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Tracking and Regulation Control of an Underactuated
Surface Vessel With Nonintegrable Dynamics

A. Behal, D. M. Dawson, W. E. Dixon, and Y. Fang

Abstract—In this note, a continuous, time-varying tracking controller
is designed that globally exponentially forces the position/orientation
tracking error of an underactuated surface vessel to a neighborhood
about zero that can be made arbitrarily small [i.e., global uniformly
ultimately boundedness (GUUB)]. The result is facilitated by fusing a
filtered tracking error transformation with the dynamic oscillator design
presented in [6]. We also illustrate that the proposed tracking controller
yields a GUUB result for the regulation problem.

Index Terms—Lyapunov, nonlinear, surface vessels, tracking, underac-
tuated.

I. INTRODUCTION

Over the past decade, many researchers have studied the control
problem for underactuated systems with nonintegrable constraints. The
majority of this research has targeted nonholonomic systems (i.e., sys-
tems with nonintegrable velocity constraints), such as wheeled mobile
robots and the general chained-form system (for a survey of research
that has targeted tracking and regulation control of nonholonomic sys-
tems see [4], [7], [6], [10]–[12], [18], [19], and the references within).
For an overview of smooth and nonsmooth tracking/stabilizing con-
trollers for systems that satisfy the nonholonomic constraint, we refer
the reader to [2] and [20]. However, motivated by the challenging the-
oretical aspects and numerous practical applications, researchers have
also attacked underactuated systems with nonintegrable dynamics (e.g.,
surface vessels, twin rotor helicopters, underwater vehicles, V/CTOL
aircraft, etc.). For example, in [17], Reyhanogluet al. provides a de-
tailed discussion on the controllability and the stabilizability of under-
actuated mechanical systems with nonintegrable dynamics. The con-
clusion from this discussion is a result similar to Brockett’s condi-
tion [3] for nonholonomic systems. That is, Reyhanogluet al. illus-
trated that underactuated systems with nonintegrable dynamics cannot
be asymptotically stabilized by a continuous, time-invariant feedback
law. In [13], Pettersenet al.showed that underactuated surface vessels
cannot be asymptotically stabilized by continuous time-invariant feed-
back laws. In addition, Pettersenet al. [13] proposed a time-varying
feedback controller for an underactuated surface vessel that contained
explicit time-periodic sinusoidal terms (similar in structure to [18]) to
obtain local exponential regulation. In [14], Pettersenet al. modified
the continuous time-varying feedback law of [13] to design a controller
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that also locally exponentially regulates the position and orientation of
an underactuated surface vessel.

In addition to the regulation problem, several controllers have also
been proposed for the tracking control problem. Specifically, in [9],
Godhavn utilized a continuous time-invariant state feedback controller
to achieve global exponential position tracking provided the desired
surge velocity is always positive; however, due to the control struc-
ture, the orientation of the surface vessel is not controlled. In [15],
Pettersenet al.proposed a tracking controller that achieved global ex-
ponentialpractical stability (i.e., global exponential stability of an ar-
bitrarily small neighborhood of the desired trajectory) of an underac-
tuated surface vessel. In [16], Pettersenet al., proposed a continuous
time-invariant control law that obtained semi-global exponential posi-
tion and orientation tracking, provided the desired angular trajectory
remains positive. That is, Pettersenet al.proved semiglobal exponen-
tial position and orientation tracking for a class of desired trajectories.

In this note, we design a continuous time-varying tracking controller
that yields global uniformly ultimately bounded (GUUB) position/ori-
entation tracking. Specifically, we first manipulate a reference model
generator and the dynamic model of an underactuated surface vessel
into a form that allows a Lyapunov-based control structure to be de-
veloped. That is, motivated by the dynamic oscillator designed in [6]
by Dixon et al. for wheeled mobile robots, a time-varying dynamic
oscillator is constructed that globally exponentially forces the posi-
tion/orientation tracking error to a neighborhood about zero that can
be made arbitrarily small. The new result is facilitated by fusing a fil-
tered tracking error transformation with the dynamic oscillator design.
In addition, since the only restriction we place on the desired trajectory
is that the reference generator remain bounded, it is straightforward to
illustrate that the proposed controller also yields a GUUB result for the
regulation problem.

The note is organized as follows. In Section II, we present the
kinematic and dynamic model for an underactuated surface vessel
and then transform the open-loop tracking dynamics into a more
convenient form for the subsequent controller development and the
stability analysis. In Section III, we present the proposed GUUB
tracking control design. The corresponding closed-loop error system
is given in Section IV while the stability analysis is given in Section V.
An extension that illustrates that the proposed tracking controller also
solves the regulation problem is given in Section VI. Concluding
remarks are presented in Section VII.

II. K INEMATIC AND DYNAMIC MODEL DEVELOPMENT

A. Model Formulation

As described in [8], the kinematic equations of motion of the center
of mass (COM) for a surface vessel (SV) can be written as follows:

_q = S(q)v (1)

where the triplet _q(t) = ( _xc(t); _yc(t); _�(t)) represents the time
derivative of q(t) = (xc(t); yc(t); �(t)), xc(t), yc(t) denote the
Cartesian position of the COM of the SV,�(t) represents the orien-
tation of the SV,S(q) is the 3� 3 transformation matrix defined as
follows:

S(q) =

cos � � sin � 0

sin � cos � 0

0 0 1

(2)

and the 3� 1 velocity vectorv(t) of (1) is defined as

v = [ v1 v2 v3 ]
T (3)
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Fig. 1. Actuator diagram for an underactuated surface vessel.

wherev1(t), v2(t), andv3(t) denote the surge, sway, and yaw veloc-
ities (see Fig. 1) of the SV, respectively. Under the assumptions that
i) the body-fixed coordinate axis coincides with the center of gravity
(CG), ii) the mass distribution is homogeneous, iii) the hydrodynamic
damping terms of order higher than one are negligible, iv) changes in
the inertia are negligible, and v) the heave, pitch, and roll modes can
be neglected, the dynamic model for a neutrally buoyant SV with two
axes of symmetry can be expressed in the following form [8]:

M _v +D(v)v = �0 (4)

where _v(t) denotes the time derivative ofv(t) defined in (3),M rep-
resents a simplistic1 3� 3 constant, diagonal, positive–definite inertia
matrix, which is explicitly defined as

M =

m 0 0

0 m 0

0 0 Io

(5)

m, Io represent the mass and inertia of the SV, respectively,D(v) is a 3
� 3 matrix that represents the Centripetal–Coriolis and hydrodynamic
damping effects, and is explicitly defined as follows:

D(v) =

�Xv1 0 �mv2

0 �Yv2 mv1 � Yv3

mv2 �mv1 �Nv2 �Nv3

(6)

Xv1, Yv2, Yv3, Nv2, andNv3 denote scalar, constant damping coef-
ficients, and the force–torque control input vector denoted by�0(t) is
explicitly defined as

�0(t) = [F 0 � ]T (7)

whereF (t) denotes a control force that is applied to produce a forward
thrust, and� (t) denotes a torque that is applied about the CG.

In order to simplify the subsequent control development and stability
analysis, we first design an outer-loop controller forF (t) and� (t) as
follows:

F =�Xv1v1 +mF1 (8)

and

� =�Nv2v2 �Nv3v3 + Io�1 (9)

1In general, the inertias in the surge and sway directions are not equal and the
inertia matrix is not diagonal due to hydrodynamic added mass coupling terms.

whereF1(t), �1(t) denote subsequently designed auxiliary control in-
puts. Based on (3)–(9), we can rewrite the expression for the dynamic
model given in (4) as follows:

_v1
_v2
_v3

=

F1 + v2v3

1

m
(Yv2v2 + Yv3v3)� v1v3

�1

: (10)

B. Reference Model Development

Motivated by the desire to generate a reference model that satisfies
the same dynamics as that given in (4), we take the time derivative of
_xc(t), _yc(t) given in (1) and then use (2), (3), and (10) to obtain the
following expression:

�xc
�yc
_�

=

F1 cos � �
Yv2

m
( _yc cos � � _xc sin �)

� sin � �
Yv3

m
v3 sin �

F1 sin � +
Yv2

m
( _yc cos � � _xc sin �)

� cos � +
Yv3

m
v3 cos �

v3

: (11)

Based on (11), we construct a reference trajectory generator as follows:

�xrc
�yrc
_�r

=

F1r cos �r�
sin �r
m

� (Yv2( _yrc cos �r� _xrc sin �r)+Yv3v3r)

F1r sin �r +
cos �r
m

� (Yv2( _yrc cos �r� _xrc sin �r)+Yv3v3r)

v3r

(12)

where the triplet(xrc(t); yrc(t); �r(t)) represent the Cartesian po-
sition and orientation of the reference SV, respectively, andF1r(t),
v3r(t) denote reference input signals. It is assumed that the reference
model is constructed such thatxrc(t), yrc(t), �r(t), _xrc(t), _yrc(t),
_�r(t), �xrc(t), �yrc(t), _v3r(t), F1r(t) 2 L1 where _v3r(t) denotes the
time derivative ofv3r(t) defined in (12). Note that the reference orien-
tation is generated by a reference velocity input rather than a reference
force or torque input to facilitate the subsequent stability analysis.

C. Open-Loop Error System Formulation

To rewrite the open-loop tracking error system in a more convenient
form, we define the following global invertible transformation2

w

z1

z2

=

�~� cos � + 2 sin � �~� sin ��2 cos � 2
Yv3

m
0 0 1

cos � sin � 0

�

rx

ry
~�

(13)

wherew(t) is an auxiliary scalar error variable,z(t) = [z1(t) z2(t)]
T

is a 2� 1 auxiliary tracking error vector,rx(t), ry(t) are filtered
tracking error variables defined as

rx = _~x + �~x ry = _~y + �~y (14)

� is a positive constant scalar control gain, and_~x(t), _~y(t) represent
the time derivative of~x(t), ~y(t) where~x(t), ~y(t), ~�(t) denote the dif-

2While the actual configuration space for the problem is< �S , for purposes
of control design and stability analysis, the configuration space can be treated
as< .
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ference between the actual position/orientation and the reference posi-
tion/orientation of the SV as follows:

~x = xc � xrc ~y = yc � yrc ~� = � � �r (15)

andxrc(t), yrc(t), �r(t) are generated by the reference generator de-
fined in (12). By taking the time derivative of (13), and using (1)–(3),
(10)–(15), we can rewrite the open-loop tracking error dynamics in the
following advantageous form:

_w =u
T
J
T
z + f

_z =u

_u1 =� _v3r + �1 (16)

where the auxiliary 2� 1 control signalu(t) = [u1(t) u2(t)]
T is re-

lated to the open-loop tracking error variables defined in (16) according
to the following globally invertible transformation:

u = T
�1 F1

v3
��

F1

v3
= T (u+�) (17)

the 2� 2 matrixT (�) and the auxiliary 2� 1 vector�(�) are defined
as follows:

T =
rx sin � � ry cos � 1

1 0
(18)

� =

v3r

F1r cos z1 +
1

m
Yv2( _yrc cos �r � _xrc sin �r)

� sin z1 � �(v1 � _xrc cos � � _yrc sin �)

+
Yv3

m
v3r sin z1

(19)

J is a 2� 2 skew–symmetric matrix defined as follows:

J =
0 �1

1 0
(20)

and the auxiliary scalar signalf(�) is defined as follows:

f =2 v3rz2 � F1r sin z1 + �(sin � _~x� cos � _~y)

+
2

m
Yv2 (( _yrc cos �r � _xrc sin �r) cos z1 � v2)

+
2Yv3v3r

m
(cos z1 � 1): (21)

Remark 1: The open-loop tracking error system given in (16) is
in terms of the subsequently designed control inputsu2(t) and�1(t).
Fromu2(t) and�1(t), we can utilize (8), (9), and (17) to recover the
original control inputsF (t) and� (t).

Remark 2: Based on the definition ofrx(t) andry(t) given in (14),
standard arguments [5] can be utilized to prove that: i) ifrx(t), ry(t) 2
L1 thenxc(t), ~x(t), yc(t), ~y(t) 2 L1, and ii) if rx(t), ry(t) are
GUUB, thenxc(t), ~x(t), yc(t), ~y(t) are GUUB.

III. CONTROL DEVELOPMENT

Our control objective is to design a controller that exponentially
forces the tracking error to a neighborhood about zero that can be made
arbitrarily small (i.e., GUUB). To this end, we define a 2� 1 auxiliary
error vector~z(t) as the difference between the subsequently designed
2� 1 auxiliary signalzd(t) and the transformed variablez(t) defined
in (13) as follows:

~z = [ ~z1 ~z2 ]
T = zd � z: (22)

In addition, we define an auxiliary error signal�(t) as the difference
between the subsequently designed auxiliary signalud1(t)and the aux-
iliary signalu1(t) defined in (17) as shown below

� = ud1 � u1: (23)

A. Control Formulation

Based on the structure of the open-loop error system given by (16)
and the subsequent stability analysis, we design the auxiliary signals
ud1(t) andu2(t) as follows:

[ud1 u2 ]
T = ua � k2z (24)

where the 2� 1 auxiliary control vectorua(t) is defined as

ua =
k1w + f

�2d
Jzd +
1zd (25)

the 2� 1 auxiliary vectorzd(t) is defined by the following oscil-
lator-like relationship:

_zd=
_�d
�d

zd +
k1w + f

�2d
+ w
1 Jzd z

T
d (0)zd(0)=�

2

d(0) (26)

the auxiliary terms
1(t), �d(t) are scalars which are defined as fol-
lows:


1 = k2 +
_�d
�d

+
k1w

2 + wf

�2d
(27)

�d = 0 exp(�1t) + "1 (28)

wherek1, k2, 0, 1, "1 are positive, constant scalar design parame-
ters, andf(�) was defined in (21). Based on (16) and the subsequent
stability analysis, we design the control torque input�1(t) given in (9)
as follows:

�1 = _ud1 + _v3r + k3� � wz2 + ~z1 (29)

where _ud1(t) denotes the time derivative ofud1(t) defined in (24) [see
the Appendix for an explicit expression for_ud1(t)].

Remark 3: Motivation for the structure of (26) is obtained by taking
the time derivative ofzTd zd as follows:

d

dt
(zTd zd) = 2zTd _zd

=2zTd
_�d
�d

zd +
k1w + f

�2d
+ w
1 Jzd (30)

where (26) has been utilized. After noting that the matrixJ of (20) is
skew symmetric, we can rewrite (30) as follows:

d

dt
(zTd zd) = 2

_�d
�d

z
T
d zd: (31)

As result of the selection of the initial conditions given in (26), it is
easy to verify that

z
T
d zd = kzdk

2 = �
2

d (32)

solves the differential equation given in (31). The relationship given by
(32) will be used during the subsequent error system development and
stability analysis.

IV. CLOSED-LOOPERRORSYSTEM DEVELOPMENT

To facilitate the closed-loop error system development forw(t), we
inject the auxiliary control inputud1(t) by adding and subtracting the
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termud1z2 to the right side of the open-loop dynamic expression for
w(t) given in (16) and then utilizing (23) to obtain the following ex-
pression:

_w = [ud1 u2 ]J
T
z � �z2 + f: (33)

After substituting (24) for[ud1 u2], adding and subtractinguTa Jzd to
the resulting expression, utilizing (22), and exploiting the skew sym-
metry ofJ defined in (20), we can rewrite the dynamics forw(t) as
follows:

_w = �uTa Jzd + u
T
a J~z � �z2 + f (34)

where we have utilized the fact thatJT = �J . Finally, by substituting
(25) for only the first occurrence ofua(t) in (34) and then utilizing the
equality given by (32), the skew symmetry ofJ defined in (20), and the
fact thatJTJ = I2 (Note thatI2 denotes the standard 2� 2 identity
matrix), we obtain the final expression for the closed-loop error system
for w(t) as follows:

_w = �k1w + u
T
a J~z � �z2: (35)

To determine the closed-loop error system for~z(t), we take the time
derivative of (22), substitute (26) for_zd(t), and then substitute (16) for
_z(t) to obtain

_~z =
_�d
�d

zd +
k1w + f

�2d
+ w
1 Jzd

�[ ud1 u2 ]
T + [ � 0 ]T (36)

where the auxiliary control inputud1(t) was injected by adding and
subtracting[ud1 0]T to the right side of (36) and then (23) was utilized.
After substituting (24) for[ud1 u2]

T , and then substituting (25) for
ua(t) in the resulting expression, we can rewrite the expression given
by (36) as follows:

_~z =
_�d
�d

zd + w
1Jzd � 
1zd + k2z + [ � 0 ]T : (37)

After substituting (27) for only the second occurrence of
1(t) in (37)
and using the fact thatJJ = �I2, we can cancel common terms and
then rearrange the resulting expression to obtain

_~z = �k2~z + wJ
k1w + f

�2d
Jzd + 
1zd + [ � 0 ]T (38)

where (22) was utilized. Finally, since the bracketed term in (38) is
equal toua(t) defined in (25), we can obtain the final expression for
the closed-loop error system for~z(t) as follows:

_~z = �k2~z + wJua + [ � 0 ]T : (39)

To develop the closed-loop error system for�(t), we take the time
derivative of (23), substitute (16) for_u1(t), and then rearrange the re-
sulting expression to obtain

_� = _ud1 + _v3r � �1: (40)

After substituting for the auxiliary control torque input�1(t) given in
(29), we obtain the closed-loop error system for�(t) as follows:

_� = �k3� + wz2 � ~z1: (41)

V. STABILITY ANALYSIS

Theorem 1: Given the closed-loop system of (35), (39), and (41),
the position/orientation tracking error defined in (14) and (15) is GUUB
in the sense that

j~x(t)j ; j~y(t)j ; ~�(t) � �0 exp(��0t) + �1"1 (42)

where�0, �1, and�0 are positive constant scalars, and"1 was origi-
nally defined in (28).

Proof: To proveTheorem 1, we define a nonnegative, scalar func-
tion, denoted byV (t), as follows:

V = 1

2
w
2 + 1

2
�
2 + 1

2
~zT ~z: (43)

After taking the time derivative of (43) and making the appropriate sub-
stitutions from (35), (39), and (41), we obtain the following expression:

_V =w[�k1w + u
T
a J~z � �z2]

+ ~zT �k2~z + wJua + [ � 0 ]T

+ �[�k3� + wz2 � ~z1]:

After utilizing the fact thatJT = �J , canceling common terms, and
utilizing (43), we can upper bound_V (t) as follows:

_V � �2minfk1; k2; k3gV: (44)

Standard arguments can now be employed to solve the differential in-
equality given in (44) as follows:

V (t) � exp(�2minfk1; k2; k3gt)V (0): (45)

Finally, based on (43), the expression given in (45) can be rewritten as

k	(t)k � exp (�minfk1; k2; k3gt)k	(0)k (46)

where the 4� 1 vector	(t) is defined as

	 = [w � ~zT ]T : (47)

From (46) and (47), it is straightforward to see thatw(t),�(t), ~z(t) 2
L1. After utilizing (22), (32), and the fact that~z(t), �d(t) 2 L1, we
can conclude thatz(t), zd(t) 2 L1. From the fact thatz(t), w(t) 2
L1, we can use the inverse transformation of (13), given as follows:

rx

ry
~�

=

1

2
sin � �

Yv3

m
sin �

1

2
(~� sin � + 2 cos �)

�
1

2
cos �

Yv3

m
cos � �

1

2
(~� cos � � 2 sin �)

0 1 0

�

w

z1

z2

(48)

to conclude thatrx(t), ry(t), ~�(t) 2 L1. Based on the fact thatrx(t),
ry(t), ~�(t) 2 L1, and the fact that the reference trajectory is selected
so thatxrc(t),yrc(t),�r(t), _xrc(t), _yrc(t), _�r(t) 2 L1, we can utilize
(14), (15), and Remark 2 to conclude that_xc(t), _yc(t), xc(t), yc(t),
�(t) 2 L1. From (1) and the fact that_xc(t), _yc(t) 2 L1, we can
conclude thatv1(t),v2(t) 2 L1. Using the fact thatz(t), _xc(t), _yc(t),
v1(t), v2(t) 2 L1, we can conclude thatf(�), T (�),�(�) 2 L1 from
(21), (18) and (19). Based on these facts, we can now utilize (23)–(28),
to show thatud1(t), ua(t), _zd(t), 
1(t), u1(t), u2(t) 2 L1. From
(11), (17), and (18), we can now conclude thatF1(t), _�(t), v3(t) 2
L1. Based on the previous facts, it is easy to show that_ud1(t) 2 L1
(see the Appendix), and hence, from (29) we can conclude that�1(t) 2
L1. Sincev1(t), v3(t),F1(t), �1(t) 2 L1, we can conclude from (8)
and (9) that� (t); F (t) 2 L1. We can now employ standard signal
chasing arguments to conclude that all of the remaining signals in the
control and the system remain bounded during closed-loop operation.
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To prove (42), we first show thatz(t) defined in (13) is GUUB by
applying the triangle inequality to (22), and hence, obtain the following
bound forz(t)

kzk �k~zk+ kzdk

� exp (�minfk1; k2; k3gt) k	(0)k

+ 0 exp(�1t) + "1 (49)

where (28), (32), (46), and (47) have been utilized. The main result
given by (42) can now be directly obtained from Remark 2, (14),
(46)–(49).

VI. SETPOINT EXTENSION

Since the only restriction placed on the desired trajectory is that the
reference generator remain bounded, the position/orientation tracking
problem reduces to the position and orientation regulation problem.
That is, if the control objective is targeted at the regulation problem,
the desired position and orientation vector, denoted by the tripletqr =
(xrc; yrc; �r), becomes an arbitrary desired constant vector. Based
on the fact thatqr is now defined as a constant vector, it is straight-
forward to see thatF1r(t), andv3r(t) previously defined in (12) equal
zero. Moreover,f(�) defined in (21) reduces to the following expres-
sion:

f = �2
1

m
Yv2v2 + �v2 ;

and�(�) defined in (19) reduces to

� =
0

��v1
:

Based on the above simplifications, it is straightforward to illustrate
that the GUUB result given inTheorem 1is also valid for the regulation
problem.

VII. CONCLUSION

In this paper, we have designed a continuous, time-varying tracking
controller for an underactuated surface vessel. Through a Lyapunov-
based stability analysis, we have demonstrated that: i) the position/ori-
entation tracking error is globally exponentially forced to a neighbor-
hood about zero that can be made arbitrarily small, and ii) a unified
framework is developed that solves the regulation problem as a sim-
plified case of the tracking control problem. In [1], we also illustrated
that the proposed controller can be applied to other nonlinear underac-
tuated systems subject to nonintegrable dynamics such as the twin rotor
helicopter. Using similar techniques as illustrated with the twin rotor
helicopter extension, additional systems with similar dynamics may be
solved with the proposed controller. For example, in [17], Reyhanoglu
et al.described a planar prismatic–prismatic–revolute (PPR) robot with
an elastic joint that has similar dynamics as the examples presented in
this paper. It is straightforward to illustrate that the proposed controller
yields a GUUB tracking/regulation result for the PPR elastic-joint robot
utilizing similar arguments presented in the twin rotor helicopter con-
troller of [1].

APPENDIX

CALCULATION OF _ud1(t)

To calculate _ud1(t), we take the time derivative of (24) and then
substitute for the time derivative ofua(t) defined in (25) to obtain the
following expression:

_ud1 = �
k1 _w + _f

�2
d

zd2 + 2
(k1w + f) _�d

�3
d

zd2

+ _
1zd1 + 
1 _zd1 �
k1w + f

�2
d

_zd2 � k2 _z1 (50)

where the time derivatives of
1(t) andf(t) are explicitly given by the
following expressions:

_
1 =
��d
�d

�
_�2d
�2
d

+
(2k1w+ f) _w + w _f

�2
d

� 2
(k1w

2 + wf) _�d
�3
d

(51)

and
_f =2(v3ru2 + _v3rz2 � _F1r sin z1 � F1ru1 cos z1)

+ 2� ( _~x cos � + _~y sin �)v3

� 2�
Yv2

m
( _yc cos � � _xc sin �)

+
Yv3v3

m
+ �xrc sin � � �yrc cos �

+
2Yv2
m

yrc cos �r � �xrc sin �r

� _�r( _yrc sin �r + _xrc cos �r) cos z1

�
2Yv2
m

(( _yrc cos �r � _xrc sin �r)u1 sin z1)

�
2Yv2
m

1

m
(Yv2v2 + Yv3v3)� v1v3

+ 2
Yv3 _v3r
m

(cos z1 � 1)� u1
Yv3v3r

m
sin z1 (52)

where (10)–(12), (16), and the second time derivative of (15) was uti-
lized. Based on the definition of�d(t) given in (28), the fact thatz(t),

_z(t), _~�(t),u(t), _~x(t), _~y(t), _f(t), _
1(t), _w(t), _zd(t),w(t),f(t), zd(t),
ud1(t), �(t) 2 L1 (seeTheorem 1), and the fact that the reference tra-
jectory is selected so thatxrc(t), yrc(t), �r(t), _xrc(t), _yrc(t), _�r(t),
�xrc(t), �yrc(t), ��r(t), _v3r(t) 2 L1, it is straightforward to see from
(50)–(52) that_ud1(t) 2 L1.
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Lyapunov-Based Switching Supervisory Control of
Nonlinear Uncertain Systems

David Angeli and Edoardo Mosca

Abstract—The problem of controlling nonlinear noisy systems affected
by parametric uncertainties is approached via the introduction of a super-
visor which switches on, in feedback to the plant, one controller selected
from a finite set of predesigned controllers. A Lyapunov-based falsification
criterion allows one to ensure robust stability in the presence of uncertain
constant parameters and exogenous bounded disturbances.

I. INTRODUCTION

One of the well-established approaches for dealing in control with
plant model uncertainty is the introduction of adaptation in the feed-
back loop. However, conventional continuous adaptation is not always
capable of performing satisfactorily. This may be particularly true
whenever the plant switches among different modes of operation or if
closed-loop signals are not sufficiently exciting. In both circumstances
undesirable transients may typically arise due to slow adaptation.
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In recent years,switching supervisory control(SSC) has emerged
as an alternative approach for tackling the problem with the appealing
feature of resembling an adaptive version of classic gain-scheduling
control [3], [9], [6], [11]–[13] which has been successful in so many
applications. As a matter of fact, SSC aims at extending gain-sched-
uling control to cases where the supervisor has no full information on
the current dynamical behavior of the plant to be controlled.

If the unknown plant belongs to a certain prespecified set of models,
the idea is to have a set of candidate controllersCi, usually finite, so
that each plant model performs “satisfactorily” when controlled by at
least one of theCis. Then, a suitably designed supervisory unit takes
care of orchestrating the switching among the candidate controllers so
as to ensure closed loop stability in the face of uncertainty or even in
the presence of a sufficiently slow drifting of the uncertain parameters.
A related area of research deals with robust (rather than adaptive) sta-
bilization of uncertain plants by means of switching controllers [2].

Within SSC the fundamental problems to be tackled are the fol-
lowing two: controller falsification, and inference of candidate loop be-
havior.Controller falsification[13] deals with the problem of finding
criteria according to which the supervisor decides whether the acting
controller is adequate or not.Inference of candidate loop behavior[10]
deals with the problem of inferring the behavior of the potential loop
made up by a candidate controller connected in feedback to the uncer-
tain plant on the grounds of data taken from the currently operating
loop. To date, most of the algorithms in the literature on SSC rely on
the evaluation ofoutput prediction errorswhich, properly filtered and
treated, are used as “performance signals” for both controller falsifica-
tion and inference of candidate loop behavior, [5], [8], [10]. The main
contribution of this note is to keep those two issues well separated and
present Lyapunov-based falsification criteria applicable both to linear
and nonlinear plants.

II. PROBLEM FORMULATION

Consider a discrete-time uncertain nonlinear system of the following
general form:

x(t+ 1) = f(x(t); u(t); �) (1)

with statesx 2 n, inputsu 2 U � p and unknown parameters�
taking value in some totally limited space�. Our aim is to design a con-
troller in the form of a state feedback suitably managed by a supervisory
unit, in such a way that the resulting closed-loop system beglobally
asymptotically stable, irrespective of plant uncertainties. Supervisory
logic and simulation results consider the case of possibly time-varying
parameters, though, for the sake of simplicity the analysis will be car-
ried out assuming� constant. The supervisory unit is devised so as to
deal with possibly large uncertainties by adaptively selecting a suitable
feedback gain among a finite family of predesigned controllers. The
crucial assumption in this respect will be the existence of a finite cover
for �

� �
i=1���N

�i (2)

and of a family of Lyapunov functionsfVi(x)gi=1���N and controllers
fki(x):

n ! Ugi=1:N with the property that

Vi(f(x; ki(x); �))� Vi(x) � ��(jxj); 8 � 2 �i; 8x (3)

for some positive–definite function�: �0 ! �0. As usual, in
the context of nonlinear control, we assumeVi(x) to be positive defi-
nite and radially unbounded, (not necessarily continuous except at the
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