt =

[
1 −ω′

z ω′
y

ω′
z 1 −ω′

x

]

R(ω̄)∑
k

lt,kSk (15)

and solve for a new ω. We then update R(ω) :=
R(ω′)R(ω̄) and iterate2

We iterate all 3 steps until convergence.

Similar to the technique described in section 3.3 we can

easily handle missing entries in W when points are occluded

or are lost by the tracker. B and L are over-constrained, so

we leave out the missing data points and solve the linear fit

as before.

3.4.3 Multi-View Input

Another extension of this factorization technique is the in-

corporation of multi-view inputs from M cameras.

This enlarges the input matrix W to size 2FM×P.

W =







W1

W2

...
WF







,Wt =







Wt,1

Wt,2

...
Wt,M







,Wt,c =

[
uc,1...uc,P

vc,1...vc,P

]

(16)

As before, we assume that Wt,c can be described by

a 2 × 3 pose matrix Rt,c, by k deformation coefficients

lt,1, lt,2, ...lt,k , and a 3K ×P key-shape matrix B. Assum-

ing the cameras are synchronized, an additional constraint

for the multi-view case is that all M views share the same

deformation coefficients for a particular time frame t:

Wt = [lt,1 ·Rt |lt2 ·Rt |...|lt,K ·Rt ] ·B (17)

Rt =





Rt,1

Rt,2

Rt,M



 (18)

Similar to our previous 2-step factorization, we can fac-

tor W into Q and B complying to this new structure. Fur-

thermore we can enforce another constraint if we assume

that all M cameras remain fixed relative to each other: The

relative rotation between all Rt,c’s in the Rt sub-block of Q

is constant over time. This is enforced with a nonlinear it-

erative optimization after the 2-step factorization.

2A future extension of this algorithm will deal with an iterative version

for true perspective models. However, we like to point out, that for the

orthographic case, there exist also several closed-form solutions including

Horn’s technique [12, 13], and a SVD based method proposed by Ruder-

man [20] that we will include in an extendet technical report.

3.4.4 Shape Regularization

If there is not enough out-of-plane rotation, the Z values of

B can be ill-conditioned. For instance, a small non-rigid de-

formation in X and Y can also be explained by a small out-

of-image-plane rigid rotation of a shape with large Z values.

Another problem area is that if the low-level features have

almost no image texture, the corresponding 3D point in the

shape matrix B is not defined.

We can overcome these problems by regularizing the

shape matrix B during the iterative optimization. A sim-

ple term can be added to the least-squares-fit of B in section

3.4.2, but also to the least-squares-fit of B̂ in section 3.2. If

point location i and j are neighbors (we can determine that

with a local nearest neighbor algorithm or Delaunay trian-

gulation), we add the following term for each neighbor pair

α2
i j ∑r(br,i−br, j)

2. This pulls ambiguous points closer to the

average of their neighbors. It is similar to the smoothness

terms in snake-based contour tracking optimizations [15].

αi j can be inversely proportional to the distance between

the 2 points i and j. The global least-square-fit remains lin-

ear, since we only need to add additional linear equations

of the form αi jbr,i−αi jbr, j = 0 to the least square system in

section 3.2 and 3.4.2.

4 Experimental Results

4.1 Rank-Constrained Tracking

We tested the rank-constraint technique for optical flow

estimation on a 500 frame long video sequence of a deform-

ing shoe (Figure 1). The recordings are challenging due

to changes in the object appearance that are caused by the

large rotations and deformations as well as by variations in

illumination.

In our examples a set of 30 reliable features were initially

tracked using an implementation of the technique of Lucas-

Kanade employing affine transformations for the patches

centered at these points. We updated the reference patch

of each point every 10 frames in order to accommodate the

changes in feature appearance of our long sequence. We as-

sumed our multi-frame approach capable of recovering the

possible drifting introduced on some of the tracks by the

frequent update of the template for the points. 80 additional

features were then selected along 1D edges in the reference

frame. We produced a first approximate initialization of

their displacements by linear extrapolation from the motion

of the reliable points. We used the resulting W matrix as

initialization for our tracking technique based on rank con-

straints. We experimented with different values for the rank

and achieved the best solution by setting rank r = 9. We

employed the classic pyramidal approach in smoothing the

images and ran several iterations of the multi-frame method.



Figure 1. Example tracks of the shoe se-

quence. The blue circles are reliable points,

the red crosses are features with 1D texture

that have been recovered using rank con-

straints.

We could track robustly and very accurately most of the 110

points throughout the whole sequence. In order to correct

drifting of some of the edge features we incorporated the

additional regularization described in section 3.4.4. Figure

1 shows the features tracked for several frames.

In the last part of the image sequence many of the dis-

tinctive points that we have used to derive the optical flow

field are progressively occluded while some disappear and

then become visible again with the variations in the motion.

These difficult frames were used to demonstrate the abil-

ity of our solution to cope with lost features and occlusion.

For this experiment we manually labeled in each frame fea-

tures that were not visible, incorrectly tracked or lost by the

Lucas-Kanade initialization and then used the approach de-

scribed in section 3.3 to recover their position. Figure 2

shows the estimated position of some of these features be-

fore, during and after their temporary occlusion. The algo-

rithm is successful in reconstructing their complete trajec-

tories. Future experiments will also use an automatic track

termination test.

4.2 3D Reconstruction

Given the estimated Q̂ and B̂ of those 500 tracked

monocular image frames, we then applied our reconstruc-

tion technique described in section 3.4.2. Figure 3 shows

some example frames and the reconstructed non-rigid 3D

shapes overlayed. See http://movement.stanford.edu/nonrig

for mpeg or quicktime video showing the entire sequence

reconstructed.

We also applied the new reconstruction technique to

a video recording of a deforming human torso (Fig-

ure 4). The included video 841 tyab.mpg (also at

Figure 2. The black rectangular markers are

predicted locations of disappearing features.

The algorithm can recover the complete tra-

jectories of the temporarily occluded points.

Figure 3. 3D reconstruction of corresponding

2D tracks from monocular video sequence.

Please check video to see all details.

http://movement.stanford.edu/nonrig) shows the deforming

shapes in 3D. As you can tell, again the pose changes and

the shape deformations were recovered successfully.

We applied this technique and the previously reported

solution [7] to several other video recordings, including a

giraffe recording and human face tracking. All those re-

constructions recovered the pose and shape deformations



Figure 4. 3D reconstruction of corresponding

2D tracks from monocular video sequence.

Please check video to see all details.

nicely. Since we do not have ground-truth data available, we

can only speculate how good the quantitative performance

is. Therefore we also tested this technique on several arti-

ficial datasets with ground truth and multi-view recordings

with 2 calibrated cameras that allowed us to get a good es-

timate of the ground truth by using triangulation.

4.3 Performance on Artificial Data

The artificial data sets were based on random ba-

sis shapes, artificial superquadrics, 3D data from 2-view

recordings of a deforming face, and 2-view recordings of

the shoe sequence. All error reported here are computed in

percentage points: the average distance of the reconstructed

point to the correct point divided by the size of the shape.

The random basis shapes were generated by sampling

points uniformly inside a unit cube. The first basis shape

was given the largest weight so that the overall shape has a

strong rigid component. Artificial data were generated from

5, 10, and 20 random basis shapes rotating over 300 frames.

The overall maximum rotation in any axis was 90 degrees

and gaussian noise was added to the final tracking matrix

W . The results of running the iterative optimization are

shown in figure 5(a,b). Both 3D error and z error decrease

as the number of basis shapes (K) used in the optimization

increase. For the data generated from 5 basis shapes, the 3D

error and z error level off after K = 5. This makes sense be-

cause only 5 basis shapes are required to describe the data

and the iterative optimization finds the 5 basis shapes.

The superquadric data were generated with three of the

octants deforming independently. The same rotation from

the random basis shapes was applied to it to generate 300
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Figure 5. Iterative optimization on monocular

artificial data. Plots show how 3D and z er-

rors vary as the number of basis shapes (K)

used in the iterative optimization is increased.

(a,b) random basis shapes, (a) shows 3D er-

ror and (b) shows z error. x is the number of

basis shapes used to generate the data. (c)

superquadric. (d) deforming face.

frames for the tracking matrix W . The average 3D and z

errors are plotted in figure 5(c).

The 3D face data were taken from a stereo reconstruc-

tion of a deforming face. The same rotation was applied to

this to generate the 300 frames for the tracking matrix W .

The average 3D and z errors are plotted in figure 5(d). The

iterative optimization was also tested with occlusion. Those

points on the face which should be occluded in a certain

pose were labelled as such and not included in W . As a re-

sult, 15% of the points in W were removed. The average

3D and z errors for the reconstruction with occlusion are

also plotted in figure 5(d).

4.4 Performance on Real Data

Table 1 shows the monocular view reconstruction errors

for the shoe sequence. A second camera was used for tri-

angulation to get the ground truth so that we could compare

our monocular reconstruction. This reconstruction is the

most challenging task, since it tests the entire system from

video input to 3D output. In the artificial experiments we

ran the algorithms for each K 30 times and reported the me-

dian error, for the shoe recording we only ran it once for

each K. This explains the larger random fluctuations in the



K 2 3 4 5 6 7 8

3D error 3.25 2.19 3.80 2.84 2.24 2.62 2.62

z error 2.33 1.69 1.91 2.49 2.02 2.34 2.34

K 1 2 3 4 5

3D error 3.28 2.95 2.65 2.46 2.26

Table 1. Top: 3D reconstruction performance

on monocular shoe sequence. Bottom: 3D

reconstruction performance on 2-view face

sequence.

errors. Overall the small reconstruction errors tell us that

this technique is indeed able to accurately recover nonrigid

deformations from monocular image sequences.

We also ran the multi-view reconstruction on the face

data, and achieved again reasonable error rates as can be

seen in Table 1.

5 Discussion

We have shown how to exploit low-rank constraints for

low-level tracking, for prediction of missing low-level fea-

tures and for non-rigid reconstruction. We have demon-

strated those techniques on several video sequences and

have shown that good 3D non-rigid reconstructions can be

achieved. We further quantified the performance of single-

view reconstructions with the use of additional calibrated

views and simulations of artificial data.

We have not yet addressed the issue of discovering how

many basis shapes are needed. One possible solution is that

the user defines an upper treshold on how much reprojec-

tion error is allowed. K is increased until the error is below

threshold.

Another interesting aspect that is currently under inves-

tigation is the bias of this technique. In many cases 3D rota-

tion can be compensated with some degrees of freedom of

the basis shape set. Despite this ambiguity, our technique

has a strong bias towards representing as much as possible

with the rotation matrix, but we like to further study this

ambiguities.

Reconstructing non-rigid models from single-view video

recordings has many potential applications. For example,

we intend to apply this technique to our image-based facial

and full-body animation system and to a model based track-

ing system.
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