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Abstract

This paper addresses the problem of markerless tracking

of a human in full 3D with a high-dimensional (29D) body

model. Most work in this area has been focused on achiev-

ing accurate tracking in order to replace marker-based mo-

tion capture, but do so at the cost of relying on relatively

clean observing conditions. This paper takes a different

perspective, proposing a body-tracking model that is explic-

itly designed to handle real-world conditions such as occlu-

sions by scene objects, failure recovery, long-term track-

ing, auto-initialisation, generalisation to different people

and integration with action recognition. To achieve these

goals, an action’s motions are modelled with a variant of

the hierarchical hidden Markov model. The model is quan-

titatively evaluated with several tests, including comparison

to the annealed particle filter, tracking different people and

tracking with a reduced resolution and frame rate.

1. Introduction

A variety of approaches to the problem of markerless 3D

full-body human motion capture have been proposed in the

literature. Lee et al. [7] and Mikić et al. [8] both constrain

the possible posture configurations by analytically finding

the hands, face and/or torso. Lee then transitions a particle

filter under these constraints while Mikić ‘grows’ the body-

part tree to best fit the voxel-based visual hull observation.

These both require reliable analytical detection that is diffi-

cult to guarantee. Deutscher et al. [5] propose the annealed

particle filter (APF) that uses simulated annealing to grad-

ually focus the search effort on promising areas. The algo-

rithm is effective but tends to converge on only one mode,

discarding the rest of the posture distribution. Sminchisescu

and Jepson [13] explicitly maintain multi-modality by using

a combination of kinematic jumps, sampling and variational

methods to track and smooth multiple plausible posture tra-

jectories. Their system is able to recover an accurate 3D

posture sequence with only a monocular view, (albeit pro-

ducing many other posture trajectories at the same time) at

the expense of a complex, multi-layered algorithm struc-

ture and an implicit reliance on a close-fitting body model.

Recent work by Caillette et al. [4] learns Gaussian clusters

of sub-motions and trains a variable-length Markov model

(VLMM) based on these clusters to direct the local posture

search towards better areas of the distribution. They achieve

near-real-time (10fps) performance with a visual hull on

long video sequences of a ballet dancer who stays in a rel-

atively fixed location. Their algorithm auto-initialises and

can recover from errors but it is tightly integrated with the

visual hull, which requires many views and can be sensitive

to segmentation errors.

All of these algorithms aim to be replacements for

marker-based motion capture. However, for applications

that wish to build on top of 3D full-body tracking in real-

world situations there are certain complicating factors that

are not present in – nor even a concern of – pure mo-

tion capture. These include (a) significant observation er-

rors; (b) reliable long-term tracking; (c) automatic detec-

tion and initialisation; (d) tracking different people without

fine-tuning a close-fitting body model for each; and (e) fa-

cilitating higher-level tasks such as action recognition.

Foremost are (a) significant observation errors caused by

cluttered environments, occlusions and low-level algorithm

failures. These are inevitable when working with real-world

scenes, but are generally disregarded by 3D body trackers

in order to make high-quality tracking attainable. Unfor-

tunately, when observation errors occur the correct posture

becomes less likely than other seemingly plausible postures

and tracking failures become almost certain. This leads to

issues with tracking over longer periods (b) — a failure in

body tracking is often considered terminal because it skews

the local search for the next posture into poor areas of the

posture space. This brings into doubt the feasibility of long-

duration tracking, especially given that most tracking re-

sults have been based on extremely short sequences (five

seconds or less [5, 13]). In addition, body trackers typically

begin with a perfect (manually-set) initialisation that en-

sures an ideal start to tracking. Automatic initialisation (c),

mandatory for realistic deployment, cannot provide such an

ideal start. Of note then is work by Caillette et al. [4],

who learn a motion model that supports auto-initialisation

and long-term tracking by re-initialising after every failure.

However, they still rely on clean observations due to their

use of a visual hull. Related to initialisation is the implicit

reliance of most body trackers on a close-fitting body model

(d). This is impractical when seeking to track different peo-

ple since prior knowledge of each person’s physique is not

usually available in realistic applications. Finally, the issues
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(a–d) inherent in real-world scenes can easily cause the out-

put of full-body trackers to be inconsistent between videos

of the same motion, making higher-level tasks like action

recognition (e) much more difficult.

In essence, existing full-body trackers are less than ideal

for use in real-world tracking and action recognition sim-

ply because they do not aim to fulfill these roles. Hence

this paper proposes a 3D full-body tracker that is explic-

itly designed to both handle observation errors and ease the

task of action recognition. From the perspective of action

recognition, motion is considered the execution of a partic-

ular action. The proposed model takes advantage of this

to use the action as a context that guides motion tracking,

hence reducing the reliance on the error-prone observations

and thereby improving tracking reliability. Tracking and

recognition thus occur simultaneously – for a test sequence,

the most likely model is the action label and this model’s

state sequence is the motion tracking. Due to the high-

dimensional state space, each action is broken down into

a two-level hierarchy of phases (sub-actions) and motion

within each phase. The hierarchy is tractably modelled with

a hierarchical hidden Markov model (HHMM) [3] by fac-

toring the states of the lower level (which model the actual

pose). Each action is then modelled by a different instance

of this factored-state HHMM (FS-HHMM), and the most

likely model for a given sequence provides the action label

and posture sequence.

The basic approach of the FS-HHMM to tracking is sim-

ilar to Zhao and Nevatia’s ‘tracking-as-recognition’ con-

cept [14]. However, they combine tracking and recognition

by matching optic flow against labelled motion templates

and filter (track) with an HMM to produce a maximum-

likelihood sequence of motion. Also, template matching is

best suited to their far-field low-detail views, where track-

ing individual features is infeasible. In contrast, the inverse

is true with this paper’s more detailed views – many useable

features can be detected and tracked whereas reliably per-

forming full-body posture recognition from a single frame

is difficult. The FS-HHMM also has some similarities to

the model of [4], where a VLMM of motion is used to per-

form auto-initialisation and tracking. However, their focus

is on accurate motion capture and the consequent reliance

on clean observations means that they do not consider han-

dling messy scenes or recognition tasks.

This paper demonstrates that modelling motion in the

context of action recognition provides many benefits to

tracking in realistic conditions. Significant benefits of the

approach include the ability to:

(1) auto-initialise without any user input;

(2) track through partial occlusions of a mobile person;

(3) auto-recover from failures;

(4) track different people without adjustments/retraining;

(5) robust to low resolutions and reduced frame rates;

(6) facilitate action recognition; and

(7) track based on very little training data.

The approach is quantitatively evaluated against four ac-

tions (walking, sitting down, standing up and opening a bar-

fridge) and comparisons are made with the APF [5]. Parti-

cle filtered inference is used to tractably explore the posture

distribution, and the FS-HHMM is shown to require only

1,000 particles for successful tracking.

Note that in this paper the experimental focus is on the

tracking results. Some action recognition results are pro-

vided to present the ability of the FS-HHMM in this area,

but a rigorous and comparative evaluation of action recog-

nition with the FS-HHMM will be the topic of future work.

2. The FS-HHMM Model

2.1. Body Model and Observation Function

Body Model This paper employs a simple 29-

dimensional model of the human body (Figure 1a),

parameterised by 24 joint rotations and five global variables

(x,y,z, orientation, scale). Sec-

tion 2.3 describes how these

parameters are auto-initialised.

Scale applies to the entire body

model since the relative length

of each limb is fixed. Each body

part is modelled with a cylinder

whose sides are projected onto

the 2D image and then joined

with lines to produce the card-

board look for efficient projec-

tion [12]. The model is fairly

loose-fitting so that any tracker

based on it should generalise

well to different people.
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Figure 1. 29D ‘cardboard’

body model.

Observation Likelihood Function Given an observation
yt and a posture represented by the joint angles xt, most 3D
body trackers evaluate a function f(yt|xt) to find the opti-
mal posture xt. Evaluating f(yt|xt) is typically the most
costly part of full-body tracking, and yt is usually either a
visual hull [4, 8] or foreground and edge images [5, 13],
and f(yt|xt) is a heuristic distance measure between yt and
xt. Visual hull methods tend to be faster but inherit the vi-
sual hull’s sensitivity to segmentation errors. In contrast,
foreground/edge images require projecting xt and expen-
sive pixel-level evaluations for each view, but is more robust
to segmentation errors in any one view. Since this paper
aims to handle errors, it employs the latter approach:

f(yt|xt) =
1

λ
exp

˘

λ · Dist(yt, P roj(xt))
¯

(1)

where Dist(·) is a modified version of Deutscher’s [5] cost

function (as described in [10]) for the distance between yt

and xt’s projection and λ controls how sharply the distribu-

tion drops off with distance. For the FS-HHMM λ is fixed

with λ=8 (chosen empirically). For the APF λ is varied dy-

namically as part of its annealing procedure.

2.2. Graphical Structure and Parameterisation

Figure 2 shows the FS-HHMM. Its parameters are:
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Figure 2. DBN of the factored-state HHMM

Cmn � P (qt =n|qt−1 =m) (2a)

A
k
nij � P (xk

t =j|xk
t−1= i, qt =n, e

k
t =0) (2b)

Λk
nj � P (xk

t =j|qt =n, e
k
t =1) (2c)

φm � P (q1 =m) (2d)

π
k
mi � P (xk

1 = i|q1 =m) (2e)

Ψ � P (ℓt|ℓt−1) (2f)

Υ � ω
o|o

t P (ot|ot−1) + ω
o|ℓ

t P (ot|ℓt−1, ℓt) (2g)

where qt is the phase, xt is a 24D state modelling the body’s

joint rotations and is fully factored into 24 independently-

transitioning sub-nodes xk
t , {ℓt, ot} is the location and ori-

entation of the person in the scene and et controls phase

transitions. The observation probability is modelled with a

heuristic function f(yt|xt, ℓt, ot). The FS-HHMM follows

fairly intuitive mechanics and a simplified form can better

illustrate the thinking behind it. Consider Figure 3, which

for clarity drops et and merges related nodes together. This

highlights the two-level state structure where each phase

(cohesive sub-motion) is broken down into a set of joint

configurations (postures) xt within that phase. The body

posture is then positioned in the scene by {ℓt, ot}.

In order to facilitate tractable inference, xt is fully-

factored. Strictly speaking, a 3df joint’s three rotations

should not be factored, but the assumption reduces the spar-

sity of the transition matrix and increases the possible set of

postures (due to joint combinatorics) when training with a

small data set. Each xk
t discretises the 360◦ rotation space

into 120 intervals of 3◦. Discrete states are used for the sake

of simplicity — a multinomial distribution can model non-

linear transitions without the need for a non-linear map-

ping of the motion onto a lower-dimensional manifold. The

{qt, xt} hierarchy has some parallels with [4], which mod-

els a continuous posture space with a discrete set of Gaus-

sian clusters. Their clusters are roughly equivalent to qt,

and samples within a cluster correspond to xt. However,

[4] does not discuss how internal transitions within a clus-

ter (i.e. xt transitions) are carried out.
Equations (2f) and (2g) model the movement of the over-

all body in the scene. Location Ψ (2f) is modelled as a
linear-dynamics system. In contrast, orientation Υ (2g) is
modelled by a two-component mixture – a linear-dynamics
system P (ot|ot−1) from the previous orientation and a dis-
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Figure 3. Simplified form of the FS-HHMM

crete distribution P (ot|ℓt−1, ℓt) learned from the training
data and based on the person’s direction of motion (change
in location ∆ℓ). Note that this P (ot|∆ℓ) is a discrete den-
sity to allow for uniform or multi-modal distributions. The
rationale behind this mixture is that P (ot|ot−1) can become
stuck in a poor orientation if (say) a walking person turns
sharply. Since ∆ℓ often has a relationship with ot (e.g.
a person walks in the direction they are oriented) samples
from P (ot|∆ℓ) can provide better orientations – essentially
playing a self-correcting role in the tracking model. Note

that ω
o|o

t and ω
o|ℓ

t cannot be learned via EM because ot is
fully observed during training (see Section 2.3). These val-
ues are thus defined according to the following line of rea-
soning. Some actions (e.g. sitting) have no motion and so
∆ℓ has no meaning for ot. In such a case, P (ot|∆ℓ) will be
uniform and should not contribute to the mixture Υ. For ac-
tions with a non-uniform response to ∆ℓ, if the expectations

E
〈
P (ot|ot−1)

〉
and E

〈
P (ot|∆ℓ)

〉
closely agree, there is no

reason to sample from the correcting distribution P (ot|∆ℓ)
since it is far noisier than P (ot|ot−1). On the other hand, if
the two distributions are diametrically opposed (e.g. differ
by 180◦) then it is probable (but not certain) that a correc-

tion is needed. Thus ω
o|o

t and ω
o|ℓ

t are calculated as:

u
o|ℓ

t =
1

N
P

n

P (ot=n|ℓt−1, ℓt)2
, u

o|o

t =
1

N
P

n

P (ot=n|ot−1)2

(3a)

eω
o|ℓ

t =
1 − u

o|ℓ
t

P

z

1 − uz

t

(3b)

ω
o|ℓ

t = eω
o|ℓ

t ·

˛

˛

˛

˛

E
˙

P (ot|ot−1)
¸

− E
˙

P (ot|∆ℓ)
¸

180◦

˛

˛

˛

˛

(3c)

ω
o|o
t = 1 − ω

o|ℓ

t (3d)

where n=1..N are uniformly-distributed samples over the

range [1◦..360◦], ut is a measure of uniformity for P (ot|·)
over this range and the numerator in (3c) is forced to the

range [−180◦..180◦]. ut is in fact the survival diagnostic

(from particle filter resampling [5, 6]). Note that ω̃t∝1−ut,

which is 0 for the uniform distribution and 1 for the impulse

distribution and is exactly the weighting behaviour desired.

Equation (3c) then adjusts the weights to take into account

the similarity of the two distributions’ means.
Finally, the use of et differs from the standard HHMM

(in particular, the arrow between et and qt is reversed). The
role of et in the FS-HHMM is to assist in particle-filtered
inference when processing a test sequence. Apart from the
usual concerns of degeneracy and good importance sam-
pling [6], an issue with particle filtering in a hierarchical



model such as the FS-HHMM is the method of sampling

particles. Specifically, for a particle (i), P (qt, xt|q
(i)

t−1, x
(i)

t−1)

is sampled in its factored form q
(i)

t ∼P (qt|q
(i)

t−1) and

x
(i)

t ∼P (xt|q
(i)

t , x
(i)

t−1). But it is possible that a q
(i)

t �=q
(i)

t−1 is

sampled such that ∀xt, P (xt, q
(i)

t |x(i)

t−1, q
(i)

t−1) = 0. In other

words, x
(i)

t−1 is not at a value that can transition into q
(i)

t .
Moreover, since xt−1 is factored, all 24 sub-states must be
at such a transition-able value, yet typically only about half
of the sub-states fit this category. One solution is to add a
non-zero Dirichlet prior on all xt transitions, but this makes
every xt valid for every qt, undermining the purpose of qt.

Another solution is to sample from P (qt, xt|q
(i)

t−1, x
(i)

t−1), but
since it is rare that all 24 sub-states of xt can move to a new
phase, the particles will evolve too slowly to keep up with
the true motion. Instead, an alternative sampling of xt is
allowed. If a sub-state xk

t−1 cannot transition into qt, ek

t is

set to 1 and xk

t is sampled from P (xk

t |q
(i)

t ) (i.e. xk

t ⊥ xk

t−1

if ek

t=1). This uses context-specific independence on xk

t |e
k

t

[2], or alternatively could be viewed as a mixture of Monte
Carlo kernels for inference purposes [1]. Formally:

e
k
t =

(

1 if ∀j, P (xk
t =j, q

(i)
t |xk(i)

t−1 , q
(i)
t−1) = 0

0 otherwise
(4a)

sample x
k(i)

t ∼

(

Ak
nij � P (xk

t |q
(i)
t , xk(i)

t−1 , ek
t =0)

Λnj � P (xk
t |q

(i)
t , ek

t =1)
(4b)

Thus et ensures that particles can evolve quickly whilst still

being sampled from good areas of the state space. Note that

during training xt is fully observed and so et is always 0
(i.e. xt → xt+1 is always valid since both are observed).

2.3. Learning and Inference

Training Data During training, the values for the hidden

nodes {xt, ℓt, ot} are supplied from ground-truth data since

the 29D state space is too large to explore tractably. Since

xt is discrete at 3◦ intervals, a smooth and accurate ground-

truth for xt is not critical. Indeed, the loose body model

means that f(yt|xt) is not sensitive enough to make full

use of highly accurate ground-truth data. This raises the

possibility of using a standard full-body tracker in a con-

trolled environment to produce the training data instead of

a marker-based motion-capture facility. This paper uses the

annealed particle filter (APF) tracker with the body model

and observation likelihood function from Section 2.1. To

obtain clean observations, the training actor wore clothes

that have good contrast between different body parts and all

occluding furniture was removed. In addition, video was

captured from four views at 50fps by capturing interlaced

768×576 frames at 25fps, then splitting and subsampling

each frame into two 384×288 fields to realise 50fps. The

resulting half-pixel vertical ‘jitter’ does not affect track-

ing. Despite these measures, the APF still can follow in-

correct posture avenues due to the loose fit of the body

model. Hence a human user monitors the APF’s execution

and manually corrects the posture whenever it begins to fail

(which usually involves correcting a few frames at a time).

Learning Training is greatly simplified by observing
{xt, ot, ℓt}. EM is needed only to estimate parameters in-
volving qt using the following update equations:

Ĉmn ∝
T

X

t=2

ξt(m, n) (5a)

Â
k
nij ∝

T
X

t=2

γt(n) · δ(xk
t−1= i, x

k
t =j) (5b)

Λ̂k
nj ∝

T
X

t=2

h

δ(xk
t =j)

X

m�=n

ξt(m, n)
i

(5c)

φ̂m = γ1(m) (5d)

π̂
k
mi ∝ γ1(m) · δ(xk

1= i) (5e)

where δ(·) is 1 if the function’s arguments are equal and 0

otherwise, and the variables γt(m) � P (qt =m|x1..T ) and

ξt(m,n) � P (qt−1 =m, qt =n|x1..T ) are calculated by:

γt(m) =
αt(m) · βt(m)

P

h

αt(h) · βt(h)
(6a)

ξt(m, n) =

αt−1(m) · Cmn · βt(n) ·
24
Q

k=1

Ak
nij

P

h

αt(h) · βt(h)
(6b)

αt(n) =
“

X

m

αt−1(m) · Cmn

”

24
Y

k=1

A
k
nij , α1(n)=φn

24
Y

k=1

π
k
ni

(6c)

βt(m) =
X

n

“

βt+1(n) · Cmn

24
Y

k=1

A
k
nij

”

, βT (m)�1 (6d)

where i�xk
t−1, j �xk

t . See [9] for details of the derivation.

Inference and Auto-Initialisation As well as the learned

model parameters, the FS-HHMM requires three additional

parameters to perform inference:

(i) variance of P (ot|ot−1) and P (ℓt|ℓt−1);
(ii) estimated initial value of {ℓ1, o1}; and

(iii) global scale of the body model.

The variances for (i) are fixed and empirically set based

on how fast a person is expected to move with respect to

the video frame rate. The final two parameters are ex-

tracted by bootstrapping the FS-HHMM from a bounding

box tracker [11]. Bootstrapping is based on the assumption

that a person will walk upright into the room facing forward,

thus implying scale and orientation. The system waits to

bootstrap the FS-HHMM until the box-tracker reports that

all four views closely agree on the person’s location and

height. Initial location ℓ1 is then the box-tracker’s posi-

tion, initial orientation o
1

is their direction of motion and

an estimate of scale is the average of each view’s bounding

box height. The FS-HHMM then generates candidate parti-

cles for initialisation by sampling postures from the motion

model and perturbing the box-tracker and scale estimates

with Gaussian noise. Particles are weighted via f(yt|xt)
and the scale is fixed at the weighted mean scale. Track-

ing (filtering) then proceeds with this fixed scale, which is



generally accurate to within about 5cm — good enough for

the FS-HHMM to work with given that the body model is

already loose-fitting.

Occlusion Processing When the person is partially oc-

cluded by scene objects (e.g. legs occluded by a table), it

would be advantageous to limit f(yt|xt) to evaluate the area

in each view that is not occluded (since the occluded area

provides no useable evidence). This requires detecting oc-

clusions and determining the pixel area that is occluded; the

bounding box tracker of [11] provides exactly this informa-

tion. Thus the system continues to run the box-tracker even

after bootstrapping the FS-HHMM, and f(yt|xt) takes into

account this occlusion data to improve its response during

occlusions. This occlusion-specific processing is entirely

optional, but improves tracking robustness – a failure of the

box-tracker only means that f(yt|xt) is not provided with

this occlusion evidence, hence there are no negative effects

beyond the small overhead of box tracking.

3. Consistency of the FS-HHMM vs the APF
This section establishes the motivation behind develop-

ing the FS-HHMM for action recognition tasks by briefly

outlining the behaviour of the APF when working with a

loose-fitting body model and cluttered scenes. The prob-

lem is that the APF (and indeed most full-body trackers)

relies on optimising max
xt

f(yt|xt) within a search area de-

fined by the current posture and dynamics model. This is

a poor optimisation criteria when the observations yt are

noisy and error-prone. An error will mean f(yt|xt) has

multiple incorrect maxima surrounding the true posture but

has no maxima at the true posture. In practice, this causes

the APF to behave inconsistently, producing very different

outputs depending on which incorrect maxima it chooses.

A simple experiment can show this. The APF (10 layers,

1,000 particles, 10,000 total evaluations) was used to pro-

duce seven posture sequences, each 450 frames (18 sec-

onds) long and all generated from the same video. The only

difference between the initial conditions of the various runs

was the random seed value (used for sampling), with all

other factors being identical. For comparison, seven runs

using the FS-HHMM (with 1,000 particles) were also con-

ducted on the same video and starting position as the APF

runs, again differing only in the random seeds. Since the

runs should all be the same, the error is measured in terms of

the difference between pairs of runs (21 run-pairs in total).

Figure 4a plots the average over all 21 run-pairs of the root

mean squared error (RMSE) of the 24 joint rotations (i.e.

RMSE= 1

24

∑24

k=1
(xk

t,Run1 − xk
t,Run2)

2). Figure 4b shows

the mean and variance of each joint rotation’s error across

the 450 frames of all run-pairs. As can be seen the APF

is much less consistent, with a higher error and greater er-

ror range than the FS-HHMM. The APF error also tends to

increase with time, whereas the FS-HHMM recovers from

error peaks. Note that the FS-HHMM is more consistent

even though it must auto-initialise the posture based on the
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Figure 4. Error between several runs of the APF and FS-HHMM

on the same video. Runs differed only in their random seeding.

Error bars show 5th and 95th percentiles. (a) RMSE of joint rota-

tions, averaged across the 21 run-pairs. (b) Error mean and vari-

ance of each joint rotation over all frames.

random seed (unlike the APF, where all runs start with ex-

actly the same posture).

Given that the APF produces such inconsistent posture

sequences from a single video when only the random seed

is varied, it would be a formidable challenge to use the APF

to successfully recognise actions in different videos. Thus

this paper does not attempt action recognition with the APF.

4. Experiments
To evaluate the FS-HHMM, four different actions were

processed with both the FS-HHMM and APF. Actions are:

• Walk – walking, standing, and abrupt turns;

• Sit – sitting down onto a chair;

• Stand – standing up from a chair; and

• Fridge – getting a bottle from a bar fridge.

All Walk sequences are over 60 seconds in length; the other

actions range between two and six seconds each. The room

is monitored by four ceiling-mounted cameras, one in each

corner of the room. For Walk the room contained one ta-

ble and two chairs placed around the room, arranged in

different configurations between sequences to produce dif-

ferent occlusion patterns. Occlusions are also caused by

four fixed cupboards that stand beside each camera. The

scene for Sit/Stand was arranged to include one table and

four chairs, with test sequences captured by sitting in turn

in each chair twice. Occlusions differed per chair, rang-

ing from unoccluded to largely blocked by the table. For

Fridge sequences, the fridge door itself causes occlusions

when opened, and tables and chairs were placed on either

or both sides of the fridge to produce various levels of oc-

clusions for different sequences.

For the APF the user must provide the full posture, po-

sition, orientation and starting frame of each sequence. For

the FS-HHMM, Walk requires no user input, being boot-

strapped from a bounding box tracker when the person first

enters the scene. However, the latter three actions cannot be

bootstrapped since the person enters the scene walking, not

sitting. Thus the FS-HHMM can estimate the initial pose

of these actions, but requires the user to provide the start-

ing frame and initial position. Future work will be to chain

actions together so that a bootstrapped Walk can provide a

subsequent Sit with its position estimate.



Four FS-HHMMs are trained, one for every action.

Training data is obtained using the APF with a single,

‘clean’ sequence as described in Section 2.3, and is not used

for testing. Each training example is ‘mirrored’ to account

for the left-right symmetry of humans, producing a second

training sequence. No other training data is used. More-

over, the training sequence for Walk only involves four steps

along a straight path, whereas the test data includes turns,

standing still and abrupt changes in direction. The minimal

training data (two examples per action) is sufficient because

the FS-HHMM is essentially learning a canonical example

of the action, and the observation likelihood f(yt|xt) eval-

uates how well the observed motion fits this canonical ver-

sion. Furthermore, the assumption of conditional indepen-

dence between all joint rotations x1
t , .., x

K
t means that rota-

tion combinations are not constrained, so novel joint angles

can be produced that are not in the training data.

Sit, Stand and Fridge are all modelled with 16 states and

left-right transition matrices Cmn for qt. Walk is modelled

with eight states and a cyclic Cmn (a left-right model whose

last state can transition back to the first state). State sizes

were chosen empirically. A Dirichlet prior on Cmn is also

added to allow for transitions to any later phase.

For particle-filtered inference, the FS-HHMM resamples

at every time step. A resampling strategy is employed that

always retains the top few particles in each phase qt = m.

This maintains a good spread of particles across phases,

with 5% of particles retained in this way. To infer the hidden

states {qt, xt, et, ℓt, ot} with four views, the FS-HHMM

with 1,000 particles takes approximately 12sec per frame as

implemented in unoptimised C++ code running on a desk-

top Pentium-4 3GHz. On the same code-base the 10-layer,

1,000-particle APF (10,000 evaluations) takes about 120sec

per frame, indicating that almost all processing is in evalu-

ating f(yt|xt) for every particle.

5. Results and Analysis
In order to test each aspect of body tracking with the FS-

HHMM, several evaluations are performed that cover ini-

tialisation, tracking and failure recovery, robustness to re-

duced resolutions and frame rates, action recognition and

tracking people other than the training actor. In terms of

evaluation, Walk is the broadest test of tracking capability

since the sequences are relatively long in duration, involve

movement around the entire scene and contain numerous

occlusions. In contrast, the other three actions are acyclic

motions, where the person’s movements are confined to a

small area and there is no motion cycle to give the tracker

a second chance at correcting a failure. All test sequences

contain observation errors ranging from poor segmentation

to significant occlusions. Videos of some of the results are

also available.1

Initialisation Automatic initialisation of the FS-HHMM

is an implicit part of all of the tests in this section. To test its

1www.cs.curtin.edu.au/∼peursump/demos.html
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Figure 6. Failures for Walk sequences for both the APF and FS-

HHMM. The narrow blue bars indicate the proportion of frames

in which one or more views are occluded.

behaviour explicitly, experiments were conducted to evalu-

ate the time-to-lock-on (i.e. the number of frames it takes

for the FS-HHMM to attain an accurate posture after ini-

tialisation). To this end, the ground-truth initial positions

(x, y, z, orientation) of four Walk postures are randomly

perturbed by (±0.5m, ±0.5m, ±0.1m, ±30◦), with 12 per-

turbations of each posture (48 in total). The four postures

are in different phases of the Walk motion and at different

locations in the room. Walk is tested since its range of start-

ing postures provides the most challenge to initialisation.

The resulting distribution of the time-to-lock-on is

roughly exponential with a mean of 6.77 frames (just over a

quarter of a second given the 25fps video). No perturbation

took more than 20 frames to achieve an accurate lock.

Walk Tracking In lieu of a ground-truth for the posture

sequences, the APF and FS-HHMM are analysed in terms

of manually identifying and categorising noticeable track-

ing failures according to their severity. The proportion of

frames spent in each failure category thus indicates the rel-

ative robustness of the APF and FS-HHMM to observation

errors. There are four failure categories:

• Minor: Legs locked together, poor body orientation;

• Major: Swapped legs, contorted postures;

• Critical: Reversed body orientation, leg folded over;

• Terminal: Major/critical failure that is never corrected.

Failures such as slight limb inaccuracies are not included.

Figure 6 shows the failures as a proportion of the total du-

ration for each Walk sequence, including Walk sequences

of two different people (Diff 1 and Diff 2) who are respec-

tively shorter and taller than the training actor. Note that

the FS-HHMM suffers fewer failures and never fails termi-

nally. Failures also persist for a shorter duration due to the

self-correcting mechanisms of the model. This is despite

the fact that the FS-HHMM receives no user input – posi-

tion, orientation and scale are all initialised by bootstrap-

ping from a box-tracker. In contrast, whenever an occlusion

occurs the APF usually fails. Worse, the APF has terminal

failure in every sequence and cannot recover due to its local

search approach. Note that performance does not alter much

when tracking the Diff walkers, showing the robustness of
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Figure 5. Example time lapse sequence of two views covering 100 frames and comparing the APF and FS-HHMM. Although both start

with good postures, the APF fails terminally (from body reversal) by frame 895 whereas the FS-HHMM only experiences a minor failure.

bootstrapping and tracking to different people.

The frequent observation errors means that the APF is

rarely able to maintain good-quality tracking for more than

a few frames without producing trivial failures or unnatu-

ral movements. On the other hand, when observing condi-

tions are persistently clean the APF is often more accurate

than the FS-HHMM since it is not constrained by any mo-

tion model. Surprisingly however, the FS-HHMM does not

degrade noticeably when tracking motions that moderately

diverge from the training data. Specifically, standing still or

leaning into a turn are tracked well despite not being in the

training data. However, walking backwards or non-walking

motions will cause the FS-HHMM to fail.

APF FS-HHMM
Action → Sit Stand Fridge All

# Occluded Seqs 4 of 8 4 of 8 8 of 8 (see left)
Fail Count 3 (38%) 4 (50%) 2 (25%) 0 (0%)
Mean TTF 0.53s 0.72s 1.82s -
TTF Range 0.4s-0.72s 0.52s-1.16s 1.08s-2.56s -

Table 1. Terminal failure counts mean time-to-failure (TTF) and

TTF range (min to max) for each action. Test videos are at 25fps.

Sit, Stand, Fridge Tracking These actions are analysed

differently to Walk since they are very short and so any fail-

ure is invariably terminal. Instead, they are evaluated by

considering the number of sequences that fail terminally

and the mean time until this failure – see Table 1. The APF

tracks very accurately in sequences with no occlusions since

the three actions involve fairly sedate motions, but fails ter-

minally in most sequences (9 of 12) that contain occlusions

(in Walk, every sequence contained multiple occlusions).

As with Walk, the FS-HHMM is much less sensitive to oc-

clusions and never fails terminally. However, the APF is

definitely more accurate when observations are clean since

the FS-HHMM is constrained by its motion model. The FS-

HHMM can also lag slightly behind some motions – for ex-

ample, during Stand the shadow on the chair seat can cause

the FS-HHMM to be temporarily stuck in half-seated pos-

ture (see third Stand frame of Figure 8). This is corrected

a few frames later as the person continues to rise, hence

smoothing [6] may help to minimise this issue.

Although the Fridge action has fewer terminal failures

for the APF and none for the FS-HHMM, both the FS-

HHMM and the APF are not very accurate in tracking the

person’s arms during Fridge since the opened door is de-

tected as foreground and obscures the arms (see Figure 8).

This causes the two trackers to produce multiple minor fail-

ures in arm tracking which are corrected only when the per-

son closes the door. In addition, the motions for executing

Fridge are not well-constrained by the action’s purpose –

how the fridge door is opened (e.g. from the front or side,

near or far from the fridge) is less important than the fact

that it gets opened. Hence the motion model of the FS-

HHMM is not as beneficial as it is for the other actions.
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Figure 7. Mean error of several video sequences as their resolution

(a) and frame rate (b) are reduced (all other factors are constant).

Low Resolution, Low Frame Rates Figure 7 plots the

performance of the FS-HHMM when resolution and frame

rates are reduced on several different videos of Walk. The

graphs plot the difference (mean RMSE) between each sub-

sampled case and the base case of 384×288 and 50fps. Res-

olution was reduced using bicubic subsampling (the 100%

scale case is a 384×288 bicubic re-sampling). Note that a

relatively low RMSE is around 5 or less (see Figure 4a).

Thus Figure 7a shows that the FS-HHMM is suprisingly ro-

bust to decreasing resolution – the error remains low until

the resolution is more than halved (about 160×120). This

robustness is likely due to the fact that the observations cor-

roborate the motion model rather than the other way around,

Hence lower detail can still provide useable evidence, es-

pecially given the distinctive phases of the walking cycle.

Figure 7b shows a steady, roughly exponential, degradation

when lowering the frame rate. Significant inconsistency

with the base 50fps case begins to show at frame rates below

16.7fps, and Walk3 is still quite consistent even at 12.5fps.

This ability to handle reduced frame rates arises from the et

node, which allows particles to ‘skip ahead’ to new phases

without ‘finishing’ the current phase.

Action Recognition Action recognition is evaluated by

running each model (Walk, Sit, Stand, and Fridge) against

all 34 sequences (8 per action, plus the two Diff walking

sequences). The approximate log-likelihood [6] of each run

is then calculated and the most likely model is assigned as
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the APF and FS-HHMM have difficulty tracking the arms when the fridge door is opened since the door becomes part of the foreground.

the action label. Table 2 shows the results. Although the

list of actions is small, the 100% accuracy of recognition

is encouraging given the high-dimensionality of the fea-

tures and the similarity of motions like Sit and Fridge. In

contrast, the noise and inconsistency of the APF (Section

3) makes learning distinctive models of different motions

based on the APF’s outputs a formidable challenge, hence

action recognition with the APF was not attempted.

Classed as → Walk Sit Stand Fridge Recall

Walk 10 0 0 0 100%
Sit 0 8 0 0 100%
Stand 0 0 8 0 100%
Fridge 0 0 0 8 100%

Precision 100% 100% 100% 100% 100%

Table 2. Confusion matrix for action recognition.

6. Conclusion
This paper presents a model (the FS-HHMM) that fuses

human body tracking with action recognition, and shows

that this can significantly improve robustness to observation

errors such as occlusions, poor segmentation and reduced

resolution. The approach also facilitates auto-initialisation

and self-corrections when failures do occur. A range of

experiments were conducted to test all of these aspects.

Comparison with the APF showed that although the FS-

HHMM’s tracking is not as accurate as the APF when view-

ing clean observations and sedate motion, when conditions

are not so favourable the APF quickly fails and frequently

cannot recover, whereas the FS-HHMM is far less fragile.

Issues that still face the FS-HHMM include testing the

system with a greater variety of actions and the need to unite

the individual action models into a larger hierarchy so that

actions can be chained together and segmented automati-

cally. Unmodelled motions could be then represented by

an ‘action’ that is based on a generic motion model similar

to the APF. Finally, accurately tracking actions whose mo-

tions can vary widely must also be addressed, as shown by

the difficulty of tracking the Fridge action.

Acknowledgements This research is supported by Australian

Research Council grant LP0561867. We would also like to thank

iVEC (www.ivec.org) for the use of their computer facilities.

References

[1] C. Andrieu, N. De Freitas, A. Doucet, and M. I. Jordan.

An introduction to MCMC for machine learning. Machine

Learning, 50:5–43, 2003.

[2] C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller.

Context-specific independence in Bayesian networks. In Un-

certainty in AI, pages 115–123, 1996.

[3] H. Bui, D. Phung, and S. Venkatesh. Hierarchical hidden

Markov models with general state hierarchy. In AAAI 2004,

pages 324–329, 2004.

[4] F. Caillette, A. Galata, and T. Howard. Real-time 3-D human

body tracking using Variable Length Markov Models. In

British Machine Vision Conference, pages 469–478, 2005.

[5] J. Deutscher, A. Blake, and I. Reid. Articulated body mo-

tion capture by annealed particle filtering. In IEEE CVPR,

volume 2, pages 126–133, 2000.

[6] A. Doucet, S. Godsill, and C. Andrieu. On sequential Monte-

Carlo sampling methods for Bayesian filtering. Statistics and

Computing, 10(3):197–208, 2000.

[7] M. W. Lee, I. Cohen, and S. K. Jung. Particle filter with an-

alytical inference for human body tracking. In IEEE Work-

shop on Motion and Video Computing, pages 159–165, 2002.

[8] I. Mikı́c, M. Trivedi, E. Hunter, and P. Cosman. Articulated

body posture estimation from multi-camera voxel data. In

IEEE CVPR, volume I, pages 455–460, 2001.

[9] P. Peursum. A factored-state HHMM for articulated human

motion modelling. Technical report, Curtin University of

Technology, 2006. impca.cs.curtin.edu.au/pubs/reports.php.

[10] P. Peursum. On the behaviour of the annealed particle filter

in realistic conditions. Technical report, Curtin University of

Technology, 2006. impca.cs.curtin.edu.au/pubs/reports.php.

[11] P. Peursum, S. Venkatesh, and G. West. Observation-

switching linear dynamic systems for tracking humans

through unexpected partial occlusions by scene objects. In

Int’l Conf. on Pattern Recognition, pages IV:929–934, 2006.

[12] H. Sidenbladh, M. J. Black, and D. J. Fleet. Stochastic track-

ing of 3D human figures using 2D image motion. In Euro-

pean Conference on Computer Vision, pages 702–718, 2000.

[13] C. Sminchisescu and A. Jepson. Variational mixture smooth-

ing for non-linear dynamical systems. In IEEE CVPR, vol-

ume 2, pages 608–615, 2004.

[14] T. Zhao and R. Nevatia. 3D tracking of human locomotion:

A tracking as recognition approach. In Int’l Conf. on Pattern

Recognition, volume 1, pages 546–551, 2002.




