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A different approach to the study of 

surface tracking reveals a new view 

of the oil–pressboard interface and 

suggests a link between the electric 

double layer and the boundary layer.

Introduction
Great care is taken when designing and manufacturing large 

oil-filled transformers. One design requirement is to ensure that 

all conducting surfaces have blended geometries and are covered 

by solid insulation material, typically a cellulose material in the 

form of paper or pressboard. This prevents the emission of elec-

tronic charge that will occur from any bare conducting surfaces 

according to the modified Schottky process when a conductor is 

under high electrical stress [1]. The solid insulation effectively 

adds an extra barrier to charge emission. However, other phe-

nomena can introduce charge into the insulation system under 

certain conditions. For example, space charge can form at an 

oil–pressboard interface under a high electric field due to inter-

facial polarization arising from the difference in permittivity be-

tween adjacent materials [2]. Partial discharges (PD) are another 

source of electrical charge generation. Partial discharges may 

occur in solid, liquid, and gaseous insulations wherever there are 

sharp changes or discontinuities within the insulation medium 

and where the electric field is sufficiently high to exceed the lo-

cal breakdown value. Surface contamination is a likely site for 

PD due to the presence of inclusions and changes in bulk mate-

rial. Finally, oil flowing across pressboard can build up static 

charge on the pressboard surface, a phenomenon referred to as 

static electrification but also known as flow or streaming electri-

fication [3].

The movement of excessive charge over solid insulation may 

result in mechanical and chemical damage to material through 

thermal and electronic action. For solid insulators, 2 different 

forms of damage are generally classified. Surface damage is 

termed tracking, whereas damage through the bulk of the (solid) 

material is termed treeing. In both cases, the damage results in 

a permanent electrically conductive path that reduces the effec-

tive voltage withstand of the material. Tracking has traditionally 

been associated with solid–air interfaces and polymeric insula-

tors [4]. However, tracking is now recognized as a significant 

feature at oil–cellulose interfaces and is considered a possible 

failure mode in large oil-filled transformers [5]. The term creep-

ing discharge has been coined to describe the characteristic ir-

reversible tree-like patterns occurring on the interface as a result 

of these surface discharges [6]. Surface tracking can deteriorate 

the surface resistance to such an extent that a sudden electrical 

discharge or breakdown can occur if the electrical stress is high 

enough. The sudden electrical breakdown is referred to as sur-

face flashover, thus implying that the breakdown occurs in the 

medium above the surface [7]. Substrate material, surface finish, 

surface contamination, condition of fluid material, temperature, 

pressure of fluid, level of applied electric stress, and duration of 

application have been identified as the significant factors lead-

ing to surface tracking and/or flashover [8]. The oil–pressboard 

interface is also acknowledged as one of the main locations for 

interfacial polarization, as well as static electrification. Clearly, 

the oil–pressboard interface plays a significant role in the life of 

a transformer. However, many issues remain unanswered as to 
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the exact nature of tracking. How can tracking in a liquid envi-

ronment be reliably produced and quantified? What role does 

static electrification play in tracking, if at all? What defines the 

oil–pressboard interface?

This paper addresses some of these questions. First, the vari-

ous experimental methods of producing surface tracking are 

reviewed, and a new approach proposed. Static electrification 

is also considered against a new interpretation of the oil–press-

board interface. Finally, the results of some tracking experi-

ments on standard pressboard type Transformerboard TIV [9] 

are examined when using the new approach to produce surface 

tracking.

The Measurement and Production  

of Surface Tracking
The measure of the resistance of solid insulation materials 

to tracking in air is determined by the Comparative Tracking 

Index standard [10]. Two tests are available, and these use either 

a horizontal surface or an inclined slope. The tests employ a liq-

uid contaminant, sprayed in droplet form onto the solid surface, 

to promote tracking. The standard considers only air as the fluid 

medium above the surface, and this raises the issue as to how to 

quantify surface tracking at the interface between a liquid and 

a solid.

For liquid–solid interfaces, several different methods have 

historically been used to create surface discharge. One common 

approach is to implement a point–plane arrangement [11], [12]. 

A needle is connected to a high voltage source and placed on 

or near the surface of the pressboard. This results in an intense 

space charge around the tip and causes electrical discharges to 

occur around the needle tip, leaving radial tracking patterns on 

the surface of the solid insulation. However, the needle produc-

es a directional and intense electrical field, which can lead to 

a rapid electrical failure through the bulk medium when using 

pressboard as the dielectric. Another approach is to use a parallel 

plane–plane method with pressboard placed perpendicularly be-

tween 2 electrodes and with a small point source created on the 

surface of one of the plane electrodes and adjacent to the press-

board [13]. This method overlooks the fact that the electric field 

associated with the electrode arrangement is not separated from 

the enhanced electrical field arising from the discharge source. 

This makes the effects due to the localized discharge source dif-

ficult to separate from the effects of the resultant electrical field 

associated primarily with the electrodes.

A different method has been developed in the Tony Davies 

High Voltage Laboratory to overcome the difficulties of the tra-

ditional approaches [14]. This is an adaptation to the Compara-

tive Tracking Index configuration; a needle discharge source is 

placed at an acute angle to the pressboard at some distance from 

an earthed conductor also placed on the pressboard, with the 

system immersed in oil. The acute angle of the needle ensures 

that charge arising at the needle tip is directed along the surface 

rather than through the bulk of the pressboard. This method has 

been found to reliably produce surface discharge when the volt-

age source ranges between PD inception and surface flashover. 

Three conclusions were drawn from this approach. The first is 

that the degree of damage due to PD is clearly time and voltage-

level dependent. This means that surface tracking can be estab-

lished and sustained on the oil–pressboard interface for a con-

siderable time without electrical breakdown.

The second conclusion is that PD inception/extinction is in-

sensitive to the gap distance from earth, suggesting that surface 

discharge is a localized phenomenon. Surface flashover and in-

trinsic oil voltage breakdown are sensitive to the gap distance, 

indicating that these mechanisms are associated with bulk mate-

rial properties.

The third conclusion is that the presence of the solid surface 

depresses the intrinsic voltage withstand of the bulk oil medium 

so that surface flashover occurs at a lower value than the bulk 

medium properties would predict. The differences in the fea-

tures observed between tracking and surface flashover suggest 

that these events occur at 2 different layers of the surface and 

that the structure plays a role in voltage depression from the in-

trinsic voltage withstand of the bulk oil.

Static Electrification
The transformer industry first became aware of the problem 

of static electrification in the 1970s following examination of 

transformer failures [3]. Static electrification is now accepted to 

be due to the electric double layer (EDL) at the oil–pressboard 

interface [15], [16]. The EDL, first proposed by Helmholtz, is 

the variation in potential across a surface interface between 2 

different materials. It is analogous to the depletion zone in the 

transition region at the junction between p-n semiconductors. In 

the case of the solid–liquid interface, the EDL model describes 

a homogenous solid surface with the EDL existing in the liquid 

layer at a thickness of no more than 1 or 2 molecules next to it 

[17]. The model has been expanded to the Guoy-Chapman Stern 

model, which describes 2 layers: the thin Stern layer, which car-

ries the majority of the charge, and a diffuse layer where charged 

liquid molecules are less densely spaced and more mobile [18].

The mechanism for static electrification is the interaction 

of the oil with the pressboard as the oil moves across the sur-

face of the pressboard. The oil develops a charge depending on 

the surface over which it travels. If the oil travels over a region 

where there is an availability of free electrons (i.e., a conducting 

surface), then the oil acquires negative charge. Alternatively, if 

the oil travels across pressboard, the cellulose hydroxyl groups 

tend to acquire a negative charge from the moving oil, leaving 

the oil positively charged [17]. The oil relaxes the charge as it 

approaches earthed surfaces. If the relaxation does not elimi-

nate charge quickly enough, a static electrical field can be es-

tablished, which may end in a static electrical discharge [19], 

[20]. This phenomenon has been reported as a significant factor 

in some transformer failures [3], [16], [21]. Static electrifica-

tion is a function of many parameters including temperature and 

moisture but primarily the pressboard surface structure and oil 

condition, specifically the oil electrical charging tendency [22]. 

Dry oil, dry pressboard, and surface roughness increase the like-

lihood of static electrification [3], [15], and it has been suggested 

that the presence of carboxylic groups also increases static elec-

trification [20]. This has led to the use of oil additives to counter-

act it [23], [24]. Current research on static electrification focuses 
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on the chemistry of pressboard rather than mechanical surface 

features such as porosity and surface roughness, which are only 

mentioned in passing [25].

It is clear that interfacial polarization and static electrification 

have the same roots through the charging tendency of differ-

ent materials when in close proximity. This raises the issue of 

the possibility of an interaction between the electric field, which 

causes interfacial polarization, and the static electric field cre-

ated in the EDL produced by oil flow over an insulation surface. 

The link is the solid–liquid interface. A closer inspection of this 

interface between oil and pressboard suggests that it is more 

complicated than first assumed.

Pressboard and the Oil–Pressboard 

Interface
The use of the word solid to describe pressboard conveys the 

sense of a homogenous and dense material. Pressboard is in fact 

a light, fibrous, and porous material [26]. In use, pressboard is 

first dried and then impregnated with mineral oil under high vac-

uum conditions. This process removes moisture and gasses from 

the fibrous structure and refills the interstices with oil molecules. 

This proven method has been the key in extending the life of 

pressboard as an insulating material. The measure of impregna-

tion is defined by oil absorption by mass, which is typically 13% 

for TIV Transformerboard [9], although it varies according to 

material and surface finish [27]. After the impregnation process, 

the oil pressboard insulation medium effectively forms a com-

posite insulation structure with the oil.

A casual look at the oil–pressboard interface suggests that 

the interface changes abruptly from bulk pressboard to the bulk 

oil. However, a closer examination of the surface of pressboard 

reveals that the situation is rather more complex. Pressboard is 

manufactured in a range of surface finishes from a smooth (i.e., 

calendered) finish to a textured (i.e., cloth) finish [28]. Figure 

1 shows the surface textured finish of TIV Transformerboard, 

which is characterized by an array of small and large dimples 

orthogonal to each other and set in the bulk fibrous backdrop. 

A microtome section reveals the edge to be quite irregular with 

protruding fibers and characterized by a transition region of ap-

proximately 350 µm before the bulk volume of pressboard (Fig-

ure 2). (Note: Figures 1 and 2 have been captured using a green 

filter to enhance features.)

The oil–pressboard interface is, therefore, not the clean edge 

it appears to be from a distance; in reality, there is an ill-defined 

interface comprising a transition region between bulk oil/press-

board composite and bulk oil. In this transition region, the ratio 

of oil must change from the typical value of 13% (i.e., the bulk 

value of oil adsorption) toward 100% as the material structure 

changes from the bulk oil/pressboard composite medium toward 

the bulk oil medium. This oil–pressboard transition zone is fur-

ther complicated by the presence of the dimples and individual 

fibers, as shown in Figure 2. The liquid boundary layer, as de-

fined by conventional boundary layer theory, resides just outside 

the “solid” surface. However, the ill-defined pressboard edge 

and the presence of raised fibers suggest that the extent of both 

the EDL and the liquid boundary layer could be greater than 

theory might indicate.

The classical mechanical model, with nonpolar “solid” press-

board and liquid mineral oil molecules, defines a liquid bound-

ary layer formed by weak Van de Waals forces between the co-

valent molecules. The liquid molecules, closest to the “solid” 

medium, stick to the solid and create the so-called no-slip layer, 

which is equivalent to the Stern layer in the Guoy-Chapman 

Stern model (thus linking the Stern layer in the EDL model to 

the no-slip layer in the mechanical model). These molecules are 

fixed, and there is a gradual transition from stationary oil mol-

ecules to the oil molecules in the free stream, with the region in 

between forming the boundary layer (thus linking the diffuse 

layer in the EDL model to the boundary layer in the mechanical 

model). The boundary layer is small in thickness where laminar 

flow may occur and increases in thickness for turbulent flow. A 

Figure 1. Morphology of dry pressboard surface at 200× mag-

nification.

Figure 2. Microtome of pressboard edge at 200× magnification
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rough surface increases turbulent flow and the thickness of the 

boundary layer, whereas a smooth surface diminishes the tur-

bulence and, hence, the thickness of the boundary layer. A new 

model of the oil–pressboard interface could be described as the 

liquid boundary (diffuse) layer (incorporating the no-slip /Stern 

layer), next to the transition region, which merges into the bulk 

oil–pressboard composite structure (Figure 3).

Features of Surface Tracking Observed 

Using the New Approach
A series of experiments using the new needle bar approach 

were undertaken on oil-impregnated pressboard conditioned to 

3 to 4% moisture content, with the needle discharge source po-

sitioned 35 mm from the earth bar and with the voltage raised to 

between 30 kV and 40 kVrms. Partial discharge inception was 

reliably produced at this level, leading to sustained surface dis-

charge with surface flashover/breakdown initiated when the volt-

age was raised above 40 kV. The experiments were qualitative 

rather than quantitative in nature; the objective was to examine 

surface tracking on the oil–pressboard interface. Data collection 

was achieved using a standard 35-mm digital camera. Partial 

discharge activity was monitored using the Omicron MPD600 

PD system. A typical phase resolved plot of PD activity indicat-

ing surface tracking activity taken over 30 s is given in Figure 4. 

Some of the significant tracking and breakdown events, captured 

by the camera, are shown in Figures 5 to 8.

Discussion
The Figures illustrate different features in the surface track-

ing/breakdown process. First, moist transformer board has to 

be used to initiate PD. It was found to be extremely difficult to 

produce PD with dried pressboard (i.e., 0.5% moisture), thus 

indicating that the presence of the moisture is a significant factor 

in the tracking process. Once PD is initiated, the first promi-

Figure 3. A new model of the oil–pressboard  

interface.

Figure 4. Phase resolved plot with needle bar at 35 kV and 35-mm gap.
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nent feature to be observed is the growth of white marks on the 

pressboard surface. The white marks grow initially from the 

discharge source toward the earth bar (Figure 5). These marks 

are indicative of a drying process as liquid in the pressboard 

is expelled with the injection of charge, resulting in localized 

reactions as evidenced by the evolution of smoke and gas. The 

marks develop into the characteristic fan-shaped pattern within 6 

to 12 hours depending on voltage level (Figure 6). Black marks, 

indicating carbonization of oil/pressboard in the pressboard, fol-

low the tracks of the white marks but do not necessarily extend 

the whole distance. Another feature is the random appearance 

of smoky particulates and gas bubbles that arise from the dis-

charge tip. Gas bubbles may also appear anywhere along the 

white tracking marks as seen in Figure 6. Another feature oc-

curs when the white marks nearly reach the earth bar. Small blu-

ish flashes emanate from the earth bar to connect to the white 

marks. These flashes are clearly located in the oil above the sur-

face of the pressboard (Figure 5). Another phenomenon is the 

full-length discharge that temporarily bridges the full distance 

from discharge tip to the earth bar without causing full electri-

cal breakdown (Figure 7). In this case, 2 colors are clearly vis-

ible: an orange glow that occurs at the pressboard surface over 

the majority of the discharge length and bluish discharges at the 

earth bar. The most significant event is when the potential at the 

discharge source is increased to the system breakdown level. An 

instantaneous flashover occurs that is quite different from the 

full-length surface discharge. The breakdown discharge is more 

intensive and results in the evolution of significant amounts of 

smoky particulates and gas (Figure 8). However, the pressboard 

often remains largely undamaged, indicating that the discharge 

occurs in the oil layer. This shows that the term surface flashover 

is indeed an accurate description.

The occurrence of 2 distinct types of discharge, i.e., a slow 

surface tracking type with significant surface changes and a 

quick flashover type in the oil layer above the pressboard, sug-

gests that 2 paths are available for electronic transport. The first 

path is along the transition zone/EDL/no-slip region at the oil–

pressboard interface where the mingling of oil, pressboard, and 

other species, such as water, provides a region for space charge 

to accumulate and drift toward the region of lower field inten-

sity. The second path is in the free-oil boundary layer where the 

increased mobility of the oil allows the propagation of a break-

down discharge at higher energy levels.

This might explain why flashover results at a lower voltage 

than would occur with the same oil gap separation but without 

pressboard as reported in the literature [14], [29]. The volume 

created by the transition zone/EDL at the oil pressboard, with 

the consequent higher permittivity than bulk oil, permits more 

Figure 8. Flashover at 45 kV.

Figure 5. Initial growth of white marks and discharges in oil at 

the earth bar.

Figure 6. Growth of fan pattern from the discharge source and 

remote gassing.

Figure 7. Full-length surface discharge without breakdown.
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charge to accumulate for a given voltage than for the bulk oil 

medium. Space charge is thus able to progress deeper along the 

pressboard surface, which results in breakdown at a lower value 

than would be predicted with the bulk oil volume alone.

Conclusions
The oil–pressboard interface is more complex than a cursory 

look would suggest. The interface is better modeled as a layered 

structure that takes into account the EDL/oil boundary layer, and 

the graduated nature of the pressboard transition region into the 

bulk pressboard oil composite. Moisture clearly plays an impor-

tant role at the interface.

The complex nature of the interface with a layered structure 

of oil and pressboard suggests that 2 separate paths are avail-

able for charge transport depending on the energy level of the 

discharge source.

One path is the EDL and oil/pressboard transition zone and 

is associated with lower energy surface discharges and tracking. 

This path allows space charge to drift under the influence of the 

electric field causing the degradation known as tracking.  The 

second path is the oil boundary layer which is associated with 

higher energy breakdown known as surface flashover.

The observations confirm that, once tracking paths are es-

tablished, significant electrical discharges can occur without 

breakdown. These produce gassing and particulate degradation 

by-products, which are common measurements used by the con-

ditioning monitoring industry.

Interfacial polarization is associated with the mismatch of 

2 media, and static electrification is associated with the liquid 

boundary layer and oil flowing across a solid surface. This sug-

gests that there might be a link between interfacial polarization 

and static electrification. It raises the intriguing issue of the pos-

sibility of an interaction between the 2 when a system is under 

both high electric stress and high fluid flow rates. Further work 

is also required to study both the effects of fluid flow and the in-

fluence of smoothness afforded by calendered surfaces on both 

tracking and flashover under these conditions.
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