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Abstract

In this paper we present the techniques for tracking cell

signal in GFP (Green Fluorescent Protein) images of

growing cell colonies. We use such tracking for both data

extraction and dynamic modeling of intracellular processes.

The techniques are based on optimization of energy

functions, which simultaneously determines cell

correspondences, while estimating the mapping functions. In

addition to spatial mappings such as affine and Thin-Plate

Spline mapping, the cell growth and cell division histories

must be estimated as well. Different levels of joint

optimization are discussed.

The most unusual tracking feature addressed in this paper

is the possibility of one-to-two correspondences caused by

cell division. A novel extended softassign algorithm for

solutions of one-to-many correspondences is detailed in this

paper. The techniques are demonstrated on three sets of

data:  growing bacillus Subtillus and e-coli colonies and a

developing plant shoot apical meristem. The techniques are

currently used by biologists for data extraction and

hypothesis formation.

1.   Introduction

1.1 Motivation

The deployment of in vivo live confocal microscopy has

enabled scientists to capture gene expression data and begin

to create computational models of developing cellular

organisms. Such systems include intracellular molecular

regulation networks combined with intercellular signals and

transport, cell growth and proliferation, and mechanical

interactions between cells, resulting in complex interaction

networks with the ability to control the development of

multicellular organisms.

The amount and quality of collected expression data is

significant enough that scientists are able to hypothesize

many of the underlying control circuits, but the experimental

data of important molecular players and interactions are

most often incomplete, and additional hypotheses are

needed to explain their spatial and dynamical behavior [1].

Mathematical modeling provides a powerful method for

describing and testing hypotheses about developmental

biological systems. Not only can hypotheses be tested to see

if they account for the observed data but predictions can be

made for new experiments.

The data provided by the confocal imaging technique is

available in the form of an image time series, quantification

of which is essential to creation of viable models. Different

image processing algorithms are used to extract cell

compartments and GFP fluorescence intensities within

individual cells [2,3]. It is usually assumed that the GFP

intensity is linearly related to the amount of protein, and

hence the average intensity within a cell is interpreted as a

relative protein concentration.

Once the cell boundaries and the signal within cells is

extracted from individual images, the task of finding the

correspondence between cells at different time points, so

that temporal developmental signal can be extracted for each

cell, remains. This is the problem that we will address in this

article.

1.2 Background

In general, the problem of finding correspondences or

matches between image objects is a fundamental problem in

computer image analysis. In its worst case (when each

object in one image can potentially correspond to every
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object in another image) this problem may be NP-complete.

In practice this means that in order to find optimal

correspondence, combinatorially many matches have to be

considered. For large data sets, such a search leads to

prohibitive computational times. In addition, the problem

can be further complicated if unknown transformation

(mapping) is applied to the objects in different image

frames. In this case in addition to finding optimal

correspondences between points, the transformations

influencing object attributes (such as coordinates) have to be

estimated as well. This is often the case in fluorescent

imaging.

Many solutions to point matching and graph matching are

available in the literature. The state of the art work is based

on joint estimation of correspondence and spatial mappings

via optimization of energy function [5,6,7,8].  The general

framework for such optimization is proposed by Gold et al.

[4]. This framework uses the methods of deterministic

annealing [9,13] in conjunction with soft assign [10,14,15]

and clocked objectives [11] to produce an optimizing

network and a corresponding Energy function.

The success of such approach is dependent on the design

of energy function in conjunction with the choice of

optimization technique. The typical energy function consists

of two parts E = Ep + Econs. Energy of constrains (Econs) is

tightly related to optimization method being used, and

Energy of the problem (Ep) is tightly related to the problem.

Ideally Ep should use all the data and information available,

to estimate the error of given correspondence.

Of crucial importance in designing Ep is accurate selection

of mapping function. If the image data has undergone affine

transformation, the natural choice for mapping function is

obviously an affine transformation. If the parameters of such

transformation are not known, they must be estimated

simultaneously with correspondence. Another example of

mapping is Thin Plate Spline, proposed by Chui and

Rangarajan [12] for matching objects in brain MRI. It is

obvious that the Ep part of energy function varies

significantly, depending on the data and it’s behavior.

2. Problem description and objectives

In this article, we will address tracking, matching and

modeling signals in fluorescent imagery, using the latter

optimizing network. More precisely, the problem is: Given a

sequence of images (movie) depicting cell arrays, determine

the positions of each cell at each time point (track cells

through time), while recognizing cell division events and

recording cell lineage. Cell death is not observed in the

image data under study, however during growth cells often

disappear into the “out of focus” regions.

Cell centroids and other attributes have been previously

extracted from such images using various image processing

algorithms as described briefly in Section 6. Extraction of

cell attributes from individual images is not a focus of this

paper. Instead, we concentrate on determining

correspondences between already extracted cells in

consecutive images. Determining such correspondences

between cells can be very challenging, especially for low

sampling rate, when cells move a lot from frame to frame. It

often requires modeling of cell motion. In addition, the

limitations of imaging process and image processing

algorithms produce mistakes in extracted cell attributes,

therefore making matching job even harder.

The main challenge here is to design the Ep and mappings

adequate for extraction and modeling of temporal cell

signals. The form of some of these mappings is known a

priori. For example, it is usually known that the data might

undergo rotation and translation or other Euclidean or affine

transformations during development. But there are other

mappings present in cell colonies that are less clear and

extremely important. Such mappings are caused by cell

growth and cell division (growth transformation), and they

are by far less known and they are actually the object of the

scientific study. In fact, the growth transformation involves

(is a function of) cell products and is tightly interconnected

with the dynamic network of the cell colony under study. In

principle, as far as cell growth and cell division

transformations (mappings) are concerned, we are

confronted with a “chicken and egg problem”. To extract the

signal from the data, one must hypothesize the mapping, but

two hypothesize the mapping one must extract the signal

from the data. In this way our objectives form a closed loop

(Figure 1). Each node in a loop enables next node. Once

again a simultaneous solution is desired, but it is only

possible if the form of growth and cell division mappings

can be hypothesized. Practically, this problem is solved by

incremental improvement of Ep, and analysis of obtained

solutions.

In such approach we would start with a very simple Ep,

and we would apply it to the best obtainable data. Such data

must be collected at the fastest sampling rate possible, so

that cell displacement due to growth and cell division

transformations is negligible. That allows us to ignore

growth transformation, while extracting a temporal cell

signal, and then to hypothesize such transformation given

extracted signal. Once the form of growth transformation is

hypothesized, the simultaneous solution for growth mapping

and correspondence can be obtained, and then the

interactions of these transformations with other cell

data/parameters can be hypothesized and formulated as a

dynamic network.

Figure 1. The objectives loop. Each objective enables

the next one.

Extract temporal cell

signals (cell data over
time)

Hypothesize and learn

cell growth and cell
division transformations

Determine interactions of

these transformations
with other cell variables

Formulate plant as a

Dynamic network



3. Approach to solution: Sequential vs.

Simultaneous solutions

Our general approach to the solution is to encode problem

goals as terms in an objective function and to determine the

point (cell) correspondence and transformation parameters,

which optimize the objective function. Such optimization

can be done in steps with simpler energy functions, where

each optimization step assumes the results from previous

optimization steps (Figure 2), or it can be done jointly with

one more complicated (Eq. 3 and Eq. 5) energy function

modeling all the unknown mappings.

Since after each step in sequential processing, the overall

search space is significantly reduced, and since the energy

functions for such processing are generally much simpler,

the sequential solution is faster and easier to implement. The

drawback, of course, is that not the entire search space has

been evaluated and the optimal solution with respect to all

variables might be less accurate. However, if the sequential

process is stated in such way that most reliable optimization

components are done first, the accuracy of the results in

practice might even exceed the one obtained with joint

optimization. Often, for easier data sets, when the

displacement of the cells in consecutive images is small the

sequential approach outperforms joint optimization (See

Section 6). Nevertheless, this is not the case with more

challenging data sets. In these cases, joint optimization tends

to outperform sequential processing.

Our approach to cell tracking in fluorescent imagery will

start with the simple objective functions suitable for

sequential optimization (Eq.1) and (Eq.2), and it will

progress to the more complicated energy functions, suitable

for simultaneous optimization.

4. Sequential Solution

In sequential optimization the energy function is split into

components and each component is optimized separately

without feedback. Sequential optimization for the problem

of extracting temporal cell signals from GFP data is depicted

in Figure 2. This approach first determines point matching

in each pair of two consecutive images. It ignores cell

growth and cell division mappings and calculates

correspondences using Ep as in (Eq. 1).

Figure 2. Sequential solution for tracking cell signals.

The correspondence matrix M ij includes slack variables,

thereby allowing non-matches for outlier points. The output

of point matching are matched pairs x i,y j{ } where x
i
 is

the point (cell) i from previous image (or nothing) and y j  is

cell j from following image (or nothing). The overall energy

function to be minimized is a total error (Euclidian distance

between cell positions in consecutive images) of all matches

scaled by the expected variance of this error (σ
2
), and is

given by (Eq. 1). The mapping is assumed to be affine (with

parameters A) and is known for some of the data. When it is

not known, A is optimized jointly with correspondence [4].

Ep = M ij Ax i − y j

2

σ 2( )
i, j=1

∑                        (Eq.1)

Because of cell divisions, which are frequent in our

microscope data, the previous image in the sequence

contains smaller number of cells then following image.

Therefore, there usually will be a number of yk  that

matched to nothing in previous image. Such yk  are deduced

with high probability to be a product of cell division. The

next step in sequential approach is to determine parents and

siblings for such yk  (given found matched pairs). The

objective function for this process is given by Es in (Eq. 2).

The first term is the Euclidian distance between two siblings

from the same image. It is scaled by expected variance of

this distance (σ
(1)

2
).  The second term is the Euclidian

distance between yk  and the parent of it’s sibling y l  scaled

by expected variance of this distance (σ
(2)

2
). The objective

function is defined to minimize total error between current

cells and their siblings and between current cells and

sibling’s parents. The correspondence matrix entry L
kl

 will

optimize to 1, if cells yk  and y l  are siblings with common

parent in the previous image, and it will optimize to 0

otherwise. Just like M ij , Lkl  includes slack row and

column for possible non-matches. Even though in our data

sets cells are not expected to dye or appear out of nowhere

(orphans), this often happens in real imagery due to imaging

limitations. For future reference, we always include slack

row and column in all correspondence matrices mentioned

in the rest of this article.

Es = Lkl
yk − y l

2
σ
(1)

2
+

yk − previous(y l )
2
σ
(2)

2

 

 

 
 

 

 

 
 

k,l

∑       (Eq.2)

The remaining component of the sequential solution is

tracking. In general, tracking combines pairwise matches to

produce the tracks (paths) of the cells through the entire

image sequence (movie) and builds the lineage tree.  If the

cells move randomly in the image and do not follow any

trajectory that can be modeled, or if such trajectory is not

immediately observable (as is often the case with sequential

approach), not much can be gained from tracking in terms of

accuracy of the results. In this case, pairwise matches are

given a priori, and tracking is just a greedy search

implemented via simple “bookkeeping” algorithm. The only

improvement this algorithm makes in terms of accuracy is

some inference of missing or merged cells, resulted from the

Tracking Model

Fitting

Point

matching

Sibling

matching
x i = previous(y j )

y l = sibling(yk )

x i,y j{ }

y l ,yk{ }
track

data



mistakes of cell extraction algorithms. The result of the

tracking algorithm is a list of tracks (track data), each track

specifying the coordinates and attributes of one cell in all

images it exists in. Once such tracks are extracted and the

attributes of cells over time can be quantitatively examined,

the model for cell motion and growth can be assumed and

fitted into existing data (Model Fitting step).

5. Simultaneous solutions

5.1 Pairwise matching with cell division

In simultaneous solution the components of sequential

solution are combined in joint optimization. We first attempt

to perform joint optimization of cell matching and sibling

matching. We use Robust Point Matching algorithm

utilizing Thin Plate Spline (TPS) transformations with

softassign embedded in deterministic annealing loop [12].

The full objective function ( E = Ep + Econst) in such

matching problem is given in (Eq.3)

E = M i,α, j θ −
| x i,α −ϖ(y j ) |2][

σ
2
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∑
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1

β
M i,α , j (log M i,α, j )∑

−λ1Tr(ωT ˆ Φ ω) − λ2Tr[(d − ˆ I )T (d − ˆ I )]

− µk M i,α, j

r(k )

∑
 

 
  

 

 
  

k

∑

        (Eq.3)

The ! !M i,α , j  are several matrices with α != ! !{ !1 !} !, ! α !=!{!1!, !2!}!, !

!o !r ! α ! ! != ! !{1 !, !2 !, 3}, ! obeying ! !d !o !u !b !l !y ! !stochastic ! !r !u !l !e !s ! !r !( !k !) ! as

described in Section 5.3. The ϖ(y j ) is thin plate spline

transformation of the vector y j  as shown in (Eq. 4)

ϖ(y j ) = y jd + φ(y j ,yk )ωk

k

∑                         (Eq.4)

!He !r !e ! !affine ! !matrices ! d ! !a !n !d ! !warping !v !e !c !t !o !r !s ! ω
k
! !constitute

!t !h !e ! !T !P !S ! !coefficients !, ! !a !n !d ! φ ! !is ! !t !h !e ! !corresponding !k !e !r !n !e !l !

!function. ˆ Φ is composed of φ(y j,yk )values of the kernel

function. The first term of this function is the Euclidian

distance error of hypothesized correspondence. Parameterθ
regulates the probability of cell matching to nothing.

Increasing θ  decreases the probability of non-matches

during stochastic optimization and vise versa. The third term

in E is the standard thin-plate spline regularization term

which penalizes the local warping coefficients ω . ! The forth

term constraints affine mapping d by penalizing the residual

part of d which is different from an identity matrix I. λ
2
! !a !n !d !

λ
1
! !coefficients ! !penalize ! !t !h !e ! !affine ! !a !n !d ! !warping ! !p !a !r !t !s ! !o !f ! !t !h !e !

!T !P !S ! !accordingly !.  !Normally ! λ
2
! !is set ! !small ! !t !o ! !a !d !j !u !s !t ! !the !

!affine ! !coefficients ! !d ! !b !e !f !o !r !e ! !w !.   The second and fifth terms

of the energy function represent the constraints imposed on

the problem (Econst). The second term is an entropy barrier

function with the temperature parameter T=1 β . It is used

in deterministic annealing step [9]. The fifth term is a

stochastic optimization term with the Lagrange parameters

µ
k
 corresponding to the rules r(k) realized by softassign

[10]. The details of novel normalization rules for this

pairwise matching are presented in Section 5.3.

5.2 Tracking with cell division and affine

transformation

Finally, we attempt to combine all steps of sequential

process in one joint optimization. This is achieved with the

Energy function in (Eq. 5).

E = e
−λt

t

∑
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   (Eq.5)

This energy function is minimized by estimating track

coordinates at time t ( yα
t

) and affine transformation A
t
,

while minimizing: total error between estimated tracks and

true point coordinates at time t ( x
i

t
) (first term of first sum);

total error between consecutive points of each track, given

estimated affine (second term of first sum); total error

between sibling track ( yβ
t

) and it’s transformed parent

(third term of first sum). The remaining two sums of this

energy function constitute Econs (the energy of constrains).

As before, there is an entropy barrier function terms (last

terms of second and third sums) with annealing temperature

T; and unique correspondence optimization terms with

Lagrange parameters µ
i

t
 andηα

t
 for the correspondence

between tracks and points at time t (Lαi
t

), and with

Lagrange parameters ˆ µ α
t

 and ˆ η β
t

 for the correspondence

between siblings at time t (Nβα

t
). Note that this energy

function has several correspondence problems to solve

simultaneously: Lαi
t

 and Nβα

t
 for every time point t. Solving



for L and N performs joint optimization for track and sibling

matching, and optimizing these matrices jointly for every

time point t performs joint optimization of tracks. We

included entropy and unique correspondence constraints for

each correspondence problem and scaled the energy

function with e
−λt

, thus placing more weight on earlier

matches to insure forward directionality of the solution

dynamics.

As was stated in the background section the joint

optimization is made possible by softassign, deterministic

annealing and clocked objectives methods. The softassign is

based on Sinkhorn’s theorem [16], which states that a

doubly stochastic matrix is obtained from any positive

square matrix by alternating row and column

normalizations.  Such a normalization process is directly

related to solving for Lagrange multiplier parameters. The

original entries of the stochastic matrix (in this approach L,

and N) are typically an error term Qijobtained by setting the

partial derivatives of Energy function E with respect to

correspondence matrices to zero (∂E ∂Lαi
t
= 0  and

∂E N
βα

t

= 0 ). If originalQij> 0, the softassign insures that

Qij ≈1
j

∑  for all i and Qij ≈1
i

∑  for all j. Softassign in

conjunction with deterministic annealing can find global

minimum in the assignment problem [9]. As the temperature

is reduced the doubly stochastic matrix approaches a

permutation matrix imposing an additional constraint

Qij ≈
0

1

 
 
 

.

To obtain closed form solutions for unknown parameters

the method of Clocked Objectives is used. In this method

the unknown parameters are obtained by differentiating

energy function with respect to these parameters and setting

result to 0 (to find the minimum). The closed-form solutions

are obtained in the iterative scheme [11]. The iterative

scheme for the given problem is represented by formula in

(Eq.6). This formula states that in iterative scheme first the

track values yα
t

 have to be estimated by calculating an

analytical solution to ∂E ∂yα
t
= 0 , then assuming found

track values; the transformation matrix A
t
has to be

estimated by calculating an analytical solution to

dE ∂A t
= 0 . Then assuming the current estimates for

track values and affine transformation, the correspondence

matrices Lαi
t

 and Nβα

t
are determined by solving for

Lagrange multipliers µ,η, ˆ µ , ˆ η  via previously described

softassign technique.

F⊕ = F y,A, (L,µ),(L,η , (N, ˆ µ ),(N, ˆ η    (Eq.6)

5.3 Normalization rules for pairwise matching

In order to facilitate Robust Point Matching Thin-Plate

Spline (RPM-TPS) algorithm [12] for more than one

possible mapping several correspondence matrices have

been used (indexed byα ). One matrix representing a usual

one-to-one match, and the other two, similarly, representing

possible split into a one-to-two match (See Figure 3). The

exclusion requirement has been implemented through

modified row and column unique correspondence

constraints.

Figure 3. Paired stochasticity of corresponding joined

rows. s
0

i , s
1

i , and s
2

i  are corresponding summations for the

three matrices.

As before, a unique match constraint along columns

insures that there is no more than one match for each point

from the second set. Therefore, the normalization rule

asserting unique j point for each i point is the same (Eq. 7).

M i,α , j

i,α

∑ =1                                                       (Eq.7)

However, for j-summations a different rule is in effect.

There can be either parent-to-one or parent-to-two daughter

correspondences, but not both. This leads to

(Eq.8)

M i,α , j α=1
j

∑ = M i,α, j α= 2
j

∑ =1− M i,α , j α= 0
j

∑  (Eq.8)

If corresponding summations for the three matrices

(including the slack elements) are: s
0

i
, s
1

i
, and s

2

i
, then the

above rules are satisfied by multiplying each I-raw by

κ
0

i
,κ
1

i
, and κ

2

i
 accordingly as in (Eq.9).

Paired constraint of corresponding joined rows from the

first and the second matrices as well as the first and the third

(Figure 3), insure that annealing procedure will leave either

one match for a point from the first set in the upper matrices,

or two possible matches on the same-indexed rows in the

matrices below, but never both of them at the same time.

Because each member of each matrix multiplies a separate

term in the objective function (see Eq. 3), this approach

provides both simultaneous solution of the split-matching

problem and flexibility in coupling different points from

different matching possibilities.

1

1)2(10
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s
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i +1/2

,

where

s
i =

1

4
+ s

0

i
/ s

1

i + s
2

i( )

                                        (Eq.9)

6. Experiments

We have used three data sets in our analysis: 3-

dimensional images of a growing plant shoot-apical

meristem, 2-dimensional images of developing colonies of

bacillus Subtillus, and 2-dimensional images of developing

colonies of e-coli. The extraction of cell coordinates from 3-

d images has been performed via standard gradient descent

method by the team of scientists from Lund University,

Sweden, under the leadership of Henrik Jönsson.   The

extraction of cell coordinates and other cell attributes from

2-d images have been previously accomplished by the

Caltech team under the leadership of Michael Elowitz. They

used iterative erosion/dilation algorithms for this purpose.

The e-coli and bacillus Subtillus data sets are 2-

dimensional. It is possible to visualize and ground truth

these data (Figure 4, Figure 5). The bacillus Subtillus and e-

coli are not rigidly attached to each other and can move

noticeable distances from frame to frame. Such motion is

the main challenge of these data sets.

The shoot apical meristem data is 3-dimensional. In this

data, cell walls are attached to each other, and interact

mechanically preventing large displacements. In this data

cells appear to move outwards (Figure 6b)), but such motion

can be observed only over large time lapses (about 10 time

points); locally cell displacements appear random. This can

be modeled as an additional track constraint in the joint

track optimization method. It is more difficult to visualize

and ground-truth this data. To evaluate roughly the

performance of this data track statistics and visualization

tools have been used.

Currently, tracking (matching all pairs of images

simultaneously as in Eq. 5) suffers from track fragmentation

(breaking up of one cell track into few segments). The main

reason for this is that number of tracks has to be

significantly larger then number of cells in individual image

(especially in the beginning of the sequences). Therefore,

for the goodness of match based on Euclidian distance, it is

less costly to fit few tracks into set of points, rather then

one. We attempted to control this problem with slack

parameter θ  and by adding of an additional term (the

squared sum of correspondence matrix entries, excluding

slacks), but did not get much more control over the problem.

This study still continues. Therefore for comparison of

sequential and simultaneous methods, we focus on

sequential approach in Eq. 1) and Eq. 2) and joint

optimization approach in Eq. 3).

In bacillus Subtillus data, estimating track values   via

sequential approach slightly outperformed the joint

optimization approach. In joint optimization approach 68

points were matched wrong out of total 2217 points

collected from 22 images, therefore amounting to 3% error.

In sequential optimization (pairwise matching with TPS)

approach 40 points were mismatched, therefore amounting

to 1.8% error.

Figure 4 depicts the tracking of one colony (out of 6) on

22 consecutive images (only 4 early consecutive images are

displayed here due to the lack of space). The corresponding

cells are numbered with the same track number. The track

identification numbers of found siblings are displayed in

parenthesis under current track number.

In e-coli data (Figures 5b), 5c)), the joint optimization

approach overall outperforms sequential approach,

producing 5.35% error vrs. 6.44% error (in sequential

approach). The e-coli data is different from bacillus

Subtillus data, it is complicated by the presence of long

irregular cells as in Figures 6b) and 6c). The energy

functions were mainly designed for Subtillus data, without

consideration for long irregular cells, therefore the worst

performance has been expected. However, the joint

optimization method demonstrated to be more robust by

outperforming sequential method on this difficult data.

Figure 6a) depicts the percentage error for 35 pairwise

matches (36 individual images). Since the total number of

cells in each image of the sequence is different there is no

direct relationship between overall error and error/per

image. For example, if some early image contains two cells,

one of which is matched wrong, there will be 50% error for

this image, but overall percent error increase will be

negligible. The results of sequential optimization are

displayed with dashed line, and the results of joint

optimization are depicted with solid line. Note that both

algorithms resulted with 0 error for first 25 images, however

the error rates grow with complexity (number of cells) and

an increase in missed (by segmentation process) cells.

Another interesting factor to observe is that the errors

produced by sequential and joint optimization approaches

are somewhat orthogonal, meaning that the erroneous

matches seem to be different for both approaches. In

sequential approach most of the errors were produced in

matching of the siblings: 11.9% error for sibling matching,

4.2% error for same cell matching. In joint optimization

approach 4.2% error was accomplished in sibling matching,

and 5.8% error was produced in same cell matching.

Moreover, joint optimization errors appear to be of global

character. For example, note erroneous track 78, such

mismatch is easily detected with a sanity test based on

distance only. Sequential optimization errors are mainly

local. Note erroneous tracks 3 and 54. This leads to the

possibility that overall results can be improved by

combining the results of both algorithms.



Finally, we present some preliminary results of tracking

signal in shoot apical meristem data. In the absence of

ground-truth, we have used statistics to select reasonable

solutions.  Such statistics include the average density of

tracks and the average standard deviation of tracks, which

are inversely related; and also include the number of

orphans (newly appearing cells without matched parent) and

number of deaths (disappeared cells). The latter two

measures ideally should be very small, but such criterion

cannot be enforced rigidly. Extracting these statistics under

present conditions assists in selecting reasonable solutions,

but is not sufficient for comparative analysis.

One such solution is depicted in Figure 5. For reasons of

legibility only few tracks are included in the plot of Figure

5-a). The star denotes the beginning of the track, and

branches represent cell divisions. The newly born cells are

connected to their parents with black dashed lines. One can

observe that cell motion appears locally random, but a

global outward growth tendency is observed as well. A

clearer view of an outward growth tendency form an

interpolated total displacement field for 10 time points, is

depicted in Figure 5-b).

Figure 4. Pairwise matching for tracking bacillus

Subtillus data.

a) Percentage error for 35 pairwise matches produced

by sequential optimization approach (dashed line) and

joint optimization approach (solid line).

b) Matching cells in e-coli images 31/32 with

sequential optimization approach. Matches displayed
on raw image data.



c) Matching cells in e-coli images 34/35 with joint

optimization approach. Matches displayed on
segmented image data.

Figure 5. Sequential vrs. joint optimization in e-coli

data.

6.   Conclusions and plans

In this paper we have demonstrated sequential and joint

optimization techniques applied to tracking cell signals in

GFP images. There are two main challenges that such

tracking has to confront. The first challenge is matching

allowing one-to-two correspondences. We have addressed

this challenge with an extended softassign algorithm, which

performs well and presents a valuable general tool for the

solution of one-to-many correspondences. The second

challenge is missing cells mistakes produced by cell-

segmentation. Some of these mistakes were addressed

successfully via track inference in the sequential approach.

The more general approach, which performs joint estimation

of track values, can handle missing cells better, but it suffers

from track fragmentations. Such an approach is more

important when cell motion has structure or can be

expressed as a function of cell variables. Therefore, it is

more likely to be used in the final dynamic model. In the

future, we plan to deal with cell segmentation (extraction)

mistakes by performing cell segmentation and cell matching

jointly. This is especially useful since there is no automatic

way to assess the goodness of the segmentation, but there is

a way to assess goodness of the match (number of

unmatched points).

a) Selected tracks generated for shoot apical meristem

data.

b) The interpolated displacement field for large time

step.

Figure 6. Tracking Plant Shoot Apical Meristem Data.

Our current software is used by biologists to extract the

cell signals from GFP imagery. Given such signals,

scientists are able to hypothesize the details of underlying

cell processes, to model these processes in dynamic

networks and to make predictions about organism behavior.



On the other hand, such models and predictions allow for

better signal extraction (tracking algorithms), producing

more accurate data for use in biological research.
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