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Abstract—We propose a learning approach to tracking explicitly minimizing the computational complexity of the tracking process

subject to user-defined probability of failure (loss-of-lock) and precision. The tracker is formed by a Number of Sequences of Learned

Linear Predictors (NoSLLiP). Robustness of NoSLLiP is achieved by modeling the object as a collection of local motion predictors—

object motion is estimated by the outlier-tolerant RANSAC algorithm from local predictions. The efficiency of the NoSLLiP tracker stems

1) from the simplicity of the local predictors and 2) from the fact that all design decisions, the number of local predictors used by the

tracker, their computational complexity (i.e., the number of observations the prediction is based on), locations as well as the number of

RANSAC iterations, are all subject to the optimization (learning) process. All time-consuming operations are performed during the

learning stage—tracking is reduced to only a few hundred integer multiplications in each step. On PC with 1xK8 3200+, a predictor

evaluation requires about 30 �s. The proposed approach is verified on publicly available sequences with approximately 12,000 frames

with ground truth. Experiments demonstrate superiority in frame rates and robustness with respect to the SIFT detector, Lucas-Kanade

tracker, and other trackers.

Index Terms—Image processing and computer vision, scene analysis, tracking.

Ç

1 INTRODUCTION

VISUAL tracking is the process of repeated estimation of
the pose of an object (e.g., position) in an image given

its pose(s) in previous frame(s). Tracking has many
applications such as surveillance, 3D object modeling,
augmented reality, and medical imaging. Since many
applications have real-time requirements, very low compu-
tational complexity is a highly desirable property. Our
primary objective is to find a very fast tracking method with
defined precision and robustness.

A natural formulation of tracking is a search for a pose
that optimizes a similarity criterion function. For example,
Lucas and Kanade [1], [2] use the steepest descent
optimization to minimize the sum of square differences
between the template and image data (see Fig. 1). Other
approaches [3], [4], [5] scan the image by a learned
classifier, which evaluates the similarity criterion. Regres-
sion-based methods [6], [7], [8], which do not require any
criterion function, estimate the object pose directly from the
observed intensities by a learned regression mapping. The
methods proceed by collecting training examples—pairs of
observed intensities and corresponding poses—and use
machine learning techniques to learn the regression func-
tion. In tracking, the regression method is initialized by the
previous pose or, if available, by the pose derived from a
dynamic model. A learned regression function estimates

actual object pose directly from the intensities observed
around the initial location.

The more complex the regression function is, the more
achievable the precise pose estimation is. Increasing the
complexity, however, often suffers from diminishing
returns and very complex functions are prone to overfitting.
We follow a simple assumption that it is easier to estimate
the actual state if the method is initialized in the close
neighborhood of searched pose. Accepting this assumption,
it is better to exploit a less complex regression function for
coarse state estimation and use the newly obtained state for
the initialization of another function. The coarse estimate of
the state allows the consecutive regression functions to
operate within a smaller range of poses and achieve a
higher precision with reasonable complexity. Hence, in-
stead of learning a sophisticated predictor, we use a
sequence of simple regression functions concatenated so
that each of the functions compensate only errors of its
predecessor and thus refines the previous estimations.
While a single regression function operates on a fixed set
of intensities (features), the sequence of functions allows for
higher precision because the set of the intensities is updated
successively as the actual pose accuracy increases. We learn
the optimal sequence of regression functions.

Since the computational time of tracking (i.e., the overall
complexityof theused regressionmethod) isusually an issue,
the learning is formulated as a minimization of the complex-
ity subject to a user-predefined accuracy and robustness.
Note that a single regression function is a special case of a
sequence. Since the globally optimal solution is found, the
sequence is superior to a single regression function. Any
arbitrary regression function allows concatenating, but we
observed that the sequence of linear functions achieves high
precision with a low computational cost. Focusing on
sequences of linear functions we achieved an algorithm that
estimates object pose using only a fraction of processing
power of an ordinary computer.
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2 THE STATE-OF-THE-ART

The most common approach to tracking is repeated optimi-
zation of some criterion function fðt; I; t0Þ over the space of
object poses t 2 S, given image I and previous pose t0

t� ¼ argmin
t2S

fðt; I; t0Þ; ð1Þ

where t� is the estimate of the current pose of the object.
Criterion fðt; I; t0Þ includes some implicit or explicit model
of possible object appearances and optionally some relation
to t0. Criterion f could be, e.g., obtained as a similarity
function or a classifier or foreground/background prob-
ability ratio learned from training examples. We call these
methods optimization-based tracking.

Optimization-based tracking is an online optimization
process solving problem (1). While some approaches [3], [4],
[5], [9] exhaustively scan a subset of object poses S with a
classifier approximating fðt; I; t0Þ, other approaches [1], [2],
[10], [11] use a gradient optimization of a criterion
approximating fðtÞ.

Unlike optimization-based tracking, regression-based
tracking methods attempt to model explicitly a relationship
between observations and state t� without any necessity of
defining fðt; I; t0Þ. They learn a mapping ’ðI; t0Þ in a
supervised way from synthesized training data [6], [7], [8].

Tracking methods based on exhaustive scanning can
operate within a small range of poses or over the whole
image. On the other hand, tracking methods based on the
gradient optimization or regression estimate object pose
only locally within a certain range of poses. We understand
these local methods as complementary to the scanning-
based methods since every pose in a scanned grid can be
optionally preprocessed by such local method.

Tracking based on the gradient optimization does not
require any learning procedure; however, it suffers from
problems of local optimization: convergence to a local
minimum, unknown number of required iterations, and
unknown basin of convergence. In the state-of-the-art, we
further focus on regression-based tracking.

2.1 Regression-Based Tracking

Regression-based tracking approaches [6], [7], [8] estimate
location t directly from locally observed intensities. Such
approach requires a learning stage, where pairs of motions t

and corresponding observed intensities Iðt � XÞ are
collected and a mapping ’ : I ! t minimizing the error
on these examples is estimated (see Fig. 2),

’� ¼ argmin
’

X

t

’ Iðt �XÞð Þ � tk k: ð2Þ

In the tracking stage, the learned mapping ’�ðIÞ directly
estimates motion parameters without necessity of online
optimization of any criterion function.

Noticing that Lucas-Kanade tracker [1] solves a similar
optimization task in each frame, one can replace the
pseudoinverse operation by matrix H learned on a set of
synthesized examples. Mapping ’ then transforms to the
linear function between intensities IðX � tÞ and motion t,

t ¼ ’ IðXÞð Þ ¼ H IðXÞ � JðXÞð Þ; ð3Þ

where H is the matrix of some learned coefficients. In the
tracking procedure, motion parameters t are simply
computed as a linear function HðIðXÞ � JðXÞ of the object
intensities. We call such method learned linear predictor
(LLiP). In the following, the learning of LLiP is described.

Let us suppose we are given an image template J ¼ JðXÞ
and collected training pairs ðIi; tiÞ ði ¼ 1 . . . dÞ of observed
intensities Ii and corresponding motion parameters ti,
which align the object with current frame. Then, the training
set is an ordered pair ðI; TÞ, such that I ¼ ½I1 � J; I2 �
J; . . . Id � J� and T ¼ ½t1; t2; . . . td�. Given the training set,
LLiP coefficients minimizing the square of Euclidean error
on the training set are found as follows:

First, the learning task is formulated and rewritten to a
more convenient form:

H
� ¼ argmin

H

Xd

i¼1

HðIi � JÞ � ti
�� ��2

2
¼ argmin

H

kHI� Tk2F

¼ argmin
H

traceðHI� TÞðHI� TÞ>

¼ argmin
H

traceðHII>H> � 2HIT> þ TT
>Þ:
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Fig. 1. Tracking: We define visual tracking as the process of repeated

estimation of the pose of an object given an image and pose(s) in

previous frame(s).

Fig. 2. Learning linear mapping between intensities and motion in

advance. The mapping is learned by an LS method from a set of

synthetically perturbed examples.



Next, its derivative is set equal to zero:

2H�II> � 2TI> ¼ 0;

H
�
II

> ¼ TI
>;

H
� ¼ T I

>ðII>Þ�1

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Iþ

¼ TI
þ:

ð4Þ

Since the method is very fast and simple, it has various
applications in tracking approaches. In particular, Cootes
et al. [7], [12], [13] estimate the parameters of Active
Appearance Model (AAM), i.e., deformable model with the
shape and appearance parameters projected into a lower
dimensional space by the PCA. They use a linear predictor
(3) learned by the LS method (4) to estimate all parameters
of the AAM. Since the linearity holds only for a small range
of the parameters, the solution is iterated. Iterations are
computed with the same matrix, but the length of the
optimization step is locally optimized.

This approach was later adapted by Jurie and Dhome [6]
for tracking of rigid objects. Unlike Cootes et al. [7], Jurie’s
linear predictors estimate local 2D translations only. The
global motion is estimated from local motions by the
RANSAC algorithm, showing the method to be very efficient
and robust. Williams et al. [8] extended the approach to the
nonlinear translation predictors learned by Relevance
Vector Machine (RVM) [14]. Agarwal and Triggs [15] used
RVM to learn the linear and nonlinear mapping for tracking
of 3D human poses from silhouettes.

Drucker et al. [16] search for the regression function that
has at most � deviation from the actually obtained poses ti.
Their method, which is called Support Vector Regression
Machine, is similar to the Support Vector Machine [17] and
allows also the extension for nonlinear kernels. Detailed
description may be found in [18].

Zhou et al. [19] proposed greedy learning for additive
regression function:

’ðIðXÞÞ ¼
Xc

i¼1

’iðIiðXÞÞ; ð5Þ

where IðXÞ are some image features. The learning consists
of c-steps, within each of them weak regressor ’iðIðXÞ
minimizing the training error is estimated.

Zhou et al. [19] use the weak regressor formed by a linear
combination of binary functions. They constrained the
coefficients of the linear combination to have the same
absolute values. Such constraint allows to find a closed-form
solution in each of c learning greedy steps. Bissacco et al. [20]
extended the learning technique for the L-nary regression
trees and showed that it outperforms [19].

3 CONTRIBUTION

We contribute to the regression-based methods. Rather than
proposing a special learning procedure for a special type of
the regression function, we present an optimal way to
concatenate different regression functions into a sequence.
Our main idea follows the fact that the intensities (features)
of pixels located close to the searched pose are usually more
convenient for precise pose estimation than some other
intensities.

Let us suppose we are given a class of regression
functions. Each of the functions operates within a different

range of poses and has different precisions and computa-
tional complexities. Given predefined range and precision,
we want to design a regression-based tracking method. The
simplest thing one can do is to select a function with
sufficient range and precision. Of course, such a function
need not even exists and, if so, it could have a very high
computational complexity. The other possibility is to select
a sequence of functions such that the first function provides
a coarse estimate of the pose. The following function is
consequently allowed to operate within a smaller range of
poses. If it is true, that the intensities of pixels located close
to the searched pose are more convenient for the pose
estimation, such function naturally achieves a higher
precision with a reasonable complexity. Similarly, another
ancestor again refines from the precision of previously
estimated poses.

In continuation of that, we define learning as a search for
a sequence with the lowest computational complexity
subject to predefined precision and range. We learn the
optimal sequence of regression functions, which is, in
general, superior to a single function. Since LLiPs are easy
to operate and allow for good precision on low computa-
tional complexity, we demonstrate the method on the
Sequences of LLiPs (SLLiPs). Note that the linear predictor
can be naturally extended to an arbitrary linear combination
of nonlinear mappings by data lifting; therefore, the
linearity is not too much restricting condition.

We further extend the method for tracking of the objects
modeled by a set of sequential predictors. While each
predictor estimates local motion independently, object
motion is determined by RANSAC from these local motions.
We optimize the ratio between the number of RANSAC

iterations and the number of used predictors subject to a
user-predefined frame rate. Since we do not make any
assumptions about the object pose, visibility, and suitability
of the predictors, the set of used predictors must be
optimized online. Therefore, we learn a set of predictors
equally distributed on the object and select an active subset
that optimizes trade-off between coverage and quality in
each frame separately.

4 METHOD OVERVIEW

Because of robustness, the object is locally represented as a
set of compact regions. Position of each compact region is
determined by its reference point, e.g., the geometrical mean
of pixels in the region. Since we do not make any a priori
assumptions which positions are the most suitable for the
motion estimation, we learn the SLLiPs for evenly dis-
tributed reference points on the object. During the learning
stage, which is outlined in Algorithm 2, the globally optimal
SLLiPs are estimated for all reference points.

Sections 5, 6, and 7 describe learning of the individual
optimal SLLiP. Section 5 introduces definitions. Section 6
formulates the learning task as an optimization problem. In
this section, we also show that an optimal SLLiP can be
created exclusively from LLiPs learned by a minimax
method. Hence, the learning is compound: First, a set of
LLiPs is learned by minimax optimization (Section 6.1), and
then a sequence of LLiPs creating an optimal SLLiP is
selected (Section 6.2). An efficient heuristic for support set
selection that minimizes error on training data is described
in Section 7.
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Algorithm 1.

NoSLLiP tracker, which is summarized in Algorithm 2,
first selects a set of SLLiPs considering the trade-off
between the quality and coverage of a visible part of the
object (Section 8.1). These SLLiPs are used for local motion
estimation in the particular frame. The global motion is
determined by RANSAC, given the set of local motions. The
trade-off between time spent with the local and global
motion estimations is also considered and optimized in
Section 8.2. The proposed method is experimentally verified
on synthetic and real data with ground truth in Section 9.

Algorithm 2.

5 PREDICTORS, PROPERTIES, AND TERMINOLOGY

In this section, we define predictor and sequential predictor
and show their fundamental properties, which are further
used for learning. Let us suppose that the object state is
given by object pose parameters (e.g., position).1 In each
frame, we update the object state by current motion
parameters estimated by the predictor from a subset of
object pixels. The subset of the object pixels is called the
support set X ¼ fx1; . . . ;xcg. The intensities observed on the
support set X are collected in the observation vector IðXÞ.

Ideally, a predictor would use a support set minimizing
the prediction error. However, the problem has combina-
torial complexity and we discuss it later in Section 7; let us
assume for now that a support set has been selected.

We denote ðt �XÞ as the support set transformed by a
motion with parameters t. For example, if the considered
motion is a 2D translation, then ðt �XÞ ¼ ðX þ tÞ ¼ fðx1 þ
tÞ; . . . ; ðxc þ tÞg: There is a mapping from parameters t to
observations Iðt �XÞ, which is usually not invertible. We
therefore search for a mapping approximating a set of
motions t that could have generated the observation
Iðt �XÞ. This mapping, which is called a regressor, assigns a
p-vector of motion parameters to a c-vector of observation.

Regressors ’̂ are completely characterized by their complex-
ity, range, and uncertainty region.

Definition 1. Complexity cð’̂Þ of regressor ’̂ is a value
proportional to the computational cost of the regressor. It is
equal to the size of a support set for linear regressor.

Definition 2. Range Rð’̂Þ of the regressor ’̂ is a set of motion
parameters.2

Definition 3. The uncertainty region of the regressor ’̂ is the
smallest region

�ð’̂Þ ¼ �t j �t ¼ t � ’̂ Iðt �XÞð Þ; 8t 2 Rð’̂Þf g: ð6Þ

The uncertainty region is the smallest region within which all
the prediction errors from the range Rð’̂Þ lie (see Fig. 3).

In order to simplify the learning procedure, we select
only a class (e.g., circles or squares) f��g�2 IR parameteriz-
able by one scalar parameter � 2 IR such that

8 �1; �2 2 IR : �1 < �2 ) ��1
� ��2

: ð7Þ
Ranges Rr are selected from the same class of regions and
parameterized by the same parameter r 2 IR. According to
(7), parameter � (and r) are proportional to the area of the
region; therefore, we sometimes refer to it as an area of the
region and use notation �ð’̂Þ (and rð’̂Þ) to denote
corresponding values of �ð’̂Þ and Rð’̂Þ, respectively. An
extension to regions parameterizable by more than one
parameter is discussed later.

5.1 Predictors

Definition 4. Predictor ’ðc; r; �Þ is an ordered 4-tuple
ð’̂; X;Rr;��Þ, where X is the support set, c � jXj is
complexity (for linear case jXj ¼ c), ’̂ is the regressor, Rr is
range, and �� is the uncertainty region.

Even though we defined the predictor as 4-tuple, we
parameterize all predictors by the three parameters:
complexity c, range r, and uncertainty region �, the
regressor ’̂ is omitted. It actually says that two predictors
with the same ðc; r; �Þ and different regressors ’̂1; ’̂2 are
equivalent.

In order to assure that increase in complexity does not
reduce the prediction abilities, we further restrict ourselves
to the class of support sets satisfying that every support set
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1. In general, object could be represented by more than one predictor.
Such representation allows for robust object pose estimation by RANSAC and
we discuss this extension in Section 8. For now, let us suppose that only one
predictor is associated with the object. 2. Note that this is not the range in the usual mathematical meaning.

Fig. 3. Definitions: Range, accuracy, and complexity. An example with

2D translations.



contains all support sets with lower complexity. This is
assured by the successive support set construction algo-
rithm described in Section 7. This is, however, still an
insufficient assumption. It is also required that regressors
must be able to ignore values of some input pixels. In the
following definition, we define the class of such regressors.

Definition 5. Let F c denote some class of regressors ’̂ : IRc !
IRp with the same support set X. Let

F ¼ F 1 [ F 2 [ � � � [ F c � � �
� �

:

F is called domain-independent class if

8 c 8 ’̂1 2 F c 9’̂2 2 F cþ1 such that

8 I 2 IRc 8u 2 IR ’̂2ð½I; u�Þ ¼ ’̂1ðIÞ:

This is, for example, satisfied for the following class of
regressors:

F 1 ¼fa1 � x1 j a1 2 IRg;
F 2 ¼fa1 � x1 þ a2 � x2 j a1; a2 2 IRg;

F c ¼
Xc

i¼1

ai � xi j ai 2 IR; i ¼ 1 . . . c

( )
;

parameterized by coefficients ai 2 IR, because it can ignore
an arbitrary input xi by setting the corresponding coeffi-
cient to zero. On the contrary, the following class is not a
domain-independent class:

F 1 ¼fa � x1 j a 2 IRg;
F 2 ¼ a � ðx1 þ x2Þ j a 2 IRf g;

F c ¼ a �
Xc

i¼1

xi j a 2 IR

( )
;

parameterized only by one coefficient a 2 IR. In general, the
class of polynomials of an arbitrary order parameterized by
all of their coefficients is an example of the domain-
independent class.

Note that not all good properties of the predictors are
simultaneously achievable. It is clear that there is no ideal
predictor that would simultaneously have (very) low
complexity, (very) large range, and (very) small error. We
denote the achievable subset of predictors in ðc; r; �Þ space
by ! (see Fig. 4 for an example). Predictors lying on the
border of ! are very important because it will be shown
later that optimal sequential predictors are exclusively
formed from these predictors.

Definition 6. �-minimal predictors ’þðc; rÞ are predictors
having the minimal achievable � for a given range r and
complexity c:

’þðc; rÞ 2 argmin
’

� j ’ðc; r; �Þ 2 !f g: ð8Þ

Note that �-minimal predictors are the predictors lying on
the boundary of ! (see Fig. 4c).

A simple consequence of Definition 5 is that more
complex predictors can do everything that the simpler ones
can. This is shown in the two following propositions, which
summarize the properties of �-minimal predictors. The
propositions are not crucial for the understanding of the

learning procedure; however, we later use them to prove
that the learning algorithm can be simplified.

Proposition 1. The uncertainty region of a �-minimal

predictor is a nonincreasing function of the complexity c.

Proof. We prove that the uncertainty region cannot increase
with complexity (see, for example, Fig. 4a). Let us
suppose we are given two �-minimal predictors with
regressors ’̂þ

1 2 F c; ’̂þ
2 2 F cþ1. Since �-minimal predic-

tors are predictors with minimum uncertainty region,
their regressors have to satisfy

’̂þ
1 2 argmin

’̂12F c

�ð’̂1Þ; ð9Þ

’̂þ
2 2 argmin

’̂22F cþ1

�ð’̂2Þ: ð10Þ

We prove that a regressor with higher complexity ’̂þ
2 has

the uncertainty region smaller or equal to the uncertainty
region of a regressor with smaller complexity ’̂þ

1 , i.e.,
�ð’̂þ

1 Þ 	 �ð’̂þ
2 Þ. This fact is shown by contradiction;

therefore, we assume that

� ’̂þ
1

� �
< � ’̂þ

2

� �
: ð11Þ

Since we know that ’̂þ
1 2 F c, then, according to Defini-

tion 5, there exists some ’̂þ
3 2 F cþ1 such that

8 I 2 IRc 8u 2 IR ’̂þ
3 ðIÞ ¼ ’̂�

1ð½I; u�Þ:
It also implies that �ð’̂þ

3 Þ ¼ �ð’̂þ
1 Þ. Hence, according to

the assumed inequality (11),

� ’̂þ
1

� �
¼ � ’̂þ

3

� �
< � ’̂þ

2

� �
:

This leads us to the contradiction, because there exists
regressor ’̂þ

3 , which has smaller uncertainty region
than ’̂þ

2 , and therefore ’̂þ
2 could not be the optimal
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Fig. 4. Set of achievable predictors. Color codes the size of uncertainty

region. (a) �-lower bound as a function of complexity. (b) Complexity as

a function of range. (c) Set of achievable predictors in ðc; r; �Þ-space.
(d) Rolled-out �-lower bound.



solution of problem (10) and, consequently, ’̂þ
2 could

not be the regressor of any �-minimal predictor with
complexity cþ 1. tu
Note thatProposition1 isvalid for arbitrarypredictors that

are optimal with respect to some criterion. For example, if we
hadbeendealingwithpredictorsminimizingmeaneuclidean
prediction error, say e, then theminimal ewould have been a
nonincreasing function of the complexity as well.

Proposition 2. Uncertainty region of �-minimal predictor is a
nondecreasing function of the range.

Proof. Given two �-minimal predictors

’þ
1 ¼’þðc; r1Þ ¼ argmin

’
� j ’ðc; r1; �Þ 2 !f g;

’þ
2 ¼’þðc; r2Þ ¼ argmin

’
� j ’ðc; r2; �Þ 2 !f g;

such that r2 > r1, we prove that the predictor with larger
range r2 has larger or at most the same uncertainty
region as a predictor with smaller range r1, i.e.,
r2 > r1 ) �ð’þ

2 Þ 	 �ð’þ
1 Þ.

The implication is proved by contradiction. We
assume r2 > r1 and �ð’þ

2 Þ < �ð’þ
1 Þ. Since Rr1 � Rr2 , the

predictor ’2 can also predict every motion from range r1.
Consequently, we can define a new predictor ’0

1 ¼
ð’̂þ

2 ; X;Rr1 ;��2
Þ operating on range r1 with

� ’0
1

� �
¼ � ’þ

2

� �
< � ’þ

1

� �
: ð12Þ

This is in contradiction to the fact that ’þ
1 is a �-minimal

predictor becausewehave just foundanotherpredictor’0
1,

which has a smaller uncertainty region. tu

5.2 Sequential Predictor

It directly follows from Proposition 1 that the higher the
complexity is, the better the prediction is. However, increas-
ing the complexity has diminishing returns (see, for example,
Fig. 4). For large ranges, it is usually very difficult to achieve a
good prediction even with the complexity corresponding to
the cardinality of the complete template. In order to overcome
this limitation, we develop a sequential predictor � ¼
’1 . . .’mð Þ (see Fig. 5), which estimates vector of motion
parameter t inm steps as follows:

t1 ¼ ’̂1 IðX1Þð Þ;
t2 ¼ ’̂2 Iðt1 �X2Þð Þ;
t3 ¼ ’̂3 Iðt2 � t1 �X3Þð Þ;

..

.

tm ¼ ’̂m I 

m�1

i¼1

ti

� 	
�Xm

� 	� 	
;

t ¼ 

m

i¼1

ti:

The first vector of motion parameters t1 is estimated
directly by predictor ’1 from the intensities observed in
support set X1. This predictor has a known uncertainty
region �1 within which all its predictions lie. Therefore, the
successive predictor ’2 is learned only on the range r2 � �1

corresponding to this uncertainty region, which is usually
significantly smaller than range r1 of the first predictor. The
smaller range yields the smaller uncertainty region. The

advantage is that the predictors in the sequence are more
and more specific, which consequently allows the predic-
tion to be very accurate for reasonably textured regions. It is
experimentally shown that the sequential predictor, which
is superior to a single predictor, yields significantly lower
complexity and a higher precision.

Obviously, we consider only those sequential predictors
that satisfy Rð’̂iþ1Þ � �ð’̂iÞ, i ¼ 1 . . .m� 1. The range of
each particular predictor must accommodate the uncer-
tainty region of its predecessor at least. The uncertainty
region of the sequential predictor is understood as the
uncertainty region of the last predictor and its range as the
range of the first predictor.

Definition 7. The sequential predictor of order m is an
m-tuple � ¼ ð’1ðc1; r1; �1Þ; . . . ; ’mðcm; rm; �mÞ of predictors
’i 2 ! such that Rðriþ1Þ � �ð�iÞ, i ¼ 1 . . .m� 1. The
uncertainty region of the sequential predictor � is �m and
its range is r1.

6 LEARNING OPTIMAL SEQUENTIAL PREDICTORS

In the previous section, we defined the predictor and the
sequential predictor. In this section, we first define the
optimal sequential predictor and show that it can be created
exclusively from the �-minimal predictors (Definition 6).
Section 6.1 describes learning of the �-minimal predictor,
given a training set. In Section 6.2, a set of �-minimal

predictors with different complexities and ranges is
learned; selection of an optimal sequence of the predictors
from the set is formulated as a search for the cheapest path
in a graph.

Definition 8. The optimal sequential predictor is

�� ¼ argmin
�2�;m2 INþ

Xm

i¼1

ci j r1 	 r0; �m � �0

( )
; ð13Þ

where � is the set of all sequential predictors, r0 is the
predefined range, �0 is the predefined uncertainty region, and
INþ is the set of positive integral numbers.
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Fig. 5. Sequential predictor � ¼ ð’1 . . .’mÞ estimates vector of motion
parameters t (denoted by red arrow) inm steps bym different predictors

’1 . . .’m. Particular predictors and the number of steps are the subject

of learning.



Proposition 3. There is at least one optimal sequential predictor

created exclusively from the �-minimal predictors.

Proof. The proposition is proven by showing that any
non-�-minimal predictor can be replaced by a �-minimal

predictor of the same complexity. It is then clear that, for

every non-�-minimal predictor ’i from the optimal

sequence, there exists a �-minimal predictor ’þ
i with

the same complexity, such that the following holds:

� ’þ
i

� �
� �ð’iÞ � Rð’iÞ � R ’þ

i

� �
:

Therefore, ’þ
i can replace ’i. tu

Therefore, we consider only predictors with the smallest

uncertainty region �, i.e., predictors lying on the �-lower

bound defined by (8). In that way, the �-lower bound,
2D manifold in ðc; r; �Þ space (Fig. 4c), is rolled out to the

ðc; rÞ space (Fig. 4d). Task (13) reduces to

�� ¼ argmin
�2�þ;m2INþ

Xm

i¼1

ci j r1 	 r0; �m � �0

( )
; ð14Þ

where �þ is the set of sequential predictors created only by

the �-minimal predictors (8).
The procedure of linear �-minimal predictor learning is

carried out by linear programming in Section 6.1. In
Section 6.2, a sequence of the �-minimal predictors creating

the optimal sequential predictor �� (14) is selected from a

set of learned �-minimal predictors. The problem is

formulated as searching of the cheapest path in a graph.

6.1 Learning Linear �-Minimal Predictor ’̂þ

6.1.1 Linear Predictor

In order to estimate a predictor satisfying (8), the regressor ’̂
needs to be specified in detail. We restrict ourselves to

LLiPs, i.e., predictors with linear regressor.
Linear regressor ’̂L is a linear mapping defined as

t ¼ ’̂LðIÞ ¼ HI; ð15Þ
where H is a 2 c matrix. Similarly, sequential linear
predictor is the SLLiP. Note that the time required for

motion estimation by LLiP is determined by the size of its

support set; therefore, c ¼ jXj.

Although we will further work with linear predictors,

the method allows a natural extension to an arbitrary class

of functions formed by a linear combination of kernel

functions by data lifting. Polynomial mapping of a given

order is an example. In that case, all monomials are

considered as further observed intensities. It allows the

learning procedure to deal with nonlinear mappings via

linear mappings with higher dimension.
Training set construction. Let us suppose we are given a

reference point, a support set, and a predefined range of

motionwithinwhich the regressor is assumed to operate.We

perturb the support set by the motion with parameters qi

randomly (uniformly) generated inside the range. Each

motion qi warps the support set X to a set Xi, where a

vector of intensities Ii is observed (see Fig. 6). Given the

observed intensity, we search for a mapping assigning

motion ti ¼ �ðqiÞ, which warps the support set Xi back to

the original support set X. These examples are stored in

matrices I ¼ ½I1 . . . Id� and T ¼ ½t1 . . . td�. The ordered triple

ðI; T;XÞ of such matrices and ordered d-tuple of support

sets X ¼ X1 . . .Xd
� �

is called a training set.
Learning linear regressor given a training set. Let us

suppose we are given a training set ðI; T; XÞ. While Jurie and

Dhome [6] obtain H by the least squares method

H ¼ TI
þ ¼ TI

>ðII>Þ�1, we search for �-minimal predictor

(Definition 6), i.e., the predictorwith the smallest uncertainty

region (8). As wementioned before, the uncertainty region is

assumed to be from a class parameterizable by one scalar

parameter�. In the following,we showhow to find�-minimal

predictor for the class of squares and rectangles. See the

Appendix, which can be found on the Computer Society

Digital Library at http:// doi.ieeecomputersociety.org/

10.1109/TPAMI.2008.119, for other uncertainty region

classes (e.g., circles or ellipses).
Restricting to the square-shaped uncertainty regions

centered in the origin of the coordinate system (see

Fig. 7a) and parameterized by parameter � (8) defining

the �-minimal predictor, simplifies as follows:
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Fig. 6. The image is perturbed by the motion parameters included in the range r, creating the set of synthesized examples of observed intensities Ii

and motions ti.



H
� ¼ argmin

H

max
i

kHIi � tik1
� 	

¼ argmin
H;�

f� j 8ijHIi � tij < 1�g

¼ argmin
H;�

�

subject to : �� � ðHIiÞk � tik � �;

i ¼ 1 . . . d; k ¼ 1; 2:

ð16Þ

We reformulate problem (16) as a linear program

min
x

fc>x j Ax � bg; ð17Þ

where

x ¼

h1

..

.

hp

�

2
66664

3
77775
; c ¼

0

..

.

0

1

2
66664

3
77775
; A ¼

I
>

0 . . . 0 �1

0 I
> . . . 0 �1

..

. . .
. ..

.

0 . . . 0 I
> �1

�I
>

0 . . . 0 �1

0 �I
> . . . 0 �1

..

. . .
. ..

.

0 . . . 0 �I
> �1

2
66666666666666664

3
77777777777777775

;

b ¼

t1

..

.

tp

�t1

..

.

�tp

2
6666666666664

3
7777777777775

;

with hi as the column vector corresponding to the ith row
of matrix H.

Since the computation of each component of the
predicted parameters can be considered as an independent
task, estimation of each row of H is solved separately.3

Hence, the task splits into p independent linear problems,
where each of them determines one row hT�

j of matrix H.
The problem is solved as follows:

hT�
j ¼ argmin

hj

max
i

h>
j I

i � tij

���
���
1

n o

¼ argmin
h>
j ;�j

�j j 8i h>
j I

i � tij








 < �j

n o
:

Denoting

xj ¼
hj

�j

� �
; c ¼

0

..

.

0

1

2
664

3
775; A ¼ I

> 0 �1

�I
> �1 0

� �
; bj ¼ ½tj�;

linear programming problem (17) is obtained. The shape of
such uncertainty region is a rectangle, which is in 2D space
parameterized by two parameters—length of its sides (see
Fig. 7c). Since we want to work with uncertainty regions

parameterizable by one parameter, it could be considered as
a square with the side equal to the longer rectangle side.
The result is the same as if the square shape is assumed in
advance and the learning is significantly faster.

If L1 in problem (16) is replaced by L1, the uncertainty
region is L2 hypercube (square in 2D) rotated by 45� and the
problem is solved alike (see Fig. 7b). The combination of L1
and L1 norms also allows to work with L2 circle approx-
imation (see Fig. 7d). Note that we can also work with
elliptic regions as shown in Figs. 7d, 7e, 7f, and 7g. In order
to adjust a trade-off between the robustness of the minimax
solution and the accuracy of the LS solution, it is also
possible to formulate the criterion as a weighted sum of LS
error and minimax error, which can be shown to be a
semidefinite problem (see Fig. 7h). A detailed description of
such uncertainty region extensions can be found in [21].

6.2 Learning Optimal Sequential Predictor ��

In this section, we describe the selection of the optimal
sequence of predictors from a set of learned �-minimal

predictors. We assume that we are able to estimate the
�-minimal predictors (8), e.g., the linear predictors as shown
in the previous section. The set of �-minimal predictors
’þðc; rÞ for somediscretized values of complexities c 2 C and
ranges r 2 R is denoted by !þ. Note that !þ is actually a
subset of the set of all possible�-minimalpredictors; however,
for the sake of simplicity, we use the same notation. Fig. 8a
shows uncertainty region �ðc; rÞ (size coded by color) of the
�-minimal predictors as a function of complexity c 2 C

(vertical axis) and range r 2 R (horizontal axis).
Given the set !þ, predefined range r0, and uncertainty

region �0, we search for an ordered subset of !þ that forms
the optimal sequential predictor ��, which minimizes the
complexity. Since the predefined range r0 of the sequential
predictor is the range r1 ¼ r0 of the first predictor in the
sequence, the first predictor must lie in the corresponding
(usually the most right) column. For this range, the
predictors with different complexities are available in that
column. The higher the complexity is, the smaller the
uncertainty region (see Fig. 8a), where the size of the
uncertainty region decreases with the complexity for each
particular range. Selection of a particular complexity c1
determines the first �-minimal predictor ’þðc1; r1Þ in the
sequence. The size of the corresponding uncertainty region
�ð’þðc1; r1ÞÞ determines an admissible range r2 of the
following predictor, which has to be at least as large as the
uncertainty region according to its definition, i.e.,
r2 	 �ðc1; r1Þ. The following proposition shows that it is
sufficient to consider only the smallest possible range.

Proposition 4. Range ri of a �-minimal predictor ’þðci; riÞ in
an optimal sequence of �-minimal predictors has to be as tight
as possible to the uncertainty region �i�1 of its predecessor,
i.e., asymptotically, in a continuous case ri ¼ �i�1.

Proof. The uncertainty region is a nonincreasing function of
complexity, according to Proposition 1:

c2 > c1 ) �ð’þðc2; rÞÞ � �ð’þðc1; rÞÞ:
However, a �-minimal predictor whose complexity can
be decreased without uncertainty region increase cannot
be part of an optimal sequence. We therefore consider
only a �-minimal predictor whose uncertainty region is a
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3. This is significantly faster than the computation of one larger problem.



decreasing function of complexity, i.e., for which the
following holds:

c2 > c1 ) �ð’þðc2; rÞÞ < �ð’þðc1; rÞÞ;

and, consequently,

�ð’þðc2; rÞÞ 	 �ð’þðc1; rÞÞ ) c2 � c1: ð18Þ
Hence, the uncertainty region is strictly a decreasing
function of the complexity. Putting this together with
Proposition 2, which claims that the uncertainty region is
a nondecreasing function of range, we prove that the
complexity is a nondecreasing function of the range for
every fixed �0 ¼ �ð’þðc1; r1ÞÞ ¼ �ð’þðc2; r2ÞÞ because

r2 > r1 )
Prop:2

�ð’þðc1; r2ÞÞ 	 �ð’þðc1; r1ÞÞ
�ð’þðc2; r2ÞÞ 	 �ð’þðc2; r1ÞÞ
�ð’þðc1; r1ÞÞ ¼ �ð’þðc2; r2ÞÞ

)

) �ð’þðc1; r2ÞÞ 	 �ð’þðc2; r2ÞÞ
�ð’þðc1; r1ÞÞ 	 �ð’þðc2; r1ÞÞ

)
Eq: ð18Þ

c2 � c1:

Since the complexity is a nondecreasing function of the
range, considering a larger range ri > �i�1 than neces-
sary leads only to the increase of the complexity ci.
Taking into account that this would necessarily increase
the complexity of the resulting sequential predictor, the
smallest possible range ri ¼ �i�1 must be used. tu
Note that if only the smallest possible ranges are

considered, then the constructed graph has at most jCj �
jRj edges. On the contrary, without Proposition 4, the
constructed graph would have jCj � jRj2 edges.

The arrows in Fig. 8a show the smallest possible ranges for
the predictors with different complexities. A sequence with
the last predictor with uncertainty region �m smaller than �0

can be constructed, see, for example, the two sequences in

Fig. 8b. Furthermore,we search for the sequence consisting of
predictors converging to the sufficiently small uncertainty
regions with the lowest complexity.

We formulate the previous problem as the
search for the cheapest path in the graph
G ¼ ðV � R;E � RR;� : E ! CÞ, where R is the set of
considered ranges, C is the set of considered complexities,
and operator � assigns a cost to each edge (see Fig. 8). It
means that each range is associated with a vertex and a set
of edges starting from this range, which stand for predictors
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Fig. 7. Different classes of uncertainty regions: Points correspond to the prediction errors �t of 2D translation on a training set. Errors of the

predictor learned by the LS method are in blue and by the minimax method in red. Uncertainty regions and ranges are black. Only (a), (b), and (e) are

described in this paper, see [21] for a detailed description of the other classes. (a) L1-circle. (b) L1-circle. (c) Biased rectangle. (d) LP circle approx.

(e) LP rectangle. (f) LP ellipse approx. (g) SDP ellipse. (h) SDP LS ellipse.

Fig. 8. (a) Construction of a graph G from a set of �-minimal

predictors !þ. Different complexities of the first predictor lead to different
uncertainty regions and therefore different ranges of the second
predictor. Edges from the range r0 of the first predictor, depicted by
black arrows, show the ranges of the second predictor corresponding to
the complexities of the first predictor. The cost of edges corresponds to
the complexities. (b) Two paths to the target ranges (solid line denotes
the optimal path).



with different complexities. Edge cost is equal to its
complexity. We construct the graph by adding forward
edges for each particular range.

The Dijkstra algorithm [22] searches for the cheapest
path to the ranges with predictors with sufficiently small
uncertainty regions, depicted by red circles in Fig. 9a. These
predictors are called target predictors and their ranges are
called target ranges. The solution is a sequence of predictors
associated with edges on the cheapest path to a target range
plus its cheapest target predictor. If more than one target
range exists, then there are more possible solutions and the
cheapest solution is selected. The solution is the optimal
sequential predictor (14). The method is summarized in
Algorithm 3.

Algorithm 3.

The optimal path is depicted in Fig. 9a. For
instance, the optimal sequence for the example
in Fig. 9a, where r0 ¼ 100, �0 ¼ 2, is created as
�� ¼ ð’þð140; 25Þ; ’þð100; 12Þ; ’þð100; 5ÞÞ and the corre-
sponding uncertainty regions are (10, 4.5, 2).

Note that, due to simplicity, we focus on the one-variable
parameterized uncertainty regions. Extension of the pro-
posed method to the more than one-variable parameterized
uncertainty regions is straightforward. For w-dimensional

parameterization of the uncertainty region, !þ is wþ 1-
dimensional space.

7 SELECTION OF SUPPORT SET FOR EFFICIENT

TRACKING

Until now, we assumed that the support set was given.
Since the support set selection, which minimizes an error on
a training set, has combinatorial complexity, we propose a
heuristic method. The only condition on the proposed
heuristic is that every selected support set of complexity c

also contains support set of complexity c� 1, which
consequently assures monotonicity of the �-bound, as
shown in Section 5.

Let us suppose we are given training set ðI; T;XÞ with
support set covering the whole object. We define a support
set selection vector u 2 f0; 1gb, which determines the
support set selected from a b-pixel template; used pixels
marked by ones, unused pixels marked by zeros, respec-
tively. The prediction error of a predictor operating on the
support set selected by u is

eðuÞ ¼ T� T Iðu; :Þð ÞþIðu; :Þ
�� ��2

F
; ð19Þ

where Iðu; :Þ is a submatrix of I with rows selected by u.
Given a desired complexity c, the optimal solution of the
problem

u� ¼ argmin
u2f0;1gb;
kuk1¼c

eðuÞ ð20Þ

is usually intractable because the problem has combinator-
ial complexity. Therefore, we propose the following greedy
LS algorithm for the support set selection problem, which
searches for a solution convenient for efficient tracking.

Algorithm 4.

Recently, an extension to LK tracker was published by
Benhimane et al. [23], where the most convenient (with
respect to gradient optimization method) subset of pixels is
selected during a training stage. According to the published
experimental data, such improvement decreases error rate
of no more than 20 percent. While Benhimane et al.
optimize only the subset of pixels and preserves the
gradient-based tracking, we optimize both the set of pixels
and the motion estimation method.

8 TRACKING OBJECTS WITH A KNOWN

GEOMETRICAL MODEL

If the object is represented only by a single SLLiP, the
robustness to partial occlusions/noise and the dimension-
ality of predicted motions are limited. Therefore, we
represent the object by Number of SLLiPs (NoSLLiP tracker).
Such a representation requires a geometrical model of the
object. Since the geometrical model estimation is beyond the
scope of this work, wemainly work with planar or piecewise
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Fig. 9. (a) Size of uncertainty regions (coded by colors) as a function of
complexity c (vertical axis) and range r (horizontal axis) and the optimal
path from the initial r0 to a predictor with sufficiently small uncertainty
region (red circles). (b) Size of uncertainty region after each iteration
(number of LLiPs ¼ 0 corresponds to the range r0 ¼ 25).



planar objects, the accurate geometricalmodel ofwhich could
be manually estimated with negligible effort.

Besides the geometrical model estimation, many other
questions must be answered: in particular, how many
SLLiPs should be used, where it should be attached to the
model, and how particular motion contributions should be
combined. In our approach, we follow the most common
way of robust motion estimation based on RANSAC. Since
we do not make any assumptions about the object pose, we
learn SLLiPs equally distributed on the object. During the
tracking stage, a set of active SLLiPs, maximizing a trade-off
between coverage and quality, is automatically selected and
used for motion estimation. This method is introduced in
Section 8.1. It is also not clear how many SLLiPs should be
used and how many RANSAC iterations should be
computed. Section 8.2 describes the method estimating the
ratio between NoSLLiP and number of RANSAC iterations,
which maximize a probability of successful tracking.

8.1 Online Selection of Active Predictor Set

Let us suppose that a set of SLLiPs evenly distributed on the
object is available. In the following, we describe how to
select a subset of SLLiPs, which assures both a reasonable
coverage of the object and quality of SLLiPs. It is not
possible to find the set of regions suitable for object tracking
independently on the object position because, if the object
changes its pose, some points can disappear and the global
motion estimation can easily become ill-conditioned. In this
section, we present an online method that automatically
selects a subset of n predictors, called active predictor set,
from all visible predictors.

To optimize the distribution of SLLiPs across the surface,
we define coverage measure rðZÞ and quality measure qðZÞ of
the set of SLLiP’s reference points Z. Note that we have no
theoretical justification for these definitions and we do not
claim that this is the only right way to define it. We provide
only one possible definition that might not be convenient
for some applications.

Definition 9. Coverage measure is

rðZÞ ¼
X

z2Z
dðz; Z n zÞ; ð21Þ

where distance between point z and set Z is defined as the
distance from the closest element of the set

dðz; ZÞ ¼ min
y2Z

kz� yk: ð22Þ

Ideally, for optimal robustness to occlusion, the coverage
measure would be maximized. In practice, particular
SLLiPs differ by their complexities. Complexity corre-
sponds to the suitability of SLLiP neighborhood for motion
estimation. We have experimentally shown that the lower
the complexity, the higher the robustness. Therefore, we
derive the quality measure from complexity cðzÞ.
Definition 10. Quality measure is

qðzÞ ¼ cðzÞ �max
y2Z

cðyÞ










: ð23Þ

To find a suitable subset Z of predictors from all visible
predictors eZ, we seek to optimize the weighted sum of the
coverage r and quality q:

fðZÞ ¼ w
rðZÞ
rð eZÞ

þ ð1� wÞ qðZÞ
qð eZÞ

; ð24Þ

where w 2 ½0; 1� is the coverage weight. Algorithm 5 selects
a set of active SLLiPs, given predefined number of SLLiPs n.

Algorithm 5.

Fig. 10 shows the results obtained for w ¼ f0; 0:1; 0:5; 1g.
If w ¼ 0, n predictors with the highest quality are selected
and SLLiPs are stacked in one corner. Conversely, w ¼ 1

causes that SLLiPs are equally spread across the object.

8.2 Object Motion Estimation

Objects are modeled as a spatial constellation of optimal
SLLiPs (henceforward just predictors), which estimates
2D translation. Object motion is estimated from these local
translations by RANSAC algorithm. We understand tracking
as a time-limited task, where the object pose needs to be
estimated from a camera image before the next image
comes. There is a trade-off between the time spent with the
local motion estimation and the global motion estimation.
While there are n local motions estimated by n predictors,
the global motion is estimated by h iterations of RANSAC.
The longer the time spent with each particular step, the
higher the probability of successful tracking. We address
the following question: Given the frame rate and the
computational costs of different operations at a specific
computer, how many predictors should be used and how
many RANSAC iterations should be performed in order to
maximize the probability of successful tracking?

The probability of a successful pose estimation in
h-iterations of the RANSAC method is

PRðk; hÞ ¼ 1� 1� k

n

� 	v� 	h

; ð25Þ

where n is the number of tracked points, k is the number of
successfully tracked points, and v is the minimal number of
points needed for the pose estimation. Note that k

n
is the

percentage of the successfully tracked points (inliers). The
number of successfully tracked points k is not known in
advance, it is a random quantity with binomial distribution

PkðkÞ ¼ Pbinðn; kÞ ¼
n

k

 �
pkð1� pÞn�k

; ð26Þ
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Fig. 10. Object coverage by predictors for different weightings. Blue
circles correspond to all learned predictors and red crosses to the

selected predictors. Size of crosses corresponds proportionally to the

complexity. (a) w ¼ 0. (b) w ¼ 0:1. (c) w ¼ 1.



where p is the probability of successful tracking of each
particular reference point. Hence, the probability of
successful tracking is

Psuccessðn; p; hÞ ¼
Xn

k¼1

PRðk; hÞPkðkÞ ¼
Xn

k¼1

PRðk; hÞPbinðn; kÞ

¼
Xn

k¼1

1� 1� k

n

� 	m� 	h
" #

n

k

 �
pkð1� pÞn�k

:

In the rest, we assume that p is a constant value that has
been estimated, e.g., online as a mean number of inliers or
measured on training data. Psuccessðn; p; hÞ is therefore
replaced by P̂successðn; hÞ. The case where p is not fixed is
discussed later. Given

. the maximum time twe are allowed to spend in pose
estimation,

. time t0 of one RANSAC iteration, and

. times t1; . . . ; tn required for local motion estimation
or reference points 1; . . .n,

we formulate the following constrained optimization task:

ðn�; h�Þ ¼ argmax
n;h

P̂successðn; hÞ j ht0 þ
Xn

i¼1

ti � t

( )
: ð27Þ

Since, the probability P̂successðn; hÞ is a monotonously
increasing function in all variables, the maximum has to
be located on the boundary f½n; h� j ht0 þ

Pn
i¼1 ti ¼ tg of the

constrained set. Consequently, problem (27) can be rewrit-
ten as the unconstrained 1D problem as follows:

n� ¼ argmax
n

P̂success n;
t�Pn

i¼1 ti

t0

� 	
¼ argmax

n
P successðnÞ:

ð28Þ
We are not able to prove analytically the concavity of this
function, but it is experimentally shown that P successðnÞ is a
concave function. If interested in a real-time application,
Golden mean optimization is a natural choice. The prob-
ability evaluation is very simple and the computational time
can be practically neglected.

9 EXPERIMENTS

Properties of SLLiP tracking and learning algorithms are
experimentally verified. In Section 9.1, some preliminary
results on challenging sequences are demonstrated. In
Section 9.2, robustness and accuracy are evaluated on
ground-truthed sequences. In particular, Section 9.2.1 de-
scribes ground-truthed data and Section 9.2.2 compares
SLLiP to the state-of-the-art approaches. In Section 9.3,
additional properties such as relation between robustness
and speed relation between predefined and achieved
accuracy are summarized.

9.1 Preliminary Qualitative Evaluation

In the first experiment, the NoSLLiP tracker is qualitatively
evaluated on real sequences with planar and 3D rigid
objects, which exhibit oblique views, motion blur, partial
occlusions, and significant scale changes.4 Tracking of
various objects with partial occlusions and motion blur is
shown in Fig. 11. Green/blue circles outline inliers/outliers,
and red arrows show local motions estimated by SLLiPs. In
some images also, the support set is outlined by blue points.
Tracking of objects with variable set of active predictors is
demonstrated in Figs. 12 and 13. The active set of visible
SLLiPs is estimated by Algorithm 4. Yellow numbers denote
IDs of particular SLLiPs. Although we mainly work with
planar objects in order to avoid problems arising from
inaccurate 3D reconstruction, SLLiPs are attachable to an
arbitrary 3D model (see, for example, Fig. 13).

9.2 Quantitative Evaluation of Robustness and
Accuracy

9.2.1 Ground-Truthed Data

The quantitative evaluation of robustness and accuracy of
SLLiPs is conducted on sequences with three different
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4. We encourage the reader to look also at video sequences available at
http://cmp.felk.cvut.cz/demos/Tracking/linTrack.

Fig. 11. Robustness to partial occlusions and fast motion: Green/

blue circles outline inliers/outliers and red arrows show local motion

estimated by SLLiPs. Support set is outlined by blue points.

Fig. 12. Tracking with a variable set of active predictors: Yellow

numbers denote IDs of particular SLLiPs. Blue points represent support

set, green circles highlight inliers, and red arrows outline local motion

estimated by SLLiPs.

Fig. 13. Three-dimensional tracking: Variable set of active predictors

and motion blur.



objects: MOUSEPAD (MP), TOWEL, and PHONE, where
ground truth positions of the object corners in a total
number of 11,963 frames were manually labeled5 (see
Fig. 14, for some examples). Accuracy is measured by
average error in object corners. Error is expressed in
percentage and normalized by the actual size of the object
upper edge, in order to make the measure independent to
the actual scale. Robustness is measured by the number of
loss-of-locks, defined as the cases where the error was
higher than 25 percent in at least one of the corners. In loss-
of-lock frames, the tracker was reinitialized from the
ground truth and the accuracy did not contribute to the
total accuracy statistics.

9.2.2 Comparison of SLLiPs to the State-of-the-Art

Table 1 compares the NoSLLiP tracker to the state-of-the-art
Lowe’s SIFT detector [24] (method: SIFT),6 Lucas-Kanade
tracker [1] (method: LK tracker), and Jurie’s LLiP tracker
learned by the Least Squares method [6] (method: LLiP LS).
All of these local motion estimators were combined with
RANSAC to keep test conditions as similar as possible. SIFT
mainly fails in frames with strong motion blur or in frames
where the object was very far from the camera. LK tracker,
which estimates the local motion at Harris corners,
provided quite good results on the frames where the object
was far from the camera, but its basin of attraction was, in
many frames, insufficient for correct motion estimation and
the tracking failed for fast motions.

According to the detailed speed comparison published
in [2], six-parameter optimization by Inverse Compositional
(IC) algorithm implemented in MATLAB runs approxi-
mately 10 times faster than the optimization by Forward
Additive algorithm used in LK tracker. However, the basin
of attraction and sensitivity to noise are the same. Since
SLLiP tracker is also implemented in MATLAB, the achieved

frame rates of LK, IC, and SLLiP are comparable. Concern-
ing the computational complexity of LK, IC, and SLLiP: The
computational complexity of one iteration computed on
n-pixel template and p-vector of pose parameters by LK is
Oðp2nþ p3Þ and by IC is Oðpnþ p3Þ. SLLiPs exploit only a
small subset of pixels. Since we experimentally verified that
approximately

ffiffiffi
n

p
pixels is used from n-pixel template, the

computational complexity of one iteration of SLLiP (i.e.,
LLiP) is Oð ffiffiffi

n
p

pÞ.
Jurie’s tracker is an LLiP tracker with the support set

equal to the whole template learned by LS method for the
same reference points and ranges as optimal SLLiPs. Since a
single LLiP tracker does not allow sufficient accuracy on the
same range, very high loss-of-lock ratio and low accuracy
are reported. If the half-range is used, the higher accuracy is
achieved, but the number of loss-of-locks is still signifi-
cantly higher than with NoSLLiP tracker, mainly due to
long interframe motions.

9.3 Additional Experiments

9.3.1 Robustness Analysis

We defined SLLiP as a sequence of LLiPs satisfying that the
range of every predictor is at least as large as the
uncertainty region of its predecessor, i.e., 8 riþ1 	 �i,
i ¼ 1 . . .m� 1. We showed in Proposition 4 that the
complexity minimization in the learning stage results in
equality 8 riþ1 ¼ �i, i ¼ 1 . . .m� 1. As a result, whenever
the testing data are corrupted by noise, the prediction might
not be within the range of the following predictor, which
might consequently cause a divergence of the SLLiP. For
practical applications, a margin assuring robustness to the
noise is required. We require 8 riþ1 	 �ið1þ �Þ, i ¼
1 . . .m� 1 for a nonnegative number �. We claim that the
higher is the margin �, the higher is the robustness against
noise but simultaneously also the higher the complexity of
the optimal SLLiPs.

Quantitative robustness evaluation is performed by
computing the average number of loss-of-locks as a
function of the margin (Fig. 15a), average complexity of
SLLiPs as a function of the margin (Fig. 15b), and average
frame rate as a function of the margin (Fig. 15c). A test
sequence based on the ground-truthed sequence was
intentionally made more challenging. The experiment is
conducted on a selected mouse pad subsequence (frames
3,500-6,000), where only each second frame is processed in
order to increase interframe motion and, consequently, to
achieve a statistically important number of loss-of-locks.
The sequence is processed with SLLiPs learned for six
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5. These ground-truthed sequences are available at ftp://cmp.felk.
cvut.cz/pub/cmp/data/lintrack.

6. We use implementation of the SIFT detector downloaded from http://
www.cs.ubc.ca/~lowe/keypoints/.

Fig. 14. Ground-truthed sequences. The left column shows images
used for training. The middle and right columns demonstrate some
successfully tracked frames with strong motion blur from the testing
sequences. A blue rectangle delineates the object. Percentage values in
corners are current corner speeds related to the current size of the
object upper edge.

TABLE 1
Comparison of Robustness and Accuracy of SLLiP, LK,

LLiP Trackers (MATLAB Implementation), and
SIFT Detector (C++ Implementation) on MP Sequence

The frame rate of the IC algorithm is estimated based on the comparison
published in [2].



different margins [0, 0.05, 0.1, 0.2, 0.3, 0.5]. The number of
loss-of-locks (Fig. 15a) and the frame rate (Fig. 15c) are
evaluated as an average over 20 processing of the sequence
with different starting frames. Complexity (Fig. 15b) and
length of LLiP sequence (Fig. 15d) are computed as an
average over a set of 48 learned SLLiPs.

9.3.2 Accuracy Analysis of Minimax Learning

In this experiment, we compare uncertainty region �0

required in learning and real distribution of SLLiP errors.
We learned 48 SLLiPs covering the mouse pad with desired
accuracy of 5 percent of the range size. The accuracy is
evaluated on those frames, where interframe motion is
smaller than the learning range of SLLiPs. Fig. 16 shows the
histogram of displacement errors with �0 denoted by the
red line at 0.05. In approximately 10 percent of the cases, the
errors are higher, which is presumably caused mainly by
the limited ground truth accuracy and partly by the image
noise. Note that the optimal SLLiP is guaranteed to
converge into �0 for all training examples.

9.3.3 Support Set Selection by Greedy LS Algorithm

Evaluation

We compare the mean square error (MSE) achieved by the
greedy LS support set selection algorithm (Algorithm 4)

and the MSE achievable by a random support set selection.
Fig. 17a shows the MSE histogram of predictors operating
on a randomly selected support set with a size of 20 pixels.
The 99 percent left quantile of the histogram is depicted by
an empty green circle. It shows that usage of a randomized
sampling instead of Algorithm 4 would require a prohibi-
tively high number of iterations to achieve at least
comparable results with the proposed greedy LS algorithm.

Fig. 17b shows MSE as a function of complexity during
the incremental construction of the support set. It demon-
strates that the 99 percent left quantile of randomly selected
support sets is achieved with less than one-half of the
support set size. The mean is achievable with less than one-
quarter of the support set size.

10 DISCUSSION

10.1 Tracking for Detection

Due to the very high performance of the proposed
predictor, there is a possibility coupling it with a detector.
Detection performed in a pose grid [3], [4], [5] could be
replaced by prediction followed by detection performed in
a sparser pose grid. The efficiency of the method depends
on the ratio of detectability and predictability radii and
times needed for the detection and prediction, respectively.

10.2 Tracking in Feature Space

Instead of the intensities, an arbitrary set of features can be
used. There is a large set of linear features, i.e., the features
computed as a linear combination of the observed inten-
sities. Since the linear prediction from linear features would
be only a linear combination of linear combinations that is
again the linear combination, there is almost no reason of
using the linear features. In other words, if any linear
combination of the intensities is necessary, it is automati-
cally included in the regressor coefficients during the
learning stage in an optimal manner. Particular counter-
examples are Haar features [25], which allow for faster
direct computation from the integral image.

10.3 Nonlinear Regression

If the linear mapping is insufficient, the method allows a
natural extension to an arbitrary class of mappings formed
as a linear combination of kernel functions by data lifting.
For example, in the polynomial mapping, particular
monomials are considered as further observed intensities.
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Fig. 15. Robustness analysis: The higher the margin, the higher the

robustness to noise but also the higher the complexity of SLLiPs.

(a) Loss-of-locks. (b) Complexity of SLLiPs. (c) Frame-rate. (d) Number

of LLiPs in SLLiPs.

Fig. 16. Comparison of desired and real accuracies.

Fig. 17. Histogram of MSEs of predictors with the randomly constructed
support sets. (a) C ¼ 20, E99 ¼ 0:0789 (green empty circle denotes
99 percent quantile), Ê ¼ 0:0684 (red filled circle denotes MSE of the
proposed method). (b) MSE as a function of complexity during the
incremental construction of the support set.



It allows the learning procedure to deal with higher
dimensional linear mappings instead of the nonlinear ones.
Since the prediction by a nonlinear predictor is, in general,
computationally more complex than by a linear predictor
and we have experimentally shown that no substantial
improvement is achievable with the nonlinear one, we use
only the linear predictor.

10.4 Confidence Measure

We do not propose any confidence measure for tracking
with a single sequential predictor. In general, every
standard confidence measure can be used, e.g., SSD or a
learned classifier. If an object is modeled by a set of
predictors, RANSAC determines the number of outliers as a
side product of the pose estimation. The number of outliers
provides a measure of confidence of the estimated pose.
Since we did not investigate this issue in detail, the tracker
failure is reported if 50 percent of outliers is reached.

11 CONCLUSIONS

We have proposed a learning approach to tracking that
explicitly minimizes computational complexity of the track-
ingprocess subject touser-definedprobability of failure (loss-
of-lock) and precision. In our approach, the object ismodeled
by a set of local motion predictors estimating translations.
Object motion is estimated from these translations by
RANSAC. Local motion predictors, their locations, and
number as well as the number of RANSAC iterations are
subject of the optimization. Since the tracker is formed by
NoSLLiP, we refer to it as the NoSLLiP tracker.

In experiments, the NoSLLiP tracker was tested on
approximately 12,000 frames with a labeled ground truth,
showing that the NoSLLiP tracker achieves a significantly
smaller number of loss-of-locks than the SIFT detector, the
LK tracker, or Jurie’s tracker. Since all of the time-
consuming computations are performed in the offline stage,
the NoSLLiP tracking requires only a few hundred multi-
plications, yielding extremely efficient motion estimation.
Note that a nonoptimized C++ implementation of an
average sequential predictor takes only 30 �s.

We encourage the reader to download a MATLAB

implementation of the proposed methods of learning and
tracking and additional material from http://cmp.felk.
cvut.cz/demos/Tracking/linTrack/.
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