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Abstract

Background: Infectious diseases pose increasing threats to public health with increasing population density and

more and more sophisticated social networks. While efforts continue in studying the large scale dissemination of

contagious diseases, individual-based activity and behaviour study benefits not only disease transmission modelling

but also the control, containment, and prevention decision making at the local scale. The potential for using

tracking technologies to capture detailed space-time trajectories and model individual behaviour is increasing

rapidly, as technological advances enable the manufacture of small, lightweight, highly sensitive, and affordable

receivers and the routine use of location-aware devices has become widespread (e.g., smart cellular phones). The

use of low-cost tracking devices in medical research has also been proved effective by more and more studies. This

study describes the use of tracking devices to collect data of space-time trajectories and the spatiotemporal

processing of such data to facilitate micro-scale flu transmission study. We also reports preliminary findings on

activity patterns related to chances of influenza infection in a pilot study.

Methods: Specifically, this study employed A-GPS tracking devices to collect data on a university campus.

Spatiotemporal processing was conducted for data cleaning and segmentation. Processed data was validated with

traditional activity diaries. The A-GPS data set was then used for visual explorations including density surface

visualization and connection analysis to examine space-time activity patterns in relation to chances of influenza

infection.

Results: When compared to diary data, the segmented tracking data demonstrated to be an effective alternative

and showed greater accuracies in time as well as the details of routes taken by participants. A comparison of

space-time activity patterns between participants who caught seasonal influenza and those who did not revealed

interesting patterns.

Conclusions: This study proved that tracking technology an effective technique for obtaining data for micro-scale

influenza transmission research. The findings revealed micro-scale transmission hotspots on a university campus and

provided insights for local control and prevention strategies.
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Background
Infectious disease transmission

The diffusion of a contagious disease traverses various

scales from the local and regional to the global [1]. Mathe-

maticians and geographers have long studied the spatio-

temporal transmission of infectious diseases from different

perspectives with numerical models [2-8], graph or map-

ping tools [9-11]. Recent outbreaks of highly communi-

cable diseases [7,12-15] have triggered a marked rise in

the number of studies on infectious disease transmissions

[16], with equal amount of attention on the mechanisms

of global disease spread [3,8,17], and at the regional scale

of within countries or cities [4-7,13,18-21]. Only limited

research, however, was reported at the micro scale, such

as in the environment exemplified by a relatively closed

campus, small community, school, residential, or hospital

buildings with a few exceptions [22,23].

It is well recognized that human movement in the

spatial and temporal dimensions has direct influence on

disease transmission [18,24-27]. An infectious disease

typically spreads via contact between infected and sus-

ceptible individuals in their overlapped activity spaces.

Therefore, daily mobility-activity information can be

used as an indicator to measure exposures to risk factors

of infection. A major difficulty and thus the reason for

paucity of studies of infectious disease transmission at

the micro scale in the past was the lack of detailed indi-

vidual mobility and exposure data. Since the records of

small-scale movements and contacts between people

were generally not available with only a few exceptions

[22,23,28,29], studies of infectious disease were often

aggregates in space and time [5].

Tracking technology

Research on individual human space-time behaviour

started first in the social sciences [30-36]. Previously in

tourism research, transportation studies and shopping

behaviour studies detailed space-time activity data often

relied on the time-space diary technique, which requires

subjects to actively record his or her activities in time

and space. This method is highly demanding for the par-

ticipants and collaboration from the participants greatly

affects the quality of data [34,37].

Over the past decade, technology has transformed

researchers’ ability to gather quantitative data on human

activities. Global positioning systems (GPS), mobile

communications, and wireless network make possible

the tracking of human and object movements, generat-

ing large amounts of data with unprecedented quality

and timeliness at relatively low cost. Applications of

these technologies started to flourish in transportation

research [38], retail studies [35], human ecology [36],

and more recently, health related studies [27,39-54].

Examples of health related studies include investigating

human mobility affected by diseases or surgeries or in

young or aged populations [39-46], studying physical ac-

tivity and the environment [48-51], and defining specific

geographic contexts [52,53] or an operational “neighbour-

hood” in place-based health studies [54]. Kwan [52,53] has

suggested that examining space-time activity spaces of

individuals can lead to more accurate exposure measures.

A couple of studies have attempted to track exposures to

health risk factors related to human movement [27,47],

with one targeting infectious disease but the focus was on

vector-borne disease only.

The potential for using such tracking technologies is

increasing rapidly, as technological advances enable the

manufacture of small, lightweight, highly sensitive, and

affordable receivers. The routine use of location-aware

devices has become widespread (e.g., cellular phones)

and regulations on the use of such technology (i.e. to

protect user privacy mature [55]. The large amount of

time-location data collected with these technologies

allows for the investigation of space-time behaviour and

its associated health impact [27]. This is especially relevant

to the study of infectious disease transmission at the local

to micro scales as precise structural details of the network

of person-to-person contacts may be revealed.

A number of methods and technologies are currently

available for tracking individual movements, among

which GPS is the most commonly used in medical re-

search because of its improving accuracy and portability.

Compared to some controversial study that uses cell-

phone data when the data collection and analysis was

not disclosed to the users [36], GPS is also associated

with less privacy issues as the participants are always

informed about the study and only location information

is collected. A number of studies have either evalua-

ted the accuracy of portable, low-cost GPS devices

[37,48,56,57] or have demonstrated with specific studies

the feasibility and effectiveness of their uses in health-

related research [39-46]. GPS, however, is limited to out-

door tracking. Indoor tracking technologies such as

Radio frequency identification (RFID) and Wi-Fi-based

positioning systems have only been used in modelling

shopping behaviour in a specific grocery store [35] or

tracking healthcare personnel or patients in a specific

hospital [57] (and see [58] for a review) because all avai-

lable indoor tracking systems are self-contained and re-

quire additional setup in the tracking environment,

which can only be implemented within a fixed range.

Assisted GPS is one kind of the so-called hybrid posi-

tioning systems [42]. GPS uses radio signals from satellites

for positioning. A-GPS uses not only satellite signals, but

also cellular network resources to locate and use the satel-

lites in poor signal conditions. Satellite signals can be weak

due to dense buildings in an urban environment, tree ca-

nopy in a wooded area, or poor atmospheric conditions.
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In such case, A-GPS uses data from a cellular network to

obtain faster fix times than standalone GPS. Fix time can

be reduced from minutes to seconds and thus leads to

more-accurate trip detection [49]. This is particular useful

for tracking long durations when objects move both in-

doors and outdoors, as outdoor locations can be immedi-

ately picked up upon exiting from an indoor location.

This study uses A-GPS-based tracking devices to col-

lect data of individuals’ space-time trajectories. One of

the objectives of this study is to explore the potential of

such technology to be used in the study of infectious

disease transmission. To date, there are only a limited

number of studies of human mobility in relation to dis-

ease transmission at the micro scale [27-29]. One of the

studies used GPS to track human mobility [27] while the

other two relied on traditional activity questionnaires

[28,29]. The focus of these studies has been limited

to vector-borne diseases. Vector-borne disease depends

largely on spatial patterns of vector abundances and can

thus be readily evaluated. In case of directly transmitted

infectious disease, the risk is not known because the dis-

ease carriers engage in dynamic space-time activities

themselves. Therefore, risk patterns could only be mod-

elled by examining overlapping of space-time activity

spaces of individuals and may possibly inferred by com-

paring the space-time behaviours of those infected with

those of a control group during an outbreak. Therefore,

daily mobility-activity information obtained from GPS

tracking can be used as an indicator to measure expo-

sures to risk factors of infection.

Space-time data visualization and exploratory analysis

The space-time trajectory of human movement has

many interacting dimensions: location, time, duration,

sequencing and type of activities and/or trips [33,59].

Tracking devices can generate large volumes of mobility

data in terms of time-stamped spatial locations. Such

data is not only complex as they represent rough

approximations of the complex human movement tra-

jectories, but also semantically poor [60]. It is thus diffi-

cult to develop analysis techniques to extract meaningful

abstractions from the raw data. Visualization has been

suggested to be particularly suitable for dealing with

such data when conventional inferential statistics and

pattern recognition algorithms fail due to the complex

attributes involved [33,59,61]. Exploratory visual analysis

engages the powerful visual information processing and

pattern recognition abilities of humans to reveal inter-

esting patterns and lead to more focused and fruitful

methods or models in later stages of a study.

Approaches to visualization and exploratory analysis

of movement data include the use of static maps, ani-

mated maps, ringmaps [62] and space-time cubes (STC)

[33,63-70]. Among these methods, the interactive 3D

STC is the most endorsed because it is more intuitive than

other 2D visualizations in handling the multi-dimensions

of a space-time trajectory [71]. STC representation is

based on Hagerstrand’s space-time model [72] and repre-

sents individuals’ movements in a cube where the base

represents geography (space) and height represents time.

It features geospatial lifelines related to the movement of

individuals. While Miller [63,64], Neutens, Zeigler, and

Schwanen [65,66] have focused on the accessibility prob-

lem induced by human mobility and focused on the

conceptualization of and computation with space-time

prisms, others [73] have focused on interaction among

individuals during movement and suggested that STC as

an effective tool in epidemiological research.

Figure 1 below illustrates a simplified STC representa-

tion of three college students’ activities in the morning

of a typical school day, showing some of the concepts in

time geography that are the most relevant to micro-scale

disease transmission. It shows that student A and C sat

in the same classroom for a class period (co-existence in

terms of a static bundle). A and B walked by each other

without more interaction (point co-existence) but met

again later and walked along (co-existence in terms of a

dynamic bundle). B and C never had direct interaction

but the fact that C (and A) used the same classroom

after B left from an earlier class makes it a situation

called co-location. In the context of disease transmis-

sion, both dynamic bundles and static bundles are highly

relevant, whereas point bundles and co-location beyond

the lifespan of an airborne virus can be less important.

Ideally to model micro-scale disease transmission we

need data on the inter-human interactions as illustrated

in Figure 1. Not only outdoor, but also highly accurate

indoor trajectories are needed for such purpose. Current

technology and privacy concerns, however, still prohibit

the collection of large amount of detailed trajectory data

for modelling at this level. Therefore, although STC has

been suggested as an effective tool in epidemiological re-

search examples have been limited to large-scale disper-

sions of identified cases. In this pilot study, we collected

detailed outdoor trajectories and inferred indoor stays

Figure 1 Space-Time Cube Representation of Modelled Student

Activity and Interactions.
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through spatiotemporal processing of the data collected

with an A-GPS. Approximated indoor stays cannot be as

precise to specific locations inside a building. Thus we

are not able to examine the actual human to human

transmission patterns, but only rough estimates of risk

patterns indicated by the overlapping of approximated

space-time activity spaces of individuals. Risk patterns

related to individual’s space-time behaviour, however,

may be possibly inferred by comparing the behaviours of

those infected with those of a control group during an

outbreak.

One other issue regarding the use of STC for visual

exploration of trajectory data is that large data volumes

may result in apparent visual clutters that prohibit im-

mediate visual detection of any patterns [59,60,67]. A

few researchers have tackled the visual clutter problem

with different approaches. Kwan [59] used density sur-

faces to represent the spatial distributions of activity

intensities. High density indicates more overlapping of

individuals’ activity spaces and more chances of human

to human contacts that are relevant to the spread of flu

viruses. Other methods used to support visual examina-

tion of large sets of movement data involve data aggre-

gation [67,68,74]. Data is aggregated either on the spatial

or temporal or both dimensions and clustering techni-

ques are applied to extract generalized patterns.

This paper reports some initial attempts to analyze the

trajectory data collected using A-GPS devices to examine

space-time behaviours. Existing methods and others will

be used to map space-time activity spaces and compare

activity patterns of students who contracted the flu in con-

trast to those who were not infected. To summarize, this

study aims for using A-GPS tracking to collect data, pro-

cessing the data and visually exploring patterns for micro-

scale disease transmission investigations. Potential findings

may benefit micro-scale infectious disease transmission

modelling and local prevention, control, and containment

decision making by providing insights into specific ques-

tions such as:

1) How does one’s habit in terms of spending time in

different places on a university campus affect

chances of infection?

2) Are there certain places/buildings that lead to higher

probability of infection?

3) Is a heavily trafficked cafeteria or student centre

particularly susceptible to the spread of viruses and

thus increase the chance of flu infection?

Methods
Data collection

The main tracking device used in this study is a com-

mercial child tracker device, WorldTracker GPRS. It is

highly portable (see Figure 2 for its size compared to a

set of keys and a cell phone) and thus does not disrupt or

affect one’s normal activity pattern once carrying it to log

movements. It uses the SiRF Star III GPS Chipset with

high sensitivity to enhance performance in low signal

areas. It is A-GPS based with a fast fix time (in seconds)

and accuracy within 3 meters in typical outdoor environ-

ments [75]. It does not store data in the device but trans-

mits constantly the time and location information to a

central storage server. Therefore participants do not need

to perform any complicated operation except for charging

it every night. One participant was also trained to carry a

Garmin eTrex Venture HC GPS receiver and an Apple

iPhone 3 with a tracking app (Path Tracker) installed at

the same time to collect data with all three devices for one

day for comparisons.

During the early spring of 2011 (the flu season), a total

of 100 participants were recruited to carry the A-GPS

device during their daily activities for a week. 96 of them

generated over 400 valid day-trajectories. Ten students

were also asked to actively record their stops and move-

ments on an activity diary at the same time when they

were carrying the devices. The diary contains columns

about time, location, and activities such as taking class,

dining, etc. for the student to fill up whenever he/she

gets a chance to do so during the day. A three-day ex-

periment in our study generated 30 trajectories paired

with diary records.

Volunteers were recruited through the use of blast

email and posters on campus. Enrolment is limited to

full-time undergraduate student who did not receive flu

vaccination for at least one year. Students were all inter-

viewed on whether they have caught the flu during the

current flu season, and if so, symptoms and severities

were also recorded. Both recruitment and interviews

were conducted based on protocols approved by the IRB

Figure 2 A-GPS device employed in this study.
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of the University. No personal information was asso-

ciated with the collected trajectories except flu status,

gender and ethnical information.

Data pre-processing and segmentation

Pre-processing is the cleaning of noisy raw trajectory

data. Limited especially by the indoor positioning abi-

lities of current tracking technology, trajectory data col-

lected with all GPS devices tend to exhibit noises [52]

especially during long period of stays in a building. Pre-

processing is thus necessary as the first step of using the

collected data. Previous research has addressed the prob-

lem with various filtering algorithms, such as though

Gaussian Kernel smoothing or using a modified Kalman

filter [49]. These filtering algorithms are general smoo-

thing approaches used to reduce random errors in the

data. Visual examination of the A-GPS trajectory data

collected in our study reveals distinct patterns of errors

resulting mostly from indoor stays. Such errors may be

easily identified by overlaying the trajectory data with

a detailed building layer and manually removed by

selecting the erroneous track points. Large volume of

data, however, prohibits manual processing. Therefore

we developed both an interactive visual interface for

manual pre-processing and a heuristic spatiotemporal

algorithm based on the same mechanism for automa-

tic batch processing [76].

The interactive option allows one to manipulate the

3D display of raw trajectories in the space-time cube

representation. Noises may be identified based on the

shape, speed and/or topology of track segments. Speci-

fically, track points (vertices) with unrealistic high speed

or abrupt direction change usually signify errors. A clus-

ter of track points with spiky shapes (Figure 3a) spatially,

located within and close to a building, and spanning a

long duration temporally signifies positioning errors.

This is because when signals are weak or absent, GPS

locations are often off and appear to be toward random

directions. Indoor segments thus tend to exhibit jagged

or spiky shapes made up by many sudden directional

changes in the trajectory. The interactive interface allows

user to select a group of these points, calculate the spa-

tiotemporal centroid of the selected points, and adjust

the track to go through the centroid [76].

The automatic pre-processing algorithm searches

through the loaded trajectory data and mimics the visual

error detection approach mentioned above. Specifically,

the algorithm starts from selecting segments with high

roughness and then expands back and forth to clean up

the trajectory. A spatial roughness indicator is used to

reveal the spiky shapes representing noises resulted from

indoor error. Other indicators such as speed and dura-

tion of the segment are also calculated. Obvious errors

such as extremely high speed points are first removed.

Spiky segments are then targeted to calculate their spa-

tiotemporal centroids using a time-weighted cluster cen-

troid approach. With this approach, tracking points that

make up the spiky clusters are given different weights

based on their “temporal importance”. Points that repre-

sent segments with longer durations are assigned higher

importance. Once spatiotemporal centroids are iden-

tified, the trajectory is adjusted to pass through the

centroid.

Trajectory segmentation involves the identification of

indoor and outdoor parts as well as activities such as

walking, driving from pre-processed space-time tracks.

Our algorithm uses spatiotemporal centroids identified

in the last step as seed indoor points and searches seg-

ments back and forth from the indoor centroid and as-

sign those with very low speed indoor segments until

speed starts to pick up. Besides criteria such as speed

and duration of tracking points, spatial topology with re-

gard to buildings is also used to label segments to corre-

sponding categories. During this step, identified indoor

segments are adjusted to geometries of the correspon-

ding buildings. Activities such as attending a class, dining

in the cafeteria, studying in the library, working out in the

gym, etc. can be differentiated based on knowledge of the

buildings’ usages.

Space-time activity analyses and visualizations

The participants’ trajectories were used to model their

space-time activities for the semester under study. The

assumption was that individuals’ habitual behaviour in

their activity space tends to repeat over time and thus

tracking data sometime within the flu season could re-

veal useful information and patterns that are relevant to

flu infections that happen in the season. This assump-

tion is supported by recent research that models human

mobility patterns concluding that humans are habitual

animals whose space-time behaviours “follow simple re-

producible patterns” [36] and that especially for univer-

sity students activity patterns could be very similar from

week to week during a particular semester as their class

schedules are set.

The segmented trajectory data can be summarized to

characterize one’s activity space. Attributes such as acti-

vity radius, average indoor stay per day, most frequently

visited places, time spent in dormitory, cafeteria, class-

room, gym, and so on may be easily derived. Such attri-

butes can be analysed statistically to investigate their

relationships to students’ flu status and also derive para-

meters to be used in local transmission models. This

study, however, focuses on another perspective. With

the availability of large amount of trajectory data, visual

exploratory methods were applied to detect patterns.
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Figure 3 Trajectory pre-processing and segmentation. (a) a raw trajectory; (b) pre-processed trajectory; (c) pre-processed and segmented

trajectory in a space-time cube.
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(1) Density surfaces. The activity density pattern of the

participants could be examined using density

surface visualization as described in [33,59]. The

density of different activities at different campus

locations is visualized and the different patterns

between the infected and non-infected may be

examined. We developed a visualization tool that

enables the mapping of three options of density

surfaces [76]. With the first option, all vertices from

the trajectory data are used to calculate kernel

densities of the points. The second option calculates

and displays density of individual paths travelled.

And the third option re-samples the trajectory data

using a set time interval and maps the densities of

points spread evenly in time. This option is designed

for tracking devices that collect tracking points in

irregular time intervals due to varying sensitivity of

the devices under various physical conditions or

segmented trajectories, such as the child tracker we

employed in our study. While density visualizations

may help reveal overall patterns in the data, we

could benefit from highlighting certain time periods

to detect more detailed clusters and patterns.

Temporal focusing [77] is a necessary addition to

the control of a density surface visualization

interface to allow for highlighting specific time

periods and focusing on the selected sub-set of data

for density surface calculation and visualization.

(2) Connection analysis. Connection analysis was

conducted in our study in an attempt to identify

strong connections among places of interests based

on the trajectory data collected. For example, our

study collected pedestrian trajectories on a

university campus. Students walk to different

buildings for taking classes, dining, and other

purposes. A connection is a link represented by one

or multiple segments in the collected trajectory data

indicating a student has travelled from one building

to another. Such connections can be derived from

segmented trajectory data and the strength of each

connection can be also determined by the volume of

traffic that populates it. A connection analysis may

help identify popular connections among campus

buildings and infer typical activity sequences on

campus. Hotspots such as those buildings with the

most outbound or inbound traffic and hubs that

connect the most trafficked places by a certain

group of students (such as those who were infected

by flu) may also be identified.

Results and discussion
Tracking data collection and pre-processing

A raw trajectory obtained from a student recording half

day of his activity on campus using one of our A-GPS

devices is illustrated in Figure 3a. The trajectory is dis-

played in 2D thus the time dimension is not shown. The

campus buildings are shown as the spatial reference. It is

noted that some portion of the trajectory close to a cam-

pus building appears to be noisy (indicated by the spiky

portion of the track). This is caused by weak GPS signals

around and inside buildings. The spike can sometimes

reach very far due to the low-accuracy of positioning

when the device is indoors. We employed the automatic

pre-processing algorithm on the raw data and conducted

spatiotemporal segmentation. Figure 3b shows the pre-

processed trajectory and Figure 3c displays the segmen-

ted trajectory with color-coded indoor and outdoor seg-

ments in the space-time cube with reference to photo

imagery and campus buildings. The horizontal dimen-

sions represent space and the vertical dimension is time.

While oblique lines indicate movement in space, straight

segments should represent stays over a period of time.

Trajectories collected by one participant using three

different tracking devices are shown in Figure 4a. It

shows that the three trajectories miss-match each other

for some portions of the activity space, especially during

indoor stays. Figure 4b shows the pre-processed trajec-

tories and we see the three trajectories match each other

much better after removing erroneous points. Table 1

lists the basic parameters of the three devices. The hand-

held GPS has the minimal time interval setting and

longest battery life. But continuous data collection over

several days would require participants to possess basic

skills of using the GPS (i.e., saving tracks). iPhone 3 G

has the shortest battery life when set to actively record

and save locations. The A-GPS device we used, the

Worldtracker GPRS, has a 15 hour battery life that

enables the recording of an entire daytime trajectory

with a simple plug-in charging at night. It also is not

limited in data storage as the data transmits to the data

server immediately via a cellular network. All three

devices were reported to have similar spatial accuracies.

The A-GPS, however, has the coarsest temporal resolution

(15 seconds) among the three devices tested. These have

resulted slightly more generalized trajectories in time-

space as indicated by the red trajectory in Figure 4b.

A three-day experiment was conducted with ten stu-

dents to collect trajectories paired with diary records.

Among the 30 trajectory-diary pairs, ten were excluded

from our analysis as they either contain incomplete diary

records (missing time periods in between records), very

short or even no on-campus stays (less than 2 hours), or

missing A-GPS signal (one A-GPS was out of battery in

the middle of a recording due to forgotten charging).

From the diary data, a total number of 55 indoor stays

on campus with a total length of 63.15 hours were

recorded. The pre-processed and segmented A-GPS tra-

jectories captured 57 indoor stays with a total length of
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Figure 4 Trajectories collected with an iPhone, a Garmin GPS, and an A-GPS based child tracker. (a) raw trajectories; (b)

pre-processed trajectories.

Table 1 Basic parameters of the three tracking devices employed in the experiment

Device Minimum interval Battery life Accuracy* Data storage

Handheld GPS (Garmin eTrex Venture HC) 2” 22 h 3 m In device

iPhone 3 with Path tracker App 4” 4 h <3 m In device

A-GPS (WorldTracker GPRS) 15” 15 h 10-30 ft Real time transmission

* Garmin and A-GPS accuracies are based on manufacturer specifications while iPhone accuracy is user-reported from online forums.
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65.40 hours. Two indoor stays described in the diary

were missing from the trajectory data, while the later

captured 4 more segments that were not recorded in the

diary. The mismatch between the two sets of data could

be due to errors in either the segmented trajectory data

or the diary data or both. By examining the mismatches

and interviewing students who participated in the study

we found that one of the two “miss”es by the trajectory

data lasted only 2 minutes and the other happened after

a long-stay in a dorm building when the device probably

has suffered from a slow fix time. It has also occurred to

us that the diary takers may not have often recorded ac-

tivities as soon as they happened but wrote their diaries

out of memory when time allowed. As a result they

often recorded down a rough estimate of time and some

activities could be completely missing as such skipped

their memories.

One problem we noticed from the comparison was

that the segmentation algorithm we used sometimes

mislabelled an indoor segment in a wrong building, es-

pecially when two buildings are connected to each other,

which is the case with some buildings in our study, such

as a group of dormitory halls on campus. Improvement

on this aspect of the algorithm is needed. At the same

time, an attempt to remediate the problem exercised in

this study was to examine student behaviour by deriving

attributes associated with a particular type of activity in-

stead of the specific location-activity. The time that stu-

dents spent in their dorm buildings is such an attribute.

The dorm time recorded in the diary data totalled to be

10.70 and that derived from the trajectory data was

10.32 hours.

These two experiments indicate that all three com-

monly used GPS or A-GPS devices perform comparable

in obtaining detailed trajectory data for space time activ-

ity studies. Handheld GPS supports the most temporal

details but needs intervention for long durations of data

collection. iPhone and the Worldtracker GPRS are both

A-GPS based devices. However, the added indoor track-

ing ability does not lead to improvement as the cellular

network positioning accuracy could be 50 meters or

greater depending on the density of available cellular

network. The battery life of the iPhone device is of the

most concern in this experiment but new generations of

the smart phone and better apps could improve signifi-

cantly on this aspect. The Worldtracker GPRS employed

in this study generates the coarsest trajectories but is the

most user-friendly that doesn’t require any user inter-

vention except for night charging. It also supports long

duration of tracking as there is no limit of data storage.

Comparison to diary data indicated that the trajectory

data captured with the GPRS was able to approximate

major patterns in students’ on-campus activities, and the

15 second time-interval still provides much finer

temporal resolution than the traditional diary data could

record.

Exploratory analysis and visualizations

Figure 5a displays a total of 470 trajectories collected in

our study. The visual clutter problem mentioned before is

apparent when large amount of trajectories is involved.

Figure 5b shows the density of the travelled paths on cam-

pus, from which it is observable that a few sidewalks are

the most heavily travelled by the participants. Figure 5c

shows the 3D density surface of space-time activities on

campus, where it is notable that student activities are clus-

tered around a few hotspots, including the University

Center (UC), a group of departmental buildings, and resi-

dential halls. By controlling the time variable in the trajec-

tory data through temporal focusing, we were able to

examine spatial patterns at different time periods. Figure 6

shows the density surfaces at different times of a day in

2D, with red colour indicating high density and yellow

being low. It is observed that activity patterns differ and

hotspots may change throughout the day. For example,

the UC (A) appears to be a hotspot from morning

(Figure 6a) to late afternoon (Figure 6d) but slightly cools

down toward the evening (Figure 6e). The dorm buildings

(B) do not show high density until the late afternoon. The

departmental building cluster indicated by label C seems

to be crowded throughout the day but especially so in late

afternoon and evening. The graduate college on east cam-

pus (D), however, only seem to be accommodating the

most visitors in the morning.

Comparing the density surface patterns of the infected

group to the non-infected group (Figure 7), we see that

there are less activity clusters for students who were sick

in the season (Figure 7b) than those who were not

(Figure 7a). Densities are also found to be slightly higher

at the dormitory and at the departmental building

clusters as shown at locations B and C in Figure 6. The

departmental building cluster is home to three depart-

ments in the college of natural sciences that lie very

close to each other and are connected by indoor path-

ways, although in separate buildings. Some preliminary

speculations on the cause of this pattern include that on

one side, the science students who take classes in these

buildings tend to stay indoors for a long period of time.

On another side, deriving from the temporal hotspot

patterns in Figure 6, these buildings tend to be crowded

especially in late afternoon or evening. The university

class schedule indicates that classes scheduled in this

time are often double periods-taking as long as 2 hour

45 minutes, leading to, again, prolonged indoor stay

time. Further investigation, however, needs to be con-

ducted to determine the exact causes of such clustering.

This experiment indicates that the method has the
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potential to reveal hidden space-time activity patterns

that may give insights to flu transmission at the micro-

scale.

In addition to detecting specific space-time hot spots,

connection analysis was conducted to identify strong

connections among campus buildings based on trajectory

data (Figure 8). Figure 8a shows all straight line connec-

tions among buildings captured by the participating stu-

dents and the highlighted buildings are those with the

highest outbound traffic volumes. Figure 8b illustrates the

Figure 5 Trajectory visualizations. (a) original trajectories; (b) path density visualization in 2D; (c) 3D density surface visualization.
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most trafficked connections (bold lines). It shows strong

connections among the same group of departmental

buildings identified as hotspots in density surface vi-

sualization. Strong connections also exist between this

group of departmental buildings (with Science building

being the centre) and the UC, and between the UC and

the Center of Academic Success (CAS), a building that

has undergraduate advisement offices and classrooms.

Figure 9 shows the connection analysis results for only

students who had been sick. Comparing Figure 9 to

Figure 8, we see that one strong connection (between the

UC and the CAS building) is no longer present from the

set of strong connections identified for sick students only.

The two strong connections that remain are one between

the UC and the departmental buildings and another

among the departmental buildings. The UC is the most

heavily trafficked stop on campus being the main recre-

ation centre where the cafeteria, book store, and recre-

ation rooms are located. It was hypothesized as a potential

high risk hub during flu season when students interact

with each for a long period of time in a crowded space.

The departmental buildings involved in the second

connection are all attached to each other with indoor

pathways. As indicated earlier, our segmentation algo-

rithm has limitations when it comes to labelling segments

with buildings especially when the buildings are close to-

gether or connected. Mislabelling may have contributed

to part of the strong connection shown here. It is also

speculated that these buildings have classrooms where

students may spend many hours indoors taking classes

without having to go outside of a building. These build-

ings are also relatively old constructions with aged ventila-

tion systems that could increase risks of respiratory

disease transmission. The CAS building that appears in

the connection in Figure 8 but not in Figure 9, on the

other hand, is a brand new building and stands by itself in

a large open space. New ventilation and the fact that stu-

dent activity has to often involve outdoor time periods

whenever taking other classes out of the building both

could lead to lower risks. These, are of course speculations

but proves that such analysis, like other methods pre-

sented in this paper can be a useful exploratory analysis

tool to reveal hidden patterns, given the availability of the

detailed trajectory data.

Figure 6 Temporal focusing: density surfaces at different times of a day. (a) morning; (b) noon; (c) early afternoon; (d) late afternoon (e)

evening.
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Conclusions and future work
Infectious diseases such as influenza remain an impor-

tant global problem in public health. While efforts con-

tinue in studying the large scale dissemination of such

highly contagious diseases, human behavioural mode-

lling at the micro scale benefits local control, contain-

ment, and prevention decisions. This study investigated

tools to collect data for the analysis of individual space-

time behaviours and exploration of activity patterns.

Current tracking technology proved to be able to collect

data accurate enough for space-time activity study in the

micro-scale. Compared to the traditional activity dairy and

questionnaire techniques, employment of GPS based

devices, such as the A-GPS we experimented in this study,

supports convenient collection of large amount of trajec-

tory data. Once processed with an effective data cleaning

algorithm the trajectory information can be used in vari-

ous spatiotemporal analyses and exploratory visualizations

such as the exercises discussed in this paper. Such ana-

lyses may help generate hypothesis on where and when

people engage in behaviour which puts them at risk of

contracting the flu through human-to-human contact or

air inhalation in a relatively closed environment. In

addition to the usual health advice like “wash your hands

or avoid crowding”, more specific space-time activity

recommendations could be made.

One limitation of our approach is that the segmented

trajectory data sometimes mislabel an indoor segment in

a wrong building, especially when two buildings are con-

nected to each other, which is the case with some build-

ings in our experiment. Improvement on this aspect of

the algorithm is needed. This study also only took some

first steps into the examination of spatial patterns using

the trajectory data collected. Following these steps, other

methods like statistical analyses of variables characterizing

one’s activity space and activity sequence analyses such as

sequence alignment [41,78] can be performed in order to

answer additional questions like how one’s activity space

and sequences affect risks to infectious diseases. Spatio-

temporal interactions such as bundles [64] may also be

modelled to examine disease transmission patterns.

Despite the applicability of tracking technology in the

study of disease risks at the micro-scale, readily available

tracking technologies nowadays, however, still face the

challenge of unsatisfactory accuracy for indoor position-

ing. Technologies such as RFID are limited in applica-

tion scope as the tracking system is self-contained and

require meticulous setup in the targeted environment

[79]. Wi-Fi-based positioning can be a promising tech-

nology to lead to highly detailed space-time behaviour

data collection and studies with much improved indoor

accuracies. However, such high accuracy leads to more

Figure 7 Activity density patterns of two groups of students. (a) students with were sick during the flu season; (b) students who were not

sick during the flu season.
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serious privacy concerns that may be another barrier for

their uses.

Privacy has long been a major concern in both medical

research and geospatial studies that involve tracking of

individuals [80]. This concern has been one of the limit-

ing factors in efforts to model infectious disease trans-

mission at the micro scale. As need for real-time

surveillance and intervention at the micro scale becomes

more obvious with increasing threats of pandemics in

a globalized world, and as the potential for precise sur-

veillance and intervention explodes with the fast

advancement of technology, it is critical to confront the

privacy issue involved in using such technology. It is the

social responsibility of researchers to protect privacy

when using data such as the tracking trajectories col-

lected in this study. Legal regulations regarding the use

of such technology and data are also expected to be put

in place for both research and practice. Although our

current legal framework has not yet adapted to the

potential privacy abuses of tracking technology [55],

initiatives such as the US. Federal Communications

Commission’s E-911 mandate has generated visions in

Figure 8 Connection analyses for all participants. (a) buildings highlighted indicating heavy traffic; (b) connections highlighted indicating

heavy traffic.
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the direction of progress in legal regulations regarding

the use of such data and technology.

This study explores the potential of using tracking

technology for research in infectious disease transmis-

sion and expects more applications when new, more ac-

curate data is coming in no time with the current pace

of technological advancement and privacy solutions or

regulations set in place. With accurate indoor tracking

technology, it is possible to set up real-time control and

alert systems [79]. The idea is to monitor individual

movements with portable devices during an outbreak.

When someone is diagnosed as infected, his/her move-

ments over the previous few days will be retrieved and

others who have crossed paths with the infected will be

given alerts to get checked. With more accurate indoor

tracking, we are also able to obtain trajectory data in a sin-

gle office or school building (such as the St. Francis school

that marked one of the first outbreak of H1N1 flu infec-

tions in the US or a hospital ward that had many doctor

infections in the Severe acute respiratory syndrome (SARS)

outbreak in Hong Kong) to reveal indoor transmission pat-

terns and even identify building ventilation problems.

Figure 9 Connection analyses for students who were sick during the flu season. (a) buildings highlighted indicating heavy traffic; (b)

connections highlighted indicating heavy traffic.
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