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Abstract

Purpose In surgical oncology, complete cancer resection and lymph node identification are challenging due to the lack

of reliable intraoperative visualization. Recently, endoscopic radio-guided cancer resection has been introduced where a

novel tethered laparoscopic gamma detector can be used to determine the location of tracer activity, which can complement

preoperative nuclear imaging data and endoscopic imaging. However, these probes do not clearly indicate where on the tissue

surface the activity originates, making localization of pathological sites difficult and increasing the mental workload of the

surgeons. Therefore, a robust real-time gamma probe tracking system integrated with augmented reality is proposed.

Methods A dual-pattern marker has been attached to the gamma probe, which combines chessboard vertices and circular

dots for higher detection accuracy. Both patterns are detected simultaneously based on blob detection and the pixel intensity-

based vertices detector and used to estimate the pose of the probe. Temporal information is incorporated into the framework

to reduce tracking failure. Furthermore, we utilized the 3D point cloud generated from structure from motion to find the

intersection between the probe axis and the tissue surface. When presented as an augmented image, this can provide visual

feedback to the surgeons.

Results The method has been validated with ground truth probe pose data generated using the OptiTrack system. When

detecting the orientation of the pose using circular dots and chessboard dots alone, the mean error obtained is 0.05◦ and 0.06◦,

respectively. As for the translation, the mean error for each pattern is 1.78 mm and 1.81 mm. The detection limits for pitch,

roll and yaw are 360◦, 360◦ and 8◦–82◦ ∪ 188◦–352◦ .

Conclusion The performance evaluation results show that this dual-pattern marker can provide high detection rates, as well

as more accurate pose estimation and a larger workspace than the previously proposed hybrid markers. The augmented reality

will be used to provide visual feedback to the surgeons on the location of the affected lymph nodes or tumor.

Keywords Image-guided surgery · Prostate cancer · Tethered laparoscopic gamma probe · Minimally invasive surgery · Pose

estimation · Tracking

Introduction

According to Cancer Research UK, prostate cancer is

reported as one of the most common cancers in men in the

UK with 47,700 new cases and 11,500 deaths reported each

year [1]. One of the main treatment options for this cancer
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is surgery, and minimally invasive surgery (MIS) including

robot-assisted procedures are increasingly used due to its sig-

nificant advantages, such as reducing the risk of infection and

trauma to the patient’s tissues [2]. Making a clear distinction

between cancerous and non-cancerous tissue is an arduous

task. Currently, surgeons still rely on their naked eye and

sense of touch to detect where the cancer is located in the tis-

sue. To address the compromised vision and tactile feedback

in MIS, Lightpoint Medical Ltd. has developed a minia-

turized cancer detection probe for MIS, called ‘SENSEI®’

(see Fig. 1a). This tethered laparoscopic probe relies on

the cancer-targeting ability of established nuclear probes to
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identify the cancerous regions of the tissue more accurately

[3].

The use of such a probe presents a visualization challenge,

since the probe may not be in contact with tissue during the

surgery, which makes it difficult to detect the location of

the sensing area on the tissue surface. Additionally, when

scanning a tissue, the surgeon needs to memorize the previ-

ously acquired probe data. This is inefficient, increases the

surgeon’s workload and increases the probability of the can-

cerous tissue not being entirely removed or positive lymph

nodes missed. Therefore, the development of a visualization

tool that shows the surgeon directly where the cancerous tis-

sue is located is of extreme importance.

To date, many probe tracking methodologies have been

proposed. The first in vivo AR surgical anatomy visualiza-

tion system with the probe tracked by an optical tracker

was proposed in [4]. A magnetic tracking method was pre-

sented in [5] combined with stereoscopic video. However, the

introduced additional tracking devices are likely to occupy

valuable operating space and bring some intrinsic limitations

such as line-of-sight and ferromagnetic interference. A com-

monly used approach is through laparoscopic image-based

optical pattern detection which locates a pattern attached to a

probe. Previous studies used corner detection to detect chess-

board patterns attached to instruments [6,7]. This method

was extended in [8] by computing the probe pose with a ran-

domly distributed fiducial pattern over the curved surface,

which allowed the occlusion on fiducials and the outliers

to be properly handled. Later, the circular dot pattern was

proposed, which relied on a more efficient and robust ‘blob

detector’ rather than the intersection of edges to estimate

the pose of the instrument [9]. Zhang et al. [10] proposed

a hybrid type, incorporating both aforementioned patterns,

which provided more information when the ambiguous pose

problems occurred. However, for the ‘SENSEI®’ used in this

project, the rotation around its own axis does not affect the

detection results since the probe is non-imaging. Therefore,

these chessboard vertices are redundant.

In this paper, a new dual-pattern cylindrical marker is pro-

posed to facilitate gamma probe tracking. The dual-pattern

marker consists of circular dots and chessboard vertices

which are simultaneously detected and tracked. To improve

the robustness of the whole system and reduce the detection

failures, temporal information is employed to complement

marker detection. Our new marker and tracking framework

are assessed using an OptiTrack system from where we

collected the ground truth data. The detection rates, pose esti-

mation accuracies and workspace coverage were calculated

and we observed that using our novel dual-pattern marker

we outperform the current state-of-the-art. The tissue sur-

face is reconstructed using a structure from motion (SFM)

algorithm and the intersection point between the surface and

the probe axis is estimated. Using that intersection point, our

framework highlights to the surgeon the part of the tissue that

is being scanned.

Methodology

Dual-patternmarker design

In this paper, we proposed a dual-pattern marker (Fig. 1b)

that combines the chessboard vertices and circular dots to

estimate the instrument pose. The two patterns were equally

spaced and placed circumferentially and appeared alter-

nately. Every two lines of the pattern formed a trapezoidal

shape and was considered as a detection unit (Fig. 1c) for

pose estimation and tracking. A green stripe was placed at

one end of the marker to resolve ambiguous pose and intro-

duce asymmetry. The marker was attached to the cylindrical

instrument such that the overall width matched the circum-

ference, and the patterns were aligned with its axis.

A local coordinate frame was set at the surface of the

probe (Fig. 1d), and its origin was regarded as the coordinate

pivot. When the marker is flattened, the relative position of

each feature in the X-Y coordinate frame can be determined

from their size and separation. Thus, for a given radius of

the probe, the 3D position (P = [X , Y , Z ]T) of each dot and

vertex in the 3D local coordinate frame can be determined

from their 2D positions (p = [x, y]T).

Feature detection

The detection process of the proposed marker consists of

two parts: blob detection and chessboard vertices detection.

The detection algorithm workflow is shown in Fig. 2. For

blob detection, a relatively simple algorithm for extracting

circular blobs from images was used, called ‘SimpleBlob-

Dectector’ in OpenCV. For the chessboard vertices detection

(Fig. 2), a Gaussian filter was first applied to the grayscale

image to eliminate noise and speckles, and then a robust and

efficient detector called ‘Chess-board Extraction by Subtrac-

tion and Summation’ (ChESS) [11] was applied. To further

filter spurious features that give weaker responses, an effi-

cient non-maximum suppression method [12] was adopted

to retrieve features with the maximum local responses. In

addition, the area formed by the intersection of two lines at

the center of the chessboard vertex was relatively easy to be

misdetected as a dot. Hence, accurate detection of chessboard

vertices would also help to eliminate incorrectly detected cir-

cular dots.

Marker identification

The correspondences between the identified markers in the

image and model points are necessary to conduct marker
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Fig. 1 a An example of a tethered probe being used in MIS; b the gamma probe marker; c example detected circular dots and chessboard vertices;

d the local coordinates defined on the probe

Fig. 2 Feature detection algorithm workflow

pose estimation. First, circular dots and chessboard vertices

patterns are clustered based on their vicinity into different

feature groups. The group with the largest number of features

is used to find the trapeziums for transformation. The four

endpoints located at the corners that form two trapeziums

are identified from both vertex and dot patterns in this group.

The trapezoidal shapes must be convex hulls and lie on the

two parallel edges. Once the four vertices were identified, the

pattern was transformed into a pattern in the image with the

help of the corresponding information. Then, by comparing

the transformed pattern and the projected pattern, the identity

of each dot and vertex in the projected pattern can be the

determined as the nearest point to the transformed pattern

[10].

The addition of the green stripe introduces asymmetry to

the markers which helps to identify the orientation of the

marker frame. It was placed at the near side of the probe.

For each iteration, the RGB image was converted to HSV to

separate color from intensity which made it more robust to

changes in lighting.

Marker tracking

Once all the features that correspond to the model points

have been identified, the pose of the probe can be estimated

directly by computing a homography. The homography—

i.e., the transformation that relates the markers and camera—

can be estimated through Pm = H Pr where Pr denotes the

locations of points on the pattern expressed in a coordinate

reference frame and Pm denotes the locations of the projected

points on the camera image plane. During surgery, marker

occlusion and invisibility are inevitable due to causes such

as strong light reflections and blood staining. If the detec-

tion component fails to detect the whole marker and extract

its location, the tracking method is used to complement the

detection. In this tracking method, the optical flow is com-

puted by the pyramidal affine Lucas–Kanade feature tracking

algorithm [13] and temporal information is taken into con-

sideration. By using the optical flow, the current position of

the remaining features could be found. Then, the position of

missing features could also be derived from the correspon-

dence in the reference coordinate frame with the help of a

homography. This homography can be estimated with only
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four pairs of non-collinear feature points, which indicates

that it is robust to occlusion.

Pose estimation

Once the position of the model points in the local coordi-

nate frame of the marker and the corresponding projections

on the image are found, a framework called infinitesimal

plane-based pose estimation (IPPE) is employed [14], which

is much faster than the current methods based on PnP and

is more accurate in most cases. It returns a number of solu-

tions and the geometric relationships of these solutions are

clear. Normally, the correct solution will lead to a smaller

re-projection error representing the difference between the

tracked results and projections. Hence, in each video frame,

the re-projection errors from both circular dots and chess-

board vertices are compared and the pose with the smallest

error should always be chosen. In this case, two solutions can

be derived from each pattern, creating four solutions. If all of

them give similar errors close to zero, then there is ambiguity.

This situation typically happens when the marker is placed

too far from or too close to the camera and the projection

of the pattern is close to affine. Some methods are proposed

to solve this issue, for instance [10] applies points from a

different plane to create a large reprojection error for the

wrong solution. However, the gamma probe collects gamma

data from its tip and the rotation around the probe axis will

not influence the detection results of the probe. The affine

problem can be ignored as long as the re-projection error is

sufficiently small.

Augmented reality

The probe signals when the targeted tissue is detected, but it

lacks the functionality to provide important visual feedback

to the surgeon about the locations. Given the transforma-

tion matrix between the laparoscope and the local coordinate

frame defined on the probe, the equation of the probe axis

can be obtained from the geometrical relationship between

the axis and the coordinate pivot. If the equation of the tissue

surface is known then the intersection location between the

probe axis and the tissue surface can be estimated. To this

end, we used a functioning ‘SENSEI’ probe and a prostate

phantom with a sealed radioactive Cobalt-57 source hidden

inside. The diameter of the Cobalt-57 disk was 25 mm, and it

was placed about 5 mm below the tissue surface. The experi-

mental setup is shown in Fig. 6a, c. The ‘SENSEI’ probe was

grasped with a laparoscope surgical grasper and the control

unit nearby indicated the gamma counts. The laparoscope

captured the video of the whole procedure with the image dis-

played on a monitor. The 3D reconstruction of the prostate

phantom surface was conducted using SFM in MATLAB,

and a corresponding surface point cloud was generated. The

actual scale of this point cloud was calculated with the help

of the ‘SENSEI’ probe of the known physical size. By cal-

culating the distance between the points in the point cloud

to the probe axis, points with short distances were deter-

mined. As the 3D reconstruction by SFM was quite dense,

these points were considered to be the potential intersection

points. Besides, the distance between the intersection point

and the marker pivot point should be longer than the distance

between the probe tip and the marker pivot.

Experiments

Hardware setup

Figure 3a shows the experimental setup illustrating a 3D

printed model with the same dimensions as the real probe.

During the detection procedure, the tip of the probe was posi-

tioned 2 to 3 cm from the tissue surface. Therefore, a cone

with a height of 2 cm was added to the front end of the

probe model to maintain a fixed distance to the tissue sur-

face for validation. The designed marker was attached to

the cylindrical probe, and four optical sensors were mounted

on a flat plate attached to the model for validation via Opti-

Track (NaturalPoint Inc, America). The diameter of the probe

was 12 mm, and it can be placed directly into the patient’s

abdominal cavity through standard MIS trocars. In this exper-

iment, the probe could be placed in the view field of a

standard 10 mm diameter monocular calibrated [15] laparo-

scope (KARL STORZ SE & Co. KG, Tuttlingen, Germany).

The videos were displayed on a monitor and captured using a

Ninja-2 box (Atomos Global Pty Ltd, Australia). The videos

were streamed to a computer (2.5 GHz CPU, 8GB RAM)

using S-Video to HDMI and HDMI to USB video converters

(StarTech.com Ltd, America).

Pose estimation error

In order to validate the pose estimation algorithm, the Opti-

Track system and its software, Motive, were used to obtain

the ground truth and calculate the transformation matrix

between the OptiTrack system and the optical sensors T O
S .

In addition, the marker pose in the laparoscope coordinate

frame T L
M can be estimated; however, there were still two

unknown registrations: the laparoscope to the OptiTrack sys-

tem T L
O and optical sensors to the designed marker T M

S . As

shown in Fig. 3b, the green arrows indicate parameters that

can be directly obtained while the red arrows represent the

unknowns. The relationship between these four transforma-

tion matrixes is given as follows:

T L
M · T M

S = T L
O · T O

S (2.1)
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Fig. 3 a Hardware setup for experiments; b the transformation matrixes between laparoscope, OptiTrack system, optical sensors and designed

marker

This problem can be treated as an AX = Y B problem and

10 pairs of T L
M and T O

S were required to obtain the T M
S and

T L
O [16]. However, the error from the registration accumu-

lates in the final pose estimation error. During experimental

validation, the probe was placed at the ‘typical’ position at

100 mm from the laparoscope to match a typical surgery. As

there were two different patterns that could be detected on

the marker, the final transformation matrix used was the one

which led to a smaller re-projection error. For each pattern,

60 video trials were made and 10 of these were for regis-

tration to calculate T M
S and T L

O while 50 of these were for

pose estimation error calculation. The position of the laparo-

scope and of the two OptiTrack cameras were always fixed.

In every video trial, the probe was static, but the background

of the scene was not static and changed over time. Besides,

from trial to trial, the position of the probe was changed. In

each trial, the relative pose between the ground truth and the

estimated result was calculated as:

Relative pose matrix = (T M
S )−1

· (T L
M)−1

· T L
O · T O

S (2.2)

Ideally, the relative pose matrix should be equal to the

identity matrix. However, this was not the case due to the error

from the registration and pose estimation. The translation

error was set as the mean of the fourth column in the matrix.

To have a more intuitive understanding of the rotation error,

the rotation matrix was converted to an axis-angle.

Projection error

Given the geometric parameters of the probe and the transfor-

mation matrix from the camera to the marker, the 3D position

of the cone tip simulating a 2 cm working distance could be

estimated. The probe was rotated with a fixed tip position.

However, because of the pose estimation error, the calculated

3D tip position was found to vary from frame to frame, with

the distance between the tips in every two frames calculated

as the projection error. The results were compared to pre-

vious hybrid marker [10], although in this case it could not

be tracked during probe axial rotation around its own axis,

resulting in large errors. Hence, the projection errors pre-

sented below for [10] were recorded with and without the

failed frames.

Detection limit and detection rate analysis

For further validation, the detection limits and detection rates

were calculated by recording the maximal experimentally

detectable distance and rotation angle of the probe. The dis-

tance was recorded from the camera to the probe, and the

limits of rotation were defined about the probe local coor-

dinate axes (roll, pitch and yaw). When testing the distance

limits, the probe was translated along the axis of the laparo-

scope until detection failed. To identify the rotational motion

limits, the probe was placed 100 mm from the laparoscope,

a typical distance for practical tissue scanning.

Since the detection of chessboard vertices relies on the

intersection of edges, it was affected by image degrading

effects like smudging and blooming. However, the circu-

lar dots detection algorithm was more robust because it did

not rely on well-defined edge crossings. Regarding the dual-

pattern marker detection, a frame was considered to be a

success if either the chessboard vertices or circular dots pat-

tern was detected, because they were independent of each

other. In the experiments, the focus was set at the phantom

surface and the probe was placed at different distances to the

camera Fig. 4b: near (50–100 mm), middle (100–150 mm),

far (150–200 mm).
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Fig. 4 a Tracking results in the

case of occlusion; b the

experimental results for

different testing distances

between the probe and camera

Table 1 Summary of pose estimation error

Different marker Translation mean error±STD (mm) Rotation mean error±STD (◦)

Our hybrid marker Circular dots Chessboard vertices Circular dots Chessboard vertices

1.78 ± 0.81 1.81 ± 0.80 0.05 ± 0.02 0.06 ± 0.02

Previous hybrid marker [10] 2.53 ± 1.40 0.69 ± 0.33

Table 2 3D tip distance when the cone tip is fixed

3D projection error

Different marker Mean error±STD (mm) Maximum error (mm) Minimum error (mm)

Previous hybrid marker [10] with the failed frames 17.17 ± 16.33 137.72 0.00

Previous hybrid marker [10] without the failed frames 1.73 ± 1.19 5.41 0.00

Our hybrid marker 0.22 ± 0.19 1.90 0.00

Table 3 Maximum detectable

distance and rotation angle

around different axes

Rotation axis Previous work [10] Dual-pattern marker (ours)

Roll (◦) ± 85◦ 360◦

Pitch (◦) ± 78◦ 360◦

Yaw (◦) ± 83◦ 8◦–82◦ ∪ 188◦–352◦

Distance to camera (mm) 60–200 50–220

Experimental results and discussion

Pose estimation error

Table 1 shows the validation results obtained from the dual

pattern marker, which have a smaller mean error and a lower

standard deviation than with the previous pattern. In addi-

tion, the pose estimation errors from the circular dots and the

chessboard vertices patterns were quite similar and less than

2 mm, which means that both patterns worked well. Given the

position of the model points defined in the local coordinate

frame on the marker and the correspondence-tracked projec-

tions on the image, the pose of the marker was estimated by

using the IPPE method. Specifically, the IPPE will give two

affine poses for each pattern and will compare the results to

select the one with the smallest reprojection error as the first

output. This is why the newly designed pattern and new pose

estimation algorithm can lead to the smaller mean error and

increase the tracking accuracy.

Projection error

It can be seen from Table 2 that for [10], the failure frames

cause large projection errors unless the motion remained del-
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Fig. 5 Examples where the pose estimation is more accurate by using a the circular dots pattern and b the chessboard vertices. Example where

tracking failed for c the circular dots pattern and d the chessboard vertices. In e both vertices and dots pattern are detected in adjacent three marker

lines

Fig. 6 The hardware setup including laparoscope, image monitor,

prostate phantom, ‘SENSEI’ probe, and control unit showing a, b a

higher radiation level when the probe was pointing to and placed closer

to the radioactive source; and c, d a lower radiation level when the probe

was pointing to the edge of the source. The grey dashed circles in b,

d show the position of radioactive Cobalt-57 source while the green

circles represent the intersection area of the gamma probe axis and the

tissue

icate. The errors calculated from our marker are lower due

to pose estimation for every frame using two patterns.

Detection and tracking analysis

The results of the detectable distance limits are shown in

Table 3. The farthest distance at which the probe could be

detected was 220 mm, and the marker works well between 50

and 150 mm, which is a reasonable working range for MIS.
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The maximum detectable angles are displayed in Table 3.

Since the marker covered the entire probe surface circum-

ferentially, detection results of the rotation around the roll

axis are greatly improved. As the features in the marker are

dense, the results when rotating around the pitch axis are

also improved. As shown in Table 3, rotation around both

roll and pitch axes can reach 360◦. It is worth noting that the

detectable angle range around the yaw axis is not 360◦ since

the axis of the probe was aligned with the axis of the laparo-

scope and the marker becomes invisible due to occlusion.

Hence, there will be an angular range of about 16◦ within

which it is undetectable.

The detection rates for the near and middle distance ranges

were 100%, which reduced to 99.7% when the probe was in

the long distance range.

Since the pose estimations from chessboard vertices and

circular dots are independent, if both of them are detected,

the one with the smallest reprojection error will be selected.

If identification of either fails, the system will rely on the

other to get the probe pose. We list several different track-

ing scenarios in Fig. 5. Figure 5a shows a case where the

pose estimation result from the circular dots pattern is more

accurate than that from chessboard vertices, while Fig. 5b

shows the opposite. In Fig. 5c, the circular dots pattern track-

ing failed so the probe pose is estimated from the vertices,

while the opposite situation is presented in Fig. 5d. In Fig. 5e,

both vertices and dots patterns are detected for three adjacent

marker lines with the vertices pattern providing a more accu-

rate pose estimation result.

Tracking results for simulated occlusions

Figure 4a shows an example of an occlusion using a red

stripe to block the markers. Although the number of remain-

ing features was not enough to directly estimate the pose of

the probe, they could still be used to calculate the homogra-

phy. The position of the points that were occluded could then

be inferred from the correspondence information between

the coordinate reference frame and current camera image

frame with the help of the homography. Therefore, the marker

tracking enhanced the robustness of the entire system to

occlusions.

Augmented reality

Given a 3D point cloud representing tissue surface and the

equation of the probe axis, the intersection point was esti-

mated and the results are shown in Fig. 6. The red line

indicates the axis of the probe, the grey dashed circle shows

the position of radioactive Cobalt-57 source, and the green

circle represents the intersection area of the gamma probe

axis and the tissue. In Fig. 6a, b, the ‘SENSEI’ probe was

close to and pointing towards the radioactive source, the

probe recorded stronger gamma radiation of 209 counts per

second. Figure 6c, d shows the opposite where the ‘SEN-

SEI’ probe was pointing at the edge of the buried source,

and the radiation was weak (12 counts per second). The AR

system can therefore allow the surgeon to know which part

of the tissue the radiation is coming from, so that they can

do accurate node identification or tissue excision with this

visual feedback.

Conclusion

In this paper, we proposed a new hybrid marker which incor-

porated both circular dots and chessboard vertices to increase

the detection rate. The additional green stripe was included

to introduce asymmetry and resolve direction ambiguity. The

marker was designed such that it fully covered the tethered

laparoscopic gamma probe using dense features. The experi-

mental results show that the detection workspace, robustness

and pose estimation efficiency and accuracy of the design

outperformed previous works. We have therefore shown the

feasibility and the potentiality of using the proposed frame-

work to track the ‘SENSEI®’ probe. In addition to the design

of the new marker, we have also proposed a solution to pro-

vide clear visual feedback to indicate the tracer location on

the tissue surface.

The work could be further extended to increase the

registration accuracy by fusing the vision-based 3D pose

estimation with kinematic data of the instrument (robot) con-

trolling the probe. Successive transformations from the probe

to the instrument and endoscope coordinate frames will pro-

vide a robust initial viewpoint estimate and registration. The

framework could also be used to track other types of probes.

Acknowledgements This work was carried out with support from the

UK National Institute for Health Research (NIHR) Invention for Inno-

vation Award NIHR200035, the Cancer Research UK Imperial Centre

and the NIHR Imperial Biomedical Research Centre.

Compliance with ethical standards

Conflict of interest Two of the authors are employees of Lightpoint

Medical Ltd, which has a commercial interest in the development of the

‘SENSEI®’ probe. The other authors declare that they have no conflict

of interest.

Ethical approval This article does not contain any studies with human

participants or animals performed by any of the authors.

Informed consent This article does not contain patient data.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing, adap-

tation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

123



International Journal of Computer Assisted Radiology and Surgery (2020) 15:1389–1397 1397

source, provide a link to the Creative Commons licence, and indi-

cate if changes were made. The images or other third party material

in this article are included in the article’s Creative Commons licence,

unless indicated otherwise in a credit line to the material. If material

is not included in the article’s Creative Commons licence and your

intended use is not permitted by statutory regulation or exceeds the

permitted use, you will need to obtain permission directly from the copy-

right holder. To view a copy of this licence, visit http://creativecomm

ons.org/licenses/by/4.0/.

References

1. C. R. UK. Prostate cancer statistics. https://www.cancerresearchuk.

org/health-professional/cancer-statistics/statistics-by-cancer-type/

prostate-cancer. Accessed 13 Nov 2019

2. Trinh Q-D, Sammon J, Sun M, Ravi P, Ghani KR, Bianchi M,

Jeong W, Shariat SF, Hansen J, Schmitges J, Jeldres C, Rogers CG,

Peabody JO, Montorsi F, Menon M, Karakiewicz PI (2012) Periop-

erative outcomes of robot-assisted radical prostatectomy compared

with open radical prostatectomy: results from the nationwide inpa-

tient sample. Eur Urol 61(4):679–685

3. Strong VE, Humm J, Russo P, Jungbluth A, Wong WD, Daghighian

F, Old L, Fong Y, Larson SM (2008) A novel method to localize

antibody-targeted cancer deposits intraoperatively using handheld

pet beta and gamma probes. Surg Endosc 22(2):386–391

4. Kang X, Azizian M, Wilson E, Wu K, Martin AD, Kane TD, Peters

CA, Cleary K, Shekhar R (2014) Stereoscopic augmented reality

for laparoscopic surgery. Surg Endosc 28(7):2227–2235

5. Cheung CL, Wedlake C, Moore J, Pautler SE, Peters TM (2010)

Fused video and ultrasound images for minimally invasive par-

tial nephrectomy: a phantom study. In: International conference

on medical image computing and computer-assisted intervention.

Springer, Berlin, pp 408–415

6. Jayarathne UL, McLeod AJ, Peters TM, Chen EC (2013) Robust

intraoperative US probe tracking using a monocular endoscopic

camera. In: Medical image computing and computer-assisted inter-

vention. Springer, pp 363–370

7. Edgcumbe P, Nguan C, Rohling R (2013) Calibration and stereo

tracking of a laparoscopic ultrasound transducer for augmented

reality in surgery. In: Augmented reality environments for medical

imaging and computer-assisted interventions. Springer, pp 258–

267

8. Jayarathne UL, Chen EC, Moore J, Peters TM (2018) Robust,

intrinsic tracking of a laparoscopic ultrasound probe for ultrasound-

augmented laparoscopy. IEEE Trans Med Imaging 38(2):460–469

9. Pratt P, Jaeger A, Hughes-Hallett A, Mayer E, Vale J, Darzi A,

Peters T, Yang GZ (2015) Robust ultrasound probe tracking: initial

clinical experiences during robot-assisted partial nephrectomy. Int

J Comput Assist Radiol Surg 10(12):1905–1913

10. Zhang L, Ye M, Chan PL, Yang GZ (2017) Real-time surgical tool

tracking and pose estimation using a hybrid cylindrical marker. Int

J Comput Assist Radiol Surg 12(6):921–930

11. Bennett S, Lasenby J (2014) ChESS—quick and robust detection

of chess-board features. Comput Vis Image Underst 118:197–210

12. Neubeck A (2006) Efficient non-maximum suppression. In: 18th

International conference on pattern recognition (ICPR’06), vol 3.

IEEE

13. Bouguet J-Y (2001) Pyramidal implementation of the affine lucas

kanade feature tracker description of the algorithm. Int Corp 5(1–

10):4

14. Collins T, Bartoli A (2014) Infinitesimal plane-based pose estima-

tion. Int J Comput Vis 109(3):252–286

15. Zhang Z (2000) A flexible new technique for camera calibration.

IEEE Trans Pattern Anal Mach Intell 22:1330–1334

16. Shah M (2011) Comparing two sets of corresponding six degree of

freedom data. Comput Vis Image Underst 115(10):1355–1362

Publisher’s Note Springer Nature remains neutral with regard to juris-

dictional claims in published maps and institutional affiliations.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/prostate-cancer
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/prostate-cancer
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/prostate-cancer

	Tracking and visualization of the sensing area for a tethered laparoscopic gamma probe
	Abstract
	Introduction
	Methodology
	Dual-pattern marker design
	Feature detection
	Marker identification
	Marker tracking
	Pose estimation
	Augmented reality
	Experiments
	Hardware setup
	Pose estimation error
	Projection error
	Detection limit and detection rate analysis


	Experimental results and discussion
	Pose estimation error
	Projection error
	Detection and tracking analysis
	Tracking results for simulated occlusions
	Augmented reality

	Conclusion
	Acknowledgements
	References


