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Abstract

Tracking over a long period of time is challenging as the

appearance, shape and scale of the object in question may

vary. We propose a paradigm of tracking by repeatedly seg-

menting figure from background. Accurate spatial support

obtained in segmentation provides rich information about

the track and enables reliable tracking of non-rigid objects

without drifting.

Figure/ground segmentation operates sequentially in

each frame by utilizing both static image cues and tempo-

ral coherence cues, which include an appearance model of

brightness (or color) and a spatial model propagating fig-

ure/ground masks through low-level region correspondence.

A superpixel-based conditional random field linearly com-

bines cues and loopy belief propagation is used to estimate

marginal posteriors of figure vs background. We demon-

strate our approach on long sequences of sports video, in-

cluding figure skating and football.

1. Introduction

Object tracking is a fundamental problem in computer

vision and has been a focus of research for many decades.

Success has been declared in many limited settings, such as

the case of rigid objects or static cameras. Object tracking

in its full generality, however, remains a challenging and un-

solved problem. Well-known difficulties include non-rigid

shape change, lack of distinctive features, complex scenes,

occlusion and, last but not the least, the issue of drifting.

Regardless of the tracking paradigm, all trackers explic-

itly or implicitly maintain several models of temporal co-

herence, including:

1. An “appearance” model telling us what is being

tracked; it could be an image patch, a histogram of

color and texture, a smooth contour or a collection of

local features.

2. A “spatial” model telling us where the object currently

is; it could be estimated either at low-level (e.g. us-

Figure 1. Frame #1, #2020 and #2764 from a figure skating se-

quence (Row 1). We intend to track an object over a long period

of time, under substantial variations of object shape, appearance

and scale, without a priori knowledge about the object. We take

a figure/ground segmentation approach, tracking by sequentially

segmenting out the figure in each frame (Row 2).

ing optical flow) or high-level (e.g. through linear and

non-linear models of dynamics).

Additional information that a tracker maintains may include

scale as well as a background model.

It is self-evident that if a tracker knows the accurate sup-

port mask of the object, tracking becomes much easier. A

spatial model that knows a support mask, rather than just

the center, may predict more reliably where parts of the ob-

ject will be in the future. An appearance model may also be

more reliably updated if a support mask is available, with

the interference of background clutter greatly reduced.

Most existing approaches to tracking, however, does not

compute such a support mask. Many assume that the ob-

ject in question has a rectangular or elliptical shape . Such

a simplifying assumption of support may work well for ob-

jects that have an approximate shape of rectangle or ellipse,

such as faces or cars. It would have trouble tracking non-

rigid objects in cluttered scenes without drifting.

In this paper we propose a paradigm, tracking by re-

peated figure/ground segmentation, for tracking an object

under large variations of shape, appearance and scale. Fig-

ure 1 shows an example of our approach. In each frame of a

video, we use a superpixel-based conditional random field

to combine both static image cues and models of temporal
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coherence. Models of temporal coherence include appear-

ance, scale, and spatial support. A soft figure/ground mask

is computed by estimating posterior marginal probabilities

of figure vs background in the conditional random field.

Tracking becomes easy using segmentation. It makes

full use of low-level and mid-level cues and does not re-

quire a rigid shape, distinctive local features or unique color.

Accurate spatial support enables reliable updates of appear-

ance and scale. We show that we can track complex mo-

tions for a long time without drifting, in color and grayscale,

without any model of dynamics or a priori knowledge of the

object. Segmentations obtained in the process also provide

much richer information about the object in motion than just

knowing the center.

2. Related Work

Traditional approaches to tracking represent objects as

either a collection of local features, a boundary contour, or

a color blob. Lucas and Kanade [15] introduced an itera-

tive image registration technique that has been widely ap-

plied to tracking local features [27]. Distinctive local fea-

tures however are not always available, and active contour

models were developed [11, 7, 19] to track the boundary of

an object and snap to high gradient locations. Incorporating

dynamics helps improve tracking, traditionally done with

linear models and Kalman Filtering. The Particle Filtering

approach of Isard and Blake [10] has a number of advan-

tages over Kalman filtering, being a non-parametric repre-

sentation that can maintain multi-modal hypotheses. More

recently, color or appearance-based tracking [6, 8] has been

popular, being robust to occlusion and clutter if the object

has a distinctive appearance.

All tracking approaches are subject to the problem of

drifting as errors gradually accumulate over time. A lo-

cal feature tracker is susceptible to distractions from occlu-

sions and clutters. Appearance-based trackers that assume

a rectangular or elliptical object shape work well for cars

and faces [1, 5, 33] but have trouble updating appearance

models for non-rigid objects. Not updating the model is a

seemingly easy workaround; but it severely limits the poten-

tial of the tracker. Heuristics have been proposed to anchor

the tracker to its initialization [17].

An alternative way to improve robustness is to incor-

porate high-level knowledge into tracking [9, 30, 18, 29].

By matching candidate tracks to stored object models, this

tracking-by-recognition paradigm avoids drifting into clut-

ter. An example in extreme is 2D or 3D part-based tracking

for articulated objects [21, 4, 28, 20]. These approaches

require detailed knowledge of the object, for instance the

body model of people. In this work we study visual track-

ing as a low-level and mid-level problem and do not use any

part-based model.

Image segmentation is a huge field of research itself

and discussing it is beyond the scope of this paper. Fig-

ure/ground segmentation with low-level cues only is in gen-

eral impossible, as the appearance of both the object and the

background may be complex; a good knowledge of the ob-

ject would be required. Recently, interesting work has been

done on figure/ground segmentation combining low-level

image cues and high-level object knowledge [3, 12, 23].

Comparing to these approaches that train on a collection

of images off-line, we utilize cues from temporal coherence

available in the tracking setting.

Motion segmentation [32, 26] is another field closely re-

lated to the theme of this work. Typically motion segmenta-

tion relies on differential motion cues such as optical flow,

and focuses on a short span of time when object appear-

ance as well as motion remain consistent. The scenario we

study in this work is different: given an initialization, we

intend to track an object for a long period of time under

large variations of shape, appearance and scale. We take

an “on-line” approach and compute figure/ground segmen-

tations sequentially in each frame as it comes in (e.g. [2]).

3. Tracking as Figure/Ground Segmentation

Object tracking is usually considered as an inference

problem about where a given object is throughout a video

sequence. A typical approach to tracking satisfies itself with

knowing the location of object center. We aim for more: we

seek an accurate spatial support of the object in each frame.

(a) (b)

(c) (d)
Figure 2. Pre-processing: for each frame (a), we use the

Probability-of-Boundary operator [16] to compute a soft bound-

ary map (b) that summarizes local brightness, color and texture

contrasts. We use a fast image partitioning technique [23], which

builds a piecewise straight approximation of the boundary map (c)

and applies constrained Delaunay triangulation (CDT) to parti-

tion the image into a set of triangles (d). In the triangulation, black

pixels are edges from the boundary map (b) and green pixels are

completions. We use triangles in this triangulation as superpixels

or atomic units in later stages of processing.

We begin by the processing of each individual frame.

Static image cues mostly come in a form of contrast, be-

2



Figure 3. Summary of our approach: images are represented as sets

of superpixels. A conditional random field operates independently

in each frame to segment figure from background, using both static

image cues and temporal coherence cues of appearance, spatial

support and scale. A region correspondence carries figure/ground

mask in the previous frame into the current frame. Once a soft

figure/ground segmentation mask is obtained, the mask is used to

update temporal coherence cues.

ing that of brightness, color or texture. We apply the

Probability-of-Boundary (Pb) operator [16], which returns

a soft boundary map that summarizes local contrast cues.

To represent an image in a more compact and perceptu-

ally meaningful way, we group pixels in the image into su-

perpixels [24], or coherent atomic regions, using a fast im-

age partitioning technique based on constrained Delaunay

triangulation (CDT) [23]. Figure 2 shows an example of

this pre-processing process. The superpixel representation

not only reduces computational complexity in later stages

of processing, but also makes computation more robust by

enforcing consistency inside superpixels.

On top of the CDT triangulation, figure/ground segmen-

tation is done sequentially in each frame. Figure 3 sum-

marizes our approach: segmentation takes both static image

cues and tracking cues, i.e. models of temporal coherence.

Temporal coherence consists of three parts: an appearance

model of brightness or color, telling us what the object looks

like; a simple scale model of size and aspect ratio; and a

spatial model telling us where the object is expected to be,

which carries figure/ground mask in the previous frame to

the current one using low-level superpixel correspondence.

We use a conditional random field model [14] to com-

bine cues for figure/ground segmentation. Let {Ti} be the

collection of triangles, or superpixels, in the current frame.

A binary random variable Xi is associated with each su-

perpixel Ti, Xi = 1 if Ti belongs to the figure, and −1 if

the background. We use loopy belief propagation to esti-

mate the marginal posterior probability Fi = E[Xi = 1],
as a soft figure mask. Once we obtain the figure mask, the

models of temporal coherence may be updated.

We show results on challenging sequences of sports

video. Our figure/ground segmentation approach reliably

tracks people under large variations of pose, appearance and

scale. Comparing to existing approaches (e.g. [18, 20])

on similar sports data, our segmentation paradigm achieves

high tracking performance without using a part-based body

model (hence applicable to generic non-rigid objects) or re-

lying on color cues.

4. Temporal Coherence

During the process of tracking, we maintain and update

three models of temporal coherence: scale, appearance, and

spatial support. These are the internal states of the tracker,

representing the tracker’s current knowledge about the ob-

ject being tracked.

For scale, we use a set of three parameters: S, size of

the object in pixels, σx, median distance to object center in

the horizontal direction, and σy , median distance to object

center in the vertical direction.

For appearance, we model brightness (or color) distribu-

tions of both the foreground object and the background, hF

and hG. We represent both distributions as histograms in

the RGB space.

The spatial model tells us where the object is expected

to be, given its location in the previous frame. To handle

complex motions and non-rigid deformations, we avoid us-

ing any dynamics model and seek to transfer figure/ground

masks across frames using low-level cues.

Let {T
(−1)
i } be the set of superpixels in the previous

frame, and let {F
(−1)}
i be the soft mask, or figureness val-

ues, associated with {T
(−1)
i }. Let {Tj} be the set of su-

perpixels in the current frame. We want to estimate a set

of features F̂j , how likely a superpixel Tj in the current

frame is part of the figure, based on {F−1
i } from the previ-

ous frame. This demands correspondence between the two

sets of superpixels {T
(−1)
i } and {Tj}.

We compute the correspondence by solving a linear

transportation problem, analogous to the Earth Mover’s

Distance [25], based on location and brightness (or color).

Let R
(−1)
i be the mass or size of the superpixels T

(−1)
i , and

Rj the size of superpixels Tj . For any pair of superpixels

(T
(−1)
i , Tj), let dij be the distance between centers of T

(−1)
i

and Tj , and let hij be the difference in average brightness.

we define the cost of the match (i → j) as a linear combi-

nation cij = wddij + whhij . Let xij represent the amount

of mass being transported from T
(−1)
i to Tj , we solve the

following linear program:

minL(x) =
∑

i,j

cijxij (1)

s. t.
∑

j

xij = R
(−1)
i ,

∑

i

xij = Rj , xij ≥ 0

To avoid high cost matches, we add an additional outlier

node for both frames. Once we have the assignments xij ,
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(a) (b) (c) (d) (e)
Figure 4. An example of temporal coherence cues. (a) is one frame in the skating sequence and (b) is the figure/ground mask we have

obtained. (c) shows the next frame. The two frames (a) and (c) are both represented as triangulations, and we compute a region correspon-

dence/assignment between the two sets of triangles. The correspondence is used to transfer the mask (b) into (d), the spatial “prior” that a

triangle in frame (d) supports the object, dark meaning high probability. At the same time, we maintain an appearance model, as brightness

histograms of both the object and the background. The appearance prior, or the likelihood ratio of the two histograms, is visualized in (e).

In this example, when no color information is available, the appearance prior (e) fires on many parts of the background, while the spatial

prior (d) is more focused on the figure.

we can estimate F̂j , the spatial “prior” that a superpixel Tj

in the current frame belongs to the figure. F̂j is computed

as a weighted average F̂j =
∑

i xijF
(−1)
i /Rj . An example

is shown in Figure 4.

After we solve the figure/ground segmentation in the cur-

rent frame and obtain a soft mask {Fj}, we update the mod-

els of temporal coherence in a straightforward way. For

example, we re-estimate the size of the foreground object,

S′ =
∑

FjRj . The size S is updated as (1 − r)S + rS′

with a fixed rate r. Other models are similarly updated.

5. Figure/Ground Segmentation

We employ a conditional random field (CRF) for fig-

ure/ground segmentation. Introduced in [14] as a model for

labeling 1D structures in natural language, conditional ran-

dom fields have become a popular technique in computer

vision, being applied to a range of vision problems includ-

ing labeling man-made structures [13] and object-specific

segmentation [23]. A conditional random field provides a

general probabilistic framework for discriminative labeling

and is especially suitable for combining multiple sources of

cues in our figure/ground segmentation problem.

Let {Ti} be the set of superpixels comprising the im-

age. Let {Xi} be the binary labels or random variables

associated with {Ti}, Xi = 1 if Ti belongs to the figure,

or −1 if the background. A conditional random field for

figure/ground segmentation defines a joint distribution of

X = {Xi}:

P (X|I; Θ) =
1

Z(I, Θ)
exp

{

−
∑

αkfk(X, I; Θ)
}

(2)

where the features fk are linearly combined in an exponen-

tial function, and Z is the normalization factor or the parti-

tion function.

5.1. Cues for Figure/Ground

The Pb boundary map summarizes local contrasts of

brightness, color and texture, and is the only static image

cue we use in the model. Let Ti and Tj be a pair of adjacent

superpixels in the current frame. If Xi = Xj , i.e. if they

belong to the same segment, there should be no boundary

between them and the contrast should be low; vice versa, if

Xi 6= Xj , the contrast should be high. Let Pbij be the aver-

age Pb contrast value along the boundary between the pair,

we may define a boundary feature, weighted by the length

of this boundary Lij :

fb =
∑

i,j

Lij

[

log

(

Pbij

1 − Pbij

)

− τb

]

(XiXj)

where τb is an offset, roughly corresponding to the average

case Pb value.

Given the appearance model hF of the object, a bright-

ness or color histogram, we can calculate hF (Ti), the aver-

age likelihood of the superpixel Ti under the model. Simi-

larly we calculate the average likelihood hG(Ti) under the

background model. Let Ri be the size or area of the super-

pixel Ti, the likelihood ratio provides the appearance cue:

fc =
∑

i

Ri

[

log

(

hF (Ti)

hG(Ti)

)]

Xi

As discussed in the last section, the spatial model of tem-

poral coherence provides F̂i, the spatial prior carried over

from figure/ground mask in the previous frame. We define

the spatial support cue:

fl =
∑

i

Ri

[

log

(

F̂i

1 − F̂i

)]

Xi

The region correspondence is computed at low-level;

hence the spatial model has no notion of the object be-

ing connected and likely convex. To keep the foreground

mask from falling apart, we compute a tentative object cen-

ter (ŷ, x̂) from F̂i, find the average distance (d̂y, d̂x) of each

superpixel Ti to this center, and normalize it with the scale
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(a) (b) (c) (d) (e)
Figure 5. Figure/ground segmentation enables reliable tracking and avoids drifting by combining both temporal coherence cues and static

image cues. For the sample frame in (a), we show in (b) a combination of the spatial prior and the appearance prior. The combined prior

is more accurate than either of the individual cues (shown in Figure 4). Nevertheless, errors inevitably occur when we transfer information

to the new frame. Our segmentation tracker utilizes both the combined temporal prior and static image cues of brightness and texture

contrasts, summarized in the contour contrast map (c). The resulting segmentation (d) closely follows the high-contrast contours and

corrects errors in the temporal prior, largely reducing the likelihood of drafting. The accurate support mask in (d) is then used to update the

object appearance and scale. As a comparison, if one approximates the object support as an ellipse (e), the ellipse cannot match the object

perfectly. Updating would be much less reliable using the elliptical support.

parameters σx and σy to be a distance cue:

fo =
∑

i

Ri





√

(
d̂y

σy

)2 + (
d̂x

σx

)2 − τo



Xi

And finally, we want to control the total size of the

superpixels assigned to the figure. Given an assignment

{Xi} = xi, xi ∈ {−1, 1}, the figure size is
∑

i:xi=1 Ri ,

and we want it to be close to the current scale parameter S.

Therefore we add a squared penalty term:

fs =

[

S −
∑

i:Xi=1

Ri

]2

/S2

5.2. Computing Figure/Ground Mask

We use loopy belief propagation [31] to solve for Fi, the

marginal probabilities of Xi. Messages in the belief prop-

agation are updated sequentially, in a fixed order. Belief

propagation is facilitated by the use of superpixels. A su-

perpixel representation greatly reduces the number of vari-

ables, and at the same time allows propagation over a long

range. Loopy belief propagation converges quickly on the

triangulation graphs, typically < 10 iterations.

The potential functions in our model are unary or binary

on the variables {Xi}, except for one, the scale potential fs

which involves all the variables. Scale, after all, is a global

parameter and cannot be decomposed into local features.

Updating messages for the scale potential requires the

estimation of an expectation, in the following form:

E{Yj}\Yk



exp(−
1

S2
(S − Rkyk −

∑

j:j 6=k

RjYj)
2)





where yk ∈ {0, 1} is a constant and {Yj} ∈ {0, 1}
are Bernoulli random variables. This expectation is obvi-

ously too costly to compute exactly. The random variables

Yj , however, only appears in a sum. We use the central

limit theorem to approximate the distribution of the sum
∑

j:j 6=k RjYj as a Gaussian. In such an approximation,

the expectations may be solved in close form. We omit the

details here.

The scale potential effectively acts as an adaptive gain

control mechanism inside the loop of belief propagation. If

the current belief states of the superpixels assign too much

mass to the figure, the scale potential sends messages to all

the superpixels to reduce the mass; if there is not enough

mass, the scale potential sends messages to increase it.

6. Experiments

We test our approach on a number of sports sequences:

a figure skating sequence of Tara Lipinski, 3117 frames,

both in grayscale and color; a skating sequence of Michelle

Kwan, 750 frames, in grayscale; and a football sequence,

940 frames, in color. All the images are of resolution 240-

by-360. We hand-initialize each sequence with a bounding

rectangle. Lacking proper training data with groundtruth,

we set the parameters of the model by hand.

Our figure/ground segmentation tracker successfully

tracks people through large variations of pose, appearance

and scale as well as severe occlusion; sample results are

shown in Figure 8. This robustness is due to the tracker’s

knowledge of multiple sources of information, combining

temporal coherence cues and static image cues. Temporal

coherence cues, including the appearance and spatial pri-

ors, roughly locate the object in a frame; static image cues,

including brightness and texture contrasts, correct errors in

the priors and refine the support mask to “snap” to object

boundaries (see an example in Figure 5). Knowing accurate

support of the object also makes it easier to update the tem-

poral coherence models on-the-fly, with the interference of

background clutters reduced to a minimum.

In Figure 6 we compare our results with a mean-shift

tracker of Zivkovic and Krose [33] , where they used an

ellipse to approximate the object shape. Mainly due to vari-

ation in pose, the mean-shift tracker gradually drifts and
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Frame #1 Frame #153 Frame #153 Frame #918 Frame #918
Figure 6. We compare our algorithm to a mean-shift based tracker [33] on the Lipinski sequence with color. The mean-shift tracker uses

an ellipse to approximate object shape. Frame #153: the mean-shift tracker confuses the object with the background, mainly because of

non-rigid deformation. Frame #918: the mean-shift tracker completely loses the object. In comparison, our segmentation tracker does not

drift and finds accurate figure segmentations.

Frame #1454 Frame #1455 Frame #1455 Frame #1461 Frame #1480
Figure 7. Our segmentation tracker restarts itself after a camera switch between Frame #1454 and #1455. Scale, spatial support and

background appearance cues are invalid after a camera switch; the figure appearance and static image cues are still valid. At first the tracker

does not know for sure where the object is, hence the figure mask spreading over the image. As time goes on, the tracker accumulates

information and gradually focuses back on the object.

loses the figure. With figure/ground segmentation, we can

track Lipinski under large variations of pose and scale.

There is one interesting caveat in the Lipinski sequence:

on a few occasions, the camera is switched, and the skater

appears at a different location with a different background.

A camera switch is easy to detect as the raw image differ-

ence between adjacent frames would be large.

Figure 7 shows an example of camera switch. Many cues

are not valid at a camera switch, such as object location,

scale, or background appearance. The tracker relies on the

foreground appearance model and static image cues to re-

start itself. At first, the tracker does not know exactly where

the object is, hence probability mass spreading out over the

image. After a few frames, however, the “belief” of the

tracker converges to the object.

This ability to restart indicates that, with a single fig-

ure/ground mask, the tracker can maintain multiple hy-

potheses, keeping alternatives around when it is not certain.

This is common when the tracker runs into an ambiguous

region, as we can see in a few places in the grayscale Lipin-

ski track and the football track in Figure 8.

In the football track in Figure 8, we see an example of

how our segmentation tracker handles occlusion. On an

occasion in the football sequence, the football player is

severely occluded, and for about 100 frames only the up-

per body is visible. Although the tracker does not keep

any history, it is able to “re-discover” the lower body af-

ter it reappears, when the lower body becomes distinctive

enough from the background. Again, this happens because

the tracker knows and utilizes both temporal coherence and

static image cues.

Successful tracking on these sequences suggests that our

approach is capable of handling non-rigid shape, appear-

ance variation, scale change as well as occlusion and back-

ground clutter. Moreover, the figure segmentations we ob-

tain are fairly accurate, with arms included in most cases

even when they are a few pixels wide and far from the

body center, without any knowledge of arms being parts of

the human body. These figure segmentations may then be

used to “learn” about the object being tracked and apply the

knowledge to static image detection [22].

7. Discussion

In this paper we have proposed a figure/ground segmen-

tation approach to object tracking. Instead of assuming a

rectangular or elliptical shape, we repeatedly apply a con-

ditional random field model of figure/ground segmentation,

and obtain a figure mask in each frame. Such a spatial sup-

port mask makes tracking more robust and less susceptible

to drifting. We show successful tracks on long sports video

with large variations in shape, appearance and scale.

In this work we have restricted ourselves to a simple

set of cues as well as a straightforward superpixel cor-

respondence algorithm. Our figure/ground segmentation

framework is general and conceptually there is no difficulty

in combining additional cues into the conditional random

field, such as shape matching, local/point feature correspon-

dence, or mid-level cues like the smoothness of boundaries

or T-junctions. It is also conceivable that more high-level

models may be added, for instance dynamics models of ob-

ject center and parts, or explicit reasoning about occlusion

and multiple object tracking.
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Figure 8. Sample results on four sequences of sports video: frame #88, #315, #840,#1624 and #1943 for the Tara Lipinski skating sequence,

both in grayscale and color; frame #99, #194, #406, #504 and #552 for the Michelle Kwan sequence in grayscale; and frame #167, #222,

#294, #451 and #882 for the football sequence. Results are shown as the original image masked by the posterior probability of figureness.

The mask is soft; we can see blending in a few places when there is ambiguity. Our conceptually simple figure/ground approach reliably

tracks and segments people in these video, even in the grayscale cases when no distinctive color or local features are available. It also

nicely handles occlusion and background clutter.
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