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Abstract. Currently, 52 % of the world’s population resides

in urban areas and as a consequence, approximately 70 % of

fossil fuel emissions of CO2 arise from cities. This fact, in

combination with large uncertainties associated with quanti-

fying urban emissions due to lack of appropriate measure-

ments, makes it crucial to obtain new measurements use-

ful to identify and quantify urban emissions. This is re-

quired, for example, for the assessment of emission miti-

gation strategies and their effectiveness. Here, we investi-

gate the potential of a satellite mission like Carbon Moni-

toring Satellite (CarbonSat) which was proposed to the Eu-

ropean Space Agency (ESA) to retrieve the city emissions

globally, taking into account a realistic description of the

expected retrieval errors, the spatiotemporal distribution of

CO2 fluxes, and atmospheric transport. To achieve this, we

use (i) a high-resolution modelling framework consisting

of the Weather Research Forecasting model with a green-

house gas module (WRF-GHG), which is used to simulate

the atmospheric observations of column-averaged CO2 dry

air mole fractions (XCO2), and (ii) a Bayesian inversion

method to derive anthropogenic CO2 emissions and their er-

rors from the CarbonSat XCO2 observations. We focus our

analysis on Berlin, Germany using CarbonSat’s cloud-free

overpasses for 1 reference year. The dense (wide swath) Car-

bonSat simulated observations with high spatial resolution

(approximately 2 km × 2 km) permits one to map the city

CO2 emission plume with a peak enhancement of typically

0.8–1.35 ppm relative to the background. By performing a

Bayesian inversion, it is shown that the random error (RE)

of the retrieved Berlin CO2 emission for a single overpass is

typically less than 8–10 Mt CO2 yr−1 (about 15–20 % of the

total city emission). The range of systematic errors (SEs) of

the retrieved fluxes due to various sources of error (measure-

ment, modelling, and inventories) is also quantified. Depend-

ing on the assumptions made, the SE is less than about 6–

10 Mt CO2 yr−1 for most cases. We find that in particular sys-

tematic modelling-related errors can be quite high during the

summer months due to substantial XCO2 variations caused

by biogenic CO2 fluxes at and around the target region. When

making the extreme worst-case assumption that biospheric

XCO2 variations cannot be modelled at all (which is overly

pessimistic), the SE of the retrieved emission is found to be

larger than 10 Mt CO2 yr−1 for about half of the sufficiently

cloud-free overpasses, and for some of the overpasses we

found that SE may even be on the order of magnitude of the

anthropogenic emission. This indicates that biogenic XCO2

variations cannot be neglected but must be considered dur-

ing forward and/or inverse modelling. Overall, we conclude

that a satellite mission such as CarbonSat has high potential

to obtain city-scale CO2 emissions as needed to enhance our

current understanding of anthropogenic carbon fluxes, and

that CarbonSat-like satellites should be an important compo-

nent of a future global carbon emission monitoring system.

1 Introduction

One of the main objectives of any climate policy initiative is

to limit atmospheric greenhouse gas emissions resulting from

anthropogenic activity to a level that minimizes adverse mod-

ification of the climate system. An essential component in at-

taining this goal is the accurate quantification of emissions at
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national and state levels in order to independently verify the

implemented climate change mitigation and adaptation mea-

sures. In the context of CO2, cities are significant contribu-

tors of emissions, giving rise to approximately 70 % of the

total anthropogenic emissions (Canadell et al., 2010). How-

ever, there exist large uncertainties associated with quantify-

ing urban emissions. This makes it difficult to assess the effi-

cacy of any emission management schemes at urban scales.

While mitigation efforts are being taken in some cities

around the globe, they lack objective, observation-based

methods to verify their outcomes (Pacala et al., 2010). Some

observation-based attempts have been made with a focus

on deriving city-scale emissions in a variety of urban envi-

ronments (Bergeron and Strachan, 2011; Levin et al., 2011;

Mays et al., 2009; Wang et al., 2010; Zimnoch et al., 2010).

However, none of these approaches is able to account for

CO2 emissions from urban areas with the accuracy required

for verification, nor are they easily adaptable to other loca-

tions. As a result, our current emission estimates are purely

based on inventories (bottom-up approach), which have large

uncertainties due to many unresolved processes related to

spatial and temporal heterogeneity of emission fluxes and lo-

cal transport phenomena (Van Amstel et al., 1999; Gregg et

al., 2008; Marland, 2008; White et al., 2011). Recent revela-

tions about the inaccuracy of the knowledge of motor vehicle

emissions emphasize this point.

The reporting of the emissions of CO2 is currently de-

termined by national and regional agreements and legisla-

tion. This is an evolving topic for policy makers. For exam-

ple, there exists an emission inventory which accounts for

total annual US emissions between 1990 and 2014 (EPA,

2016). In the European Union, the monitoring and report-

ing of greenhouse gas emissions are performed and regulated

under the Commission Regulation (EU) no. 601/2012 (Euro-

pean Commission, 2012). Similarly, the UK government has

announced, under the Companies Act 2006 (Strategic Report

and Directors’ Report) Regulations 2013, that companies

are required to report their annual greenhouse gas emissions

in their directors’ report (see http://www.legislation.gov.uk/

uksi/2013/1970/pdfs/uksi_20131970_en.pdf). There is also a

guideline for national greenhouse inventories prepared by a

task force of the IPCC (IPCC, 2006). Following the agree-

ment of the UNFCCC COP21 in Paris in 2015, it is likely

that new guidelines for reporting the emissions of greenhouse

gases will be required.

The uncertainties, i.e. the sum of systematic and stochastic

error, in the national average of annual fossil fuel CO2 emis-

sions from the United States is estimated to be 2–5 % (EPA,

2016). The corresponding values for countries without well-

developed energy sector statistics are even higher, giving rise

to uncertainties of about 10–20 % at the national level (Gregg

et al., 2008). When disaggregating these national emissions

at fine scales (e.g. city scale) based on conventional account-

ing methods, the associated uncertainties are expected to be

significantly higher compared to those of national averages

(Oda and Maksyutov, 2011). Hence, reliable emission esti-

mates are not often available at a scale relevant for urban

emissions and the associated uncertainties. This is problem-

atic in terms of judging the effectiveness of emission reduc-

tion schemes or designing new management strategies for

emission trading. Furthermore, uncertainties in emission es-

timates impose important limitations on regional carbon bud-

get estimations derived by most atmospheric inverse frame-

works (top-down approach), in which anthropogenic emis-

sion fluxes are assumed to be well known (Corbin et al.,

2010; Göckede et al., 2010; Gurney et al., 2002, 2005).

In order to assess accurately the contribution of a city or

other emission hotspot to CO2 or other GHG emission, ac-

curate knowledge of the surface fluxes at high spatial and

temporal resolutions is needed. Ideally, the accuracy of the

estimated flux needs to be high for unambiguous attribu-

tion of source strength. The uncertainty of these estimations

is required to be reduced to the extent that is feasible. In

ESA (2015) it is noted (see their Sect. 4.1.2) that accuracies

better than 10 % would be useful for providing important ad-

ditional information for cities where inventories exist, and

accuracies better than 20 % would contribute knowledge for

cities where inventories do not exist.

The key limitations to constrain emission fluxes at ur-

ban scales via inverse modelling are the unavailability of di-

rect, continuous, and high-frequency atmospheric CO2 mea-

surements representing CO2 enhancement in urban domains,

as well as the inability of current inverse modelling sys-

tems to capture the fine-scale variability caused by the at-

mospheric transport and emission processes at a scale rel-

evant for urban emissions (e.g. Bréon et al., 2015). An as-

sessment study based on ground-based measurements indi-

cated potential drawbacks of using CO2 surface measure-

ments for emission verification, and strongly recommended

the use of sufficiently accurate column-averaged CO2 dry air

mole fractions, denoted as XCO2, measured from the ground

and/or space as the best approach to detect and quantify emis-

sions and emission trends from urban regions (McKain et al.,

2012). An effective observation-based scheme is able to dis-

entangle anthropogenic emissions from CO2 fluxes originat-

ing from biosphere–atmosphere exchange.

Despite its importance, none of the existing satellites has

been specifically designed and focused on observing XCO2

at urban scales. However, the first attempt to detect and quan-

tify anthropogenic urban area CO2 emissions from space

was initiated with the launch of SCIAMACHY onboard EN-

VISAT (2002–2012) (Burrows et al., 1995; Bovensmann et

al., 1999), which had a variety of atmospheric trace gas tar-

gets and applications. This has been followed by TANSO on-

board GOSAT (launched in 2009) (Kuze et al., 2009).

Analysis of SCIAMACHY XCO2 retrievals revealed that

regionally elevated atmospheric XCO2 over highly populated

regions correlates well with anthropogenic CO2 emissions

in terms of relative emission increase per year (Schneising

et al., 2008, 2013). However, these analyses are limited to
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large and intense emission regions, owing to the coarse spa-

tial resolution (∼ 60 km × 30 km) of the SCIAMACHY mea-

surements. Reuter et al. (2014) also presents results related to

anthropogenic CO2 emissions for large areas using an assess-

ment of SCIAMACHY XCO2 and NO2 retrievals.

By using GOSAT observations, Kort et al. (2013) reported

significant enhancements of XCO2 over megacities (3.2 ±

1.5 ppm for Los Angeles and 2.4 ± 1.2 ppm for Mumbai),

and argued that these enhancements can be exploited to track

anthropogenic emission trends over megacities. However,

constraining fossil fuel CO2 emissions by using GOSAT

XCO2 retrievals is limited by the sparseness of the GOSAT

data (Keppel-Aleks et al., 2013). Another satellite mission,

OCO-2, has been launched in 2014, with the aim of measur-

ing global XCO2 with the precision, resolution, and cover-

age needed to characterize CO2 sources and sinks at regional

scales (≥ 1000 km) (Crisp et al., 2004). In additional to these,

there have been some recent attempts to utilize ground-based

measurements of XCO2 to constrain emissions from cities

such as Los Angeles (Wong et al., 2015) and Berlin (Hase et

al., 2015).

In an effort to overcome these limitations and to achieve

XCO2 observations with the precision and accuracy, spa-

tiotemporal coverage, resolution, and sensitivity to near-

surface concentration variations that are required to derive

emissions at urban scales, a satellite mission was proposed

to the European Space Agency (ESA): Carbon Monitoring

Satellite (CarbonSat) (Bovensmann et al., 2010). Carbon-

Sat aimed to measure XCO2 and XCH4 at a high spatial

resolution (approximately 2 km × 2 km), with good spatial

coverage via continuous imaging across a wide swath. The

goal swath width for the proposed CarbonSat mission was

500 km, but smaller swath widths were also considered to

limit cost (ESA, 2015).

In this study, we investigated two potential measurement

swath widths: 500 km (goal requirement) and 240 km (break-

through requirement). As a result of its relatively wide swath

and high spatial resolution, CarbonSat is designed to disen-

tangle natural and anthropogenic sources of CO2 and CH4

from localized sources, such as cities, power plants, methane

seeps, and landfills, by utilizing its unique greenhouse gas

imaging capability achieved by its high spatiotemporal cov-

erage and resolution. More details on the mission and the cur-

rent instrument concept are given in Buchwitz et al. (2013a)

and in ESA (2015).

The goal of the present study is to assess the capability

of an instrument like CarbonSat to quantify emission pat-

terns of moderate to strong localized sources, taking into ac-

count a realistic description of the retrieval errors as given in

Buchwitz et al. (2013a), the spatiotemporal distributions of

CO2 emissions, and atmospheric transport. Here, we present

results focusing on Berlin (Germany), a large city but not

a megacity. According to the classification of Globalization

and World Cities (GaWC) for the year 2012 (http://www.

lboro.ac.uk/gawc/gawcworlds.html), Berlin is categorized as

Figure 1. The Berlin-centred WRF-GHG model domain in Lam-

bert conformal conic projection used in the study. The red rectan-

gle represents the target region (100 km × 100 km) described in the

Sect. 3.2 and the + sign indicates the central location of Berlin. The

colour bar indicates the terrain height in metres.

a beta-level city that provides a moderate economic contri-

bution to the world economy. Berlin is located in the north-

east of Germany (see Fig. 1) and is relatively isolated, i.e. it

is not a part of a large agglomeration of several cities. This

permits us to clearly identify the anthropogenic CO2 emis-

sion plume of Berlin from a single CarbonSat XCO2 image.

We use a high-resolution modelling framework, comprising

the Weather Research Forecasting (WRF) model combined

with a greenhouse gas module (WRF-GHG, Beck et al.,

2011) and the Vegetation Photosynthesis Respiration Model

(VPRM) to simulate CO2 mixing ratios for a domain centred

on Berlin. An analysis is carried out for CarbonSat’s cloud-

free overpasses for 1 reference year by applying a simple

Bayesian inversion scheme to estimate the emission budget

with associated uncertainty. A preliminary analysis using a

least-squares-fitting algorithm was reported in Buchwitz et

al. (2013b), but here we present a more detailed analysis,

which differs from the previous study as follows: the present

study (1) uses high-resolution model simulations for each

cloud-free CarbonSat overpass over Berlin for the simulated

year 2008, (2) prescribes the updated emission inventory in-

cluding hourly variations, (3) utilizes a Bayesian inversion

approach, and (4) examines more scenarios to extend the er-

ror analysis study.

2 WRF-GHG inverse modelling system

A high-resolution inverse modelling system, utilizing atmo-

spheric XCO2 measurements at high spatial and temporal

resolution, is used to retrieve the CO2 emissions at an urban

scale. It comprises two components: the WRF-GHG model

linking atmospheric transport and the fluxes to realistically

represent the distribution of atmospheric CO2 mixing ratios,
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and a Bayesian inversion technique to optimize the fluxes.

One primary objective is to quantify the uncertainties in the

retrieved anthropogenic CO2 emission fluxes resulting from

typical and reasonable estimates of the systematic and ran-

dom error of the XCO2 measurements for an instrument like

CarbonSat for the spatial resolution of 2 km × 2 km and the

uncertainty in a priori knowledge of the surface flux of CO2.

For this, we used WRF-GHG forward simulations as the true

representation of the atmospheric CO2 concentrations and

the associated fluxes as the true fluxes to be retrieved. Hence,

the deviation in the retrieved fluxes (via inverse optimization)

relative to the true fluxes is caused by the CarbonSat sim-

ulated observation errors and the modelling errors (includ-

ing the use of different emission inventories) depending on

different scenarios analysed. Each component of the inverse

modelling system is described in the following.

2.1 WRF-GHG forward model simulations

The present study uses the WRF-GHG (version WRFv3.4)

forward simulations of CO2 concentrations at high spatial

(10 km × 10 km) and temporal (1 h) resolutions for all of Car-

bonSat’s overpasses over Berlin in the year 2008. The WRF-

GHG modelling system has already been used in several

regional studies and has shown remarkable performance in

capturing fine-scale spatial variability of CO2 mixing ratios

(e.g. Ahmadov et al., 2007, 2009; Pillai et al., 2010, 2011,

2012). The model domain describes a region (spatial extent

of ∼ 900 km × 900 km) centred over Berlin (Fig. 1) and the

simulations use 41 vertical levels (the thickness of the lowest

layer is about 18 m and the model top is 1.0 hPa). Simula-

tions are conducted separately for each day for a period of

30 h, including a meteorological spinup time of 6 h starting

at 18:00 UTC the previous day.

The initial and lateral boundary conditions of the meteo-

rological variables, the sea surface temperature (SST), and

the soil initialization fields for each run are prescribed from

the European Centre for Medium-Range Weather Forecasts

(ECMWF) model analysis data (http://www.ecmwf.int) with

a spatial resolution of about 25 km and 6-hourly temporal

intervals. As initial atmospheric CO2 fields and the lateral

boundary concentrations, simulations use global CO2 con-

centration simulations by the atmospheric tracer transport

model TM3 with a spatial resolution of 4◦ × 5◦, 19 verti-

cal levels, and a temporal resolution of 3 h (Heimann and

Körner, 2003). TM3 simulations used for this study are gen-

erated by a forward transport simulation of fluxes that have

been optimized using a global network of CO2 observing

stations (Rödenbeck, 2005). Biospheric fluxes within the re-

gional domain are calculated online in WRF-GHG with a di-

agnostic biospheric model, the Vegetation and Photosynthe-

sis and Respiration Model (VPRM), utilizing remote sens-

ing products and meteorological data at high temporal and

spatial resolutions (Mahadevan et al., 2008). To obtain more

realistic estimates of biospheric fluxes, a set of parameters

in the VPRM, specific for each vegetation class, has been

optimized against eddy flux observations obtained during the

CarboEurope IP experiment at various sites (21 measurement

sites) under different vegetation types within Europe (Pillai

et al., 2012). Regional oceanic fluxes are neglected here since

their contribution is insignificant in the context of the present

study.

Fossil fuel emission fluxes

The anthropogenic CO2 emission fluxes are based on

the EDGAR (Emission Database for Global Atmospheric

Research, version 4.1, year 2008) global inventory with a

spatial resolution of 0.1◦ × 0.1◦. EDGAR is an annually

varying database, but we apply time factors in order to

provide hourly emissions. The time factors for seasonal,

daily, and diurnal variations are based on the step-function

time profiles published on the former EDGAR website: http:

//themasites.pbl.nl/images/temporal-variation-TROTREP_

POET_doc_v2_tcm61-47632.xls (see Kretschmer et al.,

2014; Steinbach et al., 2011, for further details). WRF-GHG

simulations using these EDGAR emissions are treated as the

real distribution of atmospheric CO2 (hereafter referred to as

“true CO2 conc.”), and the associated EDGAR fluxes as true

fluxes.

In order to examine the impact of the spatiotemporal distri-

bution of fossil fuel emission structures on atmospheric CO2

and to quantify the associated uncertainties in the optimized

fluxes, we use different emission data as the prior emissions,

namely those compiled by the Institut für Energiewirtschaft

und Rationelle Energieanwendung (IER inventory), Univer-

sity of Stuttgart, (http://carboeurope.ier.uni-stuttgart.de) for

the year 2000, at spatiotemporal resolutions of 10 km and 1 h.

Temporal variations in the IER inventory include traffic rush

hours, difference in power demand between weekdays and

weekends, domestic heating, and air conditioning (Pregger et

al., 2007). While utilizing the IER year 2000 database to rep-

resent the simulation year (2008), we apply scaling factors

in a manner similar to that in Pillai et al. (2011) to preserve

the temporal emission pattern differences between weekdays

and weekends. Simulations using the IER database are used

as the current knowledge about the atmospheric concentra-

tion for the inverse optimization described in Sect. 4.3.

Both these emission fluxes are regridded to WRF-GHG’s

10 km Lambert conformal conic projection grid, conserv-

ing the total mass of emissions. These hourly fluxes are

added separately to the first model layer, and transported

separately as tagged tracers. Figure 2 shows a spatial map

of the averaged EDGAR and IER emission fluxes as well

as their differences for the Berlin region. Strong emissions

associated with the city can be seen well in both invento-

ries. In general, both emission inventories show good consis-

tency in terms of spatial emission structures; however, sig-

nificant differences in emission intensities (magnitude) be-

tween the inventories, especially for large cities and power
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Figure 2. Annual averages of fossil fuel combustion emission fluxes at 10 km × 10 km, zoomed over the Berlin region: (a) EDGAR emissions,

(b) IER emissions, and (c) the difference between EDGAR and IER emissions (EDGAR − IER). All units are in Mt CO2 yr−1 per grid cell.

plants, are common (e.g. Fig. 2c). These differences are

larger for emissions resulting from power plants than for

those from cities (not shown). Figure 3 shows the tem-

poral variability of urban-scale emission fluxes in hourly,

weekly, and monthly averaged timescales for a region around

Berlin (∼ 100 km × 100 km). For Berlin emissions, consid-

erable differences in temporal variations are found between

both inventories, with maximum values of 22.5, 18.5, and

24.0 Mt CO2 yr−1 for hourly, weekly, and monthly averaged

timescales, respectively. As compared to the IER inventory,

the EDGAR inventory shows consistently larger emissions

for Berlin; however, this is not the case for some other cities

in Europe. Based on available sources of information, it

is difficult to conclude which inventory is more accurate.

The seasonal variability exhibited by EDGAR Berlin emis-

sions is substantially larger than that of the IER inventory.

Larger emissions are seen in the EDGAR inventory in win-

ter months, with values approximately a factor of 1.5 higher

than those in summer months. This results from the increased

demand of domestic heating in winter. In terms of the sea-

sonal variability of the Berlin city emissions, the IER inven-

tory shows a relatively small difference in winter–summer

emission patterns (temporal) as compared to EDGAR, and

shows overall larger emissions in winter. Both inventories

show lower emissions during weekends, consistent with the

reduced demand of transportation and power consumption.

The hourly averaged Berlin emissions provided by both in-

ventories display peak values during 07:00–09:00 LT (local

time) and 17:00–19:00 LT, reflecting morning and evening

rush hours in terms of city traffic. Interestingly, the IER

Berlin emissions show delayed morning rush hours on week-

ends, with a maximum value around 11:00 LT.

The significant difference between these inventories in

both temporal and spatial scales implies that our current

knowledge of urban-scale emissions is inadequate, even for

central Europe, which is relatively well characterized in

terms of emissions compared to many other parts of the

world. Note that a part of these emission differences is likely

due to the different data compilation years of the IER and

EDGAR inventories. This knowledge gap is also important in

inverse-modelling-based estimations of the source-sink dis-

tribution of CO2, in which fossil fuel fluxes are generally

assumed to be known. How critical the effect of this assump-

tion is depends on the impact of these differences in emis-

sions (emission uncertainties) on modelled atmospheric mix-

ing ratios, as well as on the transport errors that are included

in the model–data mismatch error in the inverse modelling

framework. The impact of emission uncertainties is further

discussed in Sect. 4.1.

2.2 Inverse optimization technique

The inverse optimization utilizes observational constraints

to adjust a subset of parameters λ out of model parame-

ters p in the surface flux model f m(p) in order to ob-

tain a modelled concentration consistent with the observa-

tions. Hence, the anthropogenic atmospheric concentration c

(column-averaged dry air mole fraction) at different locations

and times can be represented as

c − cbg = Ff m(λ) + εerror. (1)

Here, the matrix F links the atmospheric concentration to a

vector f m(λ) whose dimension is equal to the total num-

ber of surface flux elements, multiplied by total time steps.

The vector cbg is the background column-averaged dry air

www.atmos-chem-phys.net/16/9591/2016/ Atmos. Chem. Phys., 16, 9591–9610, 2016
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Figure 3. Temporal variability of EDGAR and IER emis-

sion fluxes, aggregated over the target region around Berlin

(∼ 100 km × 100 km) averaged for different timescales for the year

2008: (a) monthly, (b) weekly, and (c, d) hourly. Panel (d) shows

the values representing only weekends, while (c) represents all days

of the week. Hours are in UTC (local time CET = UTC +1).

mole fraction, i.e. the concentration due to the advection of

upstream tracer concentrations. For the inversion, f m(λ) is

assumed to be linearly dependent on λ and is expressed as

f m(λ) = 8λ, (2)

where λ represents a vector of daily scaling factors of surface

fluxes, and the matrix 8 represents the surface flux field over

the model domain.

A linear model is obtained by combining Eqs. (1) and (2):

y = Kλ + εerror, (3)

where the measurement vector y is given by

y = c − cbg, (4)

and cbg is obtained by linearizing the model with a reference

state λ0 = 0 (see Eq. 1).

The Jacobian matrix that represents the sensitivity of the

observations y to the state vector λ is given by

K = F8. (5)

The state vector and the Jacobian matrix are further de-

scribed in Sect. 3.2. A priori knowledge of the surface fluxes,

λprior, along with their uncertainties is incorporated in the

Bayesian formulation. The term εerror is assumed to follow

the Gaussian distribution described by the error covariance

matrices of the measurements, Se and the prior estimate,

Sprior. The posterior estimate of λ is obtained by minimiz-

ing the cost function, J , which is given as

J (λ) = (y − Kλ)T S−1
e (y − Kλ) + (λ − λprior)

T (6)

S−1
prior(λ − λprior).

Analytically solving for the minimum of Eq. (6) gives the

optimal estimate of the state vector of the scaling factors λ̂, as

well as the associated error covariance matrix of λ̂, termed as

the posterior uncertainty, S
λ̂
. These are expressed as follows

(Rodgers, 2000):

λ̂ = (KT S−1
e K + S−1

prior)
−1(KT S−1

e y + S−1
priorλprior) (7)

S
λ̂

= (KT S−1
e K + S−1

prior)
−1. (8)

3 Bayesian inversion of CarbonSat measurements

3.1 Pseudo observations

The inversion utilizes a 1-year data set of CarbonSat simu-

lated observations at a spatial resolution of 2 km × 2 km, gen-

erated using the WRF-GHG forward model (10 km × 10 km)

as described in Sect. 2.1, and CarbonSat’s retrieval error

(2 km × 2 km), estimated using an error parameterization

scheme based on the measurement characteristics as de-

scribed in Buchwitz et al. (2013a). The error parameteriza-

tion scheme, described in detail in Buchwitz et al. (2013a),

is based on six parameters consisting of solar zenith angle

(SZA) and scattering-related parameters such as albedo in the

near-infrared (NIR) and the first shortwave-infrared (SWIR-

1) bands, cirrus optical depth (COD), cirrus top height

(CTH), and aerosol optical depth (AOD) at 550 nm. We use

the Level 2 error data set (L2e files), described in Buchwitz

et al. (2013a), that contains the random and systematic errors

of CarbonSat’s XCO2 retrievals based on the error param-

eterization scheme. CarbonSat is assumed to follow an or-

bit similar to NASA’s Terra satellite (www.nasa.gov/terra/),

but with an equator crossing time of 11:30 LT. Hence, for

specifying the CarbonSat’s geolocation, the L2e files uti-

lize the geolocation provided in the Terra Level 1 data set

for the year 2008, but modified to consider the difference

in equator crossing time. This data set contains fields such

as geodetic coordinates, ground elevation, solar and satel-

lite zenith angles, etc. determined using the spacecraft at-

titude and orbit, a digital elevation model, and information
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derived from various other data sets such as the Filled Land

Surface Albedo Product, generated from MOD43B3 (http:

//modis-atmos.gsfc.nasa.gov/ALBEDO/) at a spatial resolu-

tion of 1 min (2 km at equator and < 1 km at the poles),

which is used to account for surface albedo. The cirrus pa-

rameters are represented using a spatiotemporally smoothed

(8◦ × 8◦ and 3 months) data set of COD and CTH, origi-

nally derived from CALIOP (Cloud-Aerosol Lidar with Or-

thogonal Polarization) onboard CALIPSO (Cloud-Aerosol

Lidar and Infrared Pathfinder Satellite Observations, Winker

et al., 2009). Global aerosol data products from the GEMS

project (http://gems.ecmwf.int/) at a spatiotemporal resolu-

tion of 1.125◦ × 1.125◦ and 12 h are used to account for

aerosols (AOD). This data set is based on the assimilation of

MODIS data and we use the AOD at 550 nm. As described

in Buchwitz et al. (2013a), the L2e data set only contains

those CarbonSat simulated observations which are approxi-

mately cloud-free as determined using a cloud mask obtained

from MODIS Terra (using the MODIS cloud cover data prod-

uct (MOD35) at a spatial resolution of about 1 km × 1 km).

As the remaining ground pixels may still suffer from cloud

contamination (e.g. due to too-high amounts of thin cirrus)

or other disturbances, a quality filtering scheme is applied

which is based on retrieved (e.g. COD and AOD) and known

quantities (e.g. SZA). The quality filtering scheme is de-

scribed in Buchwitz et al. (2013a) and we use here only those

ground pixels which are considered good according to this

scheme.

Initially, we have identified all the potentially useful Berlin

overpasses, i.e. overpasses where at least some CarbonSat

simulated observations are present over Berlin and its sur-

roundings for a given CarbonSat orbit. We found that the

maximum number of observations is obtained during the

summer months due to most favourable observation con-

ditions (less clouds for extended time periods and regions,

high SZA, etc.). In total, there are 41 days (orbits) of poten-

tially useful overpasses over Berlin for the year 2008 for a

swath width of 500 km. Note that the number of overpasses

is smaller in the figures shown later. This is because of an ad-

ditional quality filtering procedure applied after the inverse

optimization that is based on retrieved random errors, as ex-

plained later.

3.2 Definition of the state vector and Jacobian matrix

In the present study, the state vector has two elements. The

first element λ (the scalable parameter of the emission flux)

corresponds to the scaling factor of emission fluxes for a

trimmed model domain, i.e. a region around Berlin (spa-

tial extent of approximately 100 km × 100 km,) hereafter re-

ferred to as the target region (TR). The other element is a

constant, i.e. λ0 = 0, for the entire scene per overpass to ac-

count for variations of the background XCO2 (see Eq. 4) and

to treat the background variations independently of the city

emissions, as done in Buchwitz et al. (2013b). The temporal

resolution of λ is set to be daily, assuming no spatial varia-

tions within the target region. The prior value of this scaling

factor λprior is set to unity.

The Jacobian matrix K relates the measurement vector y

to the state vector λ, and has elements that represent the re-

sponse in mixing ratios to the emission fluxes (see Eq. 5). The

dimension of K is n×m, where n corresponds to the numbers

of elements in the state vector and m is the number of XCO2

observations. Since we do not have an adjoint model, these

sensitivity functions are derived by perturbing each element

of the emission flux field 8 over the target region by small

increments and applying the forward model (WRF-GHG) to

obtain the resulting perturbed concentration field (C + 1C)

over the target region. Hence, K is calculated as follows:

K =
C + 1C − C

∑

TR

8perturbed −
∑

TR

8
. (9)

The posterior estimate of the scaling factor, λ̂, is derived

by minimizing the cost function, J (λ), as given in Eq. (7).

3.3 Error covariance matrices

Bayesian inversion utilizes error covariance matrices to ac-

count for the measurement error and the prior flux error vari-

ances and covariances. The measurement error covariance

matrix, Se, is constructed by specifying the XCO2 random

errors (single-measurement precision) derived using the error

parameterization scheme described in Sect. 3.1. Note that the

XCO2 random error is primarily determined by the instru-

ment signal-to-noise performance (but also to some extent by

the retrieval algorithm; see Buchwitz et al., 2013a) and is typ-

ically about 1.2 ppm (for the assumed threshold requirement

signal-to-noise ratio performance assumption used by Buch-

witz et al., 2013a) except for some especially unfavourable

conditions such as low albedo and high SZA scenarios.

Transport model uncertainty is neglected here since the ob-

jective of current study is to quantify the uncertainty in the

retrieved fluxes due to CarbonSat’s retrieval errors only.

The prior flux uncertainty, Sprior, is set uniformly to 40 %

of the total emission over the target region to ensure that the

difference between the true and prior fluxes is appropriately

considered. We consider the fact that the increased variabil-

ity of emissions at the high resolution (as it is used in this

study) leads to increased uncertainty due to the lack of infor-

mation about the emission processes at the required spatial

and temporal resolutions. The magnitude of Sprior is speci-

fied here based on the approximate difference between the

IER and the EDGAR inventories over the target region.
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Figure 4. Anthropogenic XCO2 enhancement on 24 June 2008 at 10:00 UTC (local time: 12:00 CEST). Panel (a) shows the true XCO2

enhancement (using EDGAR emissions), and (b) XCO2 enhancement when using IER emissions. Panel (c) shows the discrepancy in XCO2

enhancement due to the difference between EDGAR and IER emission inventories. All units are given in ppm.

4 Results: estimation of anthropogenic XCO2

enhancement and retrieved flux uncertainty over

Berlin

In this study, we use anthropogenic XCO2 enhancement,

which is defined as the enhancement in XCO2 resulting from

local anthropogenic emissions relative to the background

concentration. The tagged tracer option in WRF-GHG stores

XCO2 enhancement resulting from EDGAR emissions sepa-

rately, and we use this field to represent anthropogenic XCO2

enhancement. The uncertainty in the retrieved emission at-

tributed by CarbonSat’s retrieval error is a function of the

anthropogenic XCO2 enhancement over Berlin, the number

of potential observations in and around Berlin, and the re-

trieval uncertainty (random and systematic components). In

this manner, we take into account the influence of these pa-

rameters to achieve a robust estimation of the retrieved sur-

face emission uncertainty or error.

4.1 Local anthropogenic XCO2 enhancement

The XCO2 enhancements resulting from anthropogenic

emissions over Berlin are estimated in order to assess

whether these emission enhancements are detectable by an

instrument having the performance of CarbonSat, i.e. to as-

sess whether the resulting plumes are statistically significant

and robust, thereby enabling the changes or trends in anthro-

pogenic emission over the cities.

Figure 4 shows the true anthropogenic XCO2 enhance-

ment on a reference day (24 June 2008), the anthropogenic

XCO2 enhancement based on the IER inventory, and the dif-

ference in XCO2 enhancement due to the difference in emis-

sion inventories. From Figs. 2a and 4a, it can be concluded

that, given the availability of a satellite instrument which is

able to precisely detect the associated XCO2 mixing ratio

enhancements ranging from 0.80 to 1.35 ppm at a high spa-

tial resolution and adequate spatial coverage, anthropogenic

emissions from a city the size of Berlin and other localized

emission sources can be estimated from space with sufficient

accuracy. It should be noted that the magnitude of detectable

anthropogenic XCO2 enhancements is likely to be underesti-

mated in our study because the true fields of XCO2 variations

are simulated at a 10 km spatial resolution instead of Carbon-

Sat’s resolution (∼ 2 km × 2 km).

It is noteworthy that the spatial and temporal difference in

EDGAR and IER emission inventories gives rise to a notable

XCO2 mixing ratio difference between 0.4 and 1.0 ppm. For

Berlin, this is about 40 % of the total true XCO2 enhance-

ment. It should be noted that surface concentrations show

larger relative differences than the column dry mole fraction

for CO2 (XCO2) because of their higher sensitivity to the

change in surface fluxes. Hence, this result indicates the im-

portance of characterizing emission uncertainties, even for

the region where fossil emissions are often considered to be

well quantified in comparison to the biospheric carbon bal-

ance. Neglecting this uncertainty term would lead to signif-

icant biases in the net carbon exchange estimations, partic-

ularly when assimilating concentration measurements closer

to emission sources such as cities.

4.2 Uncertainty of the retrieved Berlin emissions

In this section, we show the results obtained by inverting

CarbonSat simulated observations over the target region, tak-

ing into account different sources of possible errors includ-

ing CarbonSat measurement errors and modelling errors. In-
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Table 1. Overview of different scenarios (SCE) which are used to investigate the systematic errors of the retrieved emissions. The absolute

mean and standard deviations are estimated for two swath widths (SW-500: 500 km and SW-240: 240 km) for all N useful overpasses and are

expressed in both Mt CO2 yr−1 and in percent. Err-L, Err-H, and Err-B indicate errors attributed to CarbonSat measurement, high-resolution,

aerosol-related errors, and biogenic modelling errors, respectively. Err-Emi indicates whether the inversion experiment uses different prior

emission fluxes (see Sect. 4.3).

SCE Err-L Err-H Err-B Err-Emi Prior True SE (SW-500) SE (SW-500) SE (SW-240) SE (SW-240)

flux flux (mean ± SD) (mean ± SD) (mean ± SD) (mean ± SD)

% Mt CO2 yr−1 % Mt CO2 yr−1

S01 X EDGAR EDGAR −5.3 ± 6.1 −2.5 ± 2.8 −6.1 ± 5.7 −2.8 ± 2.6

S02 X EDGAR EDGAR −7.5 ± 3.4 −3.6 ± 2.1 −7.5 ± 2.9 −3.1 ± 1.6

S03 X EDGAR EDGAR 18.5 ± 23.3 7.5 ± 9.5 20.5 ± 23.7 8.2 ± 9.4

S04 X X EDGAR EDGAR −12.7 ± 7.4 −6.1 ± 3.8 −12.8 ± 7.1 −5.9 ± 3.6

S05 X X X EDGAR EDGAR 5.8 ± 24.4 1.5 ± 10.7 7.7 ± 25.3 2.3 ± 10.6

S06 X X EDGAR EDGAR 13.2 ± 23.7 5.1 ± 10.0 14.4 ± 24.5 5.4 ± 10.0

S07 X IER EDGAR 10.1 ± 15.5 4.5 ± 6.9 10.1 ± 15.9 4.5 ± 7.1

S08 X X IER EDGAR 6.3 ± 16.2 2.8 ± 7.1 5.9 ± 18.2 2.6 ± 7.9

S09 X X X IER EDGAR −0.5 ± 16.0 −0.2 ± 6.9 −0.9 ± 18.2 −0.4 ± 7.6

S10 X X X IER EDGAR 24.3 ± 27.7 10.8 ± 11.0 24.3 ± 29.1 10.8 ± 11.4

S11 X X X X IER EDGAR 17.6 ± 27.9 7.8 ± 11.1 17.6 ± 29.6 7.8 ± 11.6

Figure 5. Anthropogenic flux over the target region based on

(a) EDGAR inventory, and (b) IER inventory for all of CarbonSat’s

useful overpasses corresponding to 500 km swath width for the year

2008.

versions are performed separately for each potentially useful

CarbonSat overpass (see above) to derive the total emission

flux and its error over the target region. Note that those fluxes

retrieved or seen from CarbonSat XCO2 measurements can

vary significantly from one overpass to the next, i.e. within

weeks, because the time elapsed to transport the CO2 plume

to where it is observed by CarbonSat and thus changes in

XCO2, vary with wind speed and strong temporal variations

in emissions (see also Fig. 3). Figure 5 shows an overview of

prior fluxes used for these inversions.

The systematic errors (SEs) of the retrieved emission

fluxes, which are specific for each source of errors or com-

bination of errors, is determined separately by defining six

scenarios, represented by S01 through S06 (Table 1). These

scenarios are described in the following subsections, while

additional scenarios S07–S11 are presented and discussed

separately in Sect. 4.3. Note that the distance from the cen-

tre of the target region to one of its boundaries is roughly

50 km, which corresponds to a time of approximately 3 h for

air parcels travelling with a velocity of 4.5 m s−1. This means

that the observed local CO2 emission plume is not only de-

termined by the emission at the time of the overpass but also

during a time interval of several hours before the time of

the overpass. This is taken into account when modelling the

CO2 emission plume. For the inversion, it is assumed that the

time dependence of the emissions in the time period of up to

several hours (3–6 h) before the overpass is at least reason-

ably well known except for the scenarios S07–S11. As noted

earlier, the true XCO2 variations in this study are based on

10 km spatial resolution instead of 2 km in CarbonSat simu-

lated observations. For the inversion results, we assume neg-

ligible representation error arising from these spatial-scale

mismatches. Based on meteorological conditions, the repre-

sentation error introduced by decreasing the horizontal res-

olution from 2 to 10 km can be approximately 0.5 ppm on

average for CO2 concentrations at the surface (Tolk et al.,

2008). However, it is expected that the representation er-

ror for XCO2 between these horizontal scales will be much

lower than that for CO2 concentration at the surface (see Pil-

lai et al., 2010).

Before analysing SE for the different scenarios, we first

present the random error (RE) of the retrieved emission. RE

is caused by the measurement noise, i.e. by the random part
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Figure 6. Precision (random errors (RE)) of the retrieved emission fluxes obtained by the inverse optimization using 1 year of CarbonSat

simulated observations. Results of two different swath widths (SWs) – 500 km (grey) and 240 km (red) – are shown. Sprior values are indicated

with magenta-bordered bars for visualizing the reduction in uncertainty. The top and bottom panels show RE in Mt CO2 yr−1 and in percent,

respectively. An overview of the statistical distribution of RE, separately for 500 km (grey) and 240 km (red) swath widths, is given inside

the panel. The overall mean ± standard deviation is given outside the respective panels. The lower and upper limits of the x axis (days of the

year) is restricted accordingly as there are no good CarbonSat simulated observation during winter months. The arrow marker in the x axis

indicates a particular day (24 June 2008) shown in Figs. 4, 7, and 8.

of the measurement error; hence, it is independent of the

above-mentioned SE scenarios. In the optimal case, the in-

strument noise is determined by the shot noise of the detec-

tor arrays. In practice, there are additional sources of noise

such as read out noise, digitization noise, etc. Figure 6 shows

the random errors of the retrieved emissions over the target

region, obtained by inverting the entire 1-year data set of

simulated CarbonSat XCO2 retrievals. As explained above,

we have investigated two different swath widths, 500 and

240 km. The results are shown only for the days where the

number of CarbonSat simulated observations around the tar-

get region is sufficiently dense (covering the emission plume

and its surroundings) to obtain a retrieved emission random

error of less than 25 %, i.e. we use the a posteriori random

error of the retrieved emission as a quality criterion (as also

done in Buchwitz et al., 2013b). Applying this additional

quality criterion has further reduced the number of poten-

tial overpasses for the 500 km swath width. This number, la-

belled as N useful overpasses, is 27 for a swath width of

500 km and 17 for a swath width of 240 km. The value ob-

tained here for N useful overpasses is expected to be typical

for other cities with similar cloud coverage and latitude. As

can be seen in Fig. 6, decreasing the swath width not only

reduces the number of useful overpasses but also increases

the RE of the retrieved fluxes for some overpasses. The RE

of the retrieved emission (from a single overpass) is usually

found to be less than 20 % (approximately 10 Mt CO2 yr−1)

of the emission fluxes for both swath widths.

4.2.1 Impact of CarbonSat measurement errors

(scenario S01)

Here, we focus on scenario S01, and estimate the uncer-

tainty in the retrieved emission fluxes caused exclusively by

CarbonSat measurement errors. For this, we assume that the

XCO2 variability in the target region is dominated by the an-

thropogenic CO2 emission and that there is negligible XCO2

variability due to biogenic fluxes over the target region, or

that this biogenic component can be modelled well, and thus

can be subtracted from the observations without introducing

any modelling-related errors.

The systematic measurement error of the CarbonSat sim-

ulated observations over the target region for a typical day

(24 June 2008) for S01 is shown in Fig. 7a. This is esti-

mated using the error parameterization scheme of Buchwitz

et al. (2013a), as shortly described in Sect. 3.1. The mean

systematic measurement error over the target region is about

0.25 ppm for this day. For the scenario S01, the observed an-

thropogenic XCO2 by CarbonSat is thus the sum of this mea-
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Figure 7. XCO2 systematic error over the target region on 24 June 2008, assuming a CarbonSat swath width of 500 km. The six scenarios

(S01–S06) are shown with a label inside the respective panel. For S01, S02, and S04, these errors are estimated using the error parameteri-

zation scheme of Buchwitz et al. (2013a). The other scenarios additionally utilize biogenic XCO2 variability in the target region (simulated

by WRF-GHG) to derive XCO2 systematic errors. Note that different colour scales are used for S02 and S03. All units are given in ppm.

surement error (Fig. 7a) and the true anthropogenic XCO2.

Figure 8a shows the observed anthropogenic XCO2 enhance-

ment for S01 over the target region during the overpass on 24

June 2008. For the comparison, the corresponding true an-

thropogenic XCO2 enhancement, i.e. without any source of

errors, is shown in Fig. 8g. The true emission plume, orig-

inating almost from the centre of the target region, can be

clearly seen with a maximum value of about 0.90 ppm. As

can be seen, the observed CarbonSat XCO2 pattern (Fig. 8a)

differs from the true XCO2 pattern (Fig. 8g) by the measure-

ment errors (Fig. 7a); hence, the retrieved emission via in-

version typically differs from the true emission that results

in a systematic error of the retrieved emission. The extent

of this systematic error depends on how well the systematic

measurement error correlates with the true XCO2 pattern.

Figure 9 shows the systematic errors of the retrieved emis-

sions for CarbonSat overpasses over the target region ob-

tained by inverting the entire 1-year data set of simulated

CarbonSat XCO2 retrievals for the scenario S01. Shown are

the results for swath widths of 500 and 240 km for all N

useful overpasses (days). Overall, the absolute magnitude

of the systematic errors of the retrieved emissions for both

swath widths for the scenario S01 is found to be less than

10 % for most of the overpasses (about 75 % of the N useful

overpasses for the year 2008), which corresponds to about

5.3 Mt CO2 yr−1. For the 500 km swath width in S01, the

mean and standard deviation of the SE for all N useful over-

passes is −2.5 Mt CO2 yr−1 (−5.3 %) and 2.8 Mt CO2 yr−1

(6.1 %), respectively (see also Table 1). In general, we find

that the two different swath widths have a negligible impact

on the daily SE of the retrieved emissions, although decreas-

ing the swath width reduces the N useful overpasses.

4.2.2 Impact of CarbonSat measurement errors with

worst-case aerosol-related biases (scenarios S02

and S04)

Note that in the previous section we have used the CarbonSat

systematic XCO2 retrieval errors as provided by the error pa-

rameterization scheme described in Buchwitz et al. (2013a).

However, as explained in Buchwitz et al. (2013b), this

scheme may underestimate aerosol-related biases if the spa-

tially (not aggregated) high-resolution CarbonSat simulated

observations are used for applications like the one used here.

The reason is that aerosol-related retrieval biases have been

computed using quite smooth model aerosol input data sets,

which might not be sufficient to represent the aerosol plume

over Berlin.

To consider this, an additional error term has been defined

which is referred to as “high-resolution aerosol error” in this

paper. In this subsection, we present results for scenario S02,

where the measurement error used for S01 described in the

previous section has been replaced by the high-resolution

aerosol error contribution to the systematic measurement er-

ror. We also present results for scenario S04, where the mea-

surement error is the sum of the S01 and S02 errors.

The method of computing the high-resolution aerosol er-

ror is described in detail in Buchwitz et al. (2013b). Here,

we describe it briefly as follows. A local AOD enhancement

has been computed by scaling the observed anthropogenic
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Figure 8. Observed anthropogenic XCO2 enhancement over the target region during a CarbonSat overpass on 24 June 2008 (swath width:

500 km). Different panels show anthropogenic XCO2 enhancement, while considering XCO2 systematic errors for different scenarios as

shown in Fig. 8. The true XCO2 (fossil fuel (FF)) enhancement (i.e. without any uncertainties) is given in the bottom panel (g) for comparison.

Note that an offset, labelled inside each panel, is subtracted from the anthropogenic XCO2 enhancement to better visualize the details (for

the figure only). All units are ppm.

Figure 9. Systematic errors of the retrieved emission fluxes for S01, obtained by the inverse optimization using 1 year of CarbonSat simulated

observations. Results of two different swath widths (SW) – 500 km (grey) and 240 km (red) – are shown. Panels (a) and (b) show SE in

Mt CO2 yr−1 and in percent, respectively. An overview of the statistical distribution of SE, separately for 500 km (grey) and 240 km (red)

swath widths, is given inside the panel. The overall mean ± standard deviation is given outside the respective panels.
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Figure 10. Same as Fig. 9, but for S02, quantifying the impact of the worst-case assumption used for aerosol-related biases.

XCO2 spatial pattern, i.e. the AOD enhancement is assumed

to be perfectly correlated with the CO2 emission plume of

interest (see Figs. 7b and 8b). To quantify the urban aerosol

enhancement over a region around two power plants in Ger-

many and to study their impact on emission estimates, Krings

et al. (2011) followed the above criteria and used an AOD

scaling factor of 0.05 per 1 % (4 ppm) of local 1XCO2. As

compared to their study, we have used a much higher scal-

ing factor of 0.2, i.e. the AOD change, 1AOD at 550 nm is

0.2 per 4 ppm of local anthropogenic 1XCO2. Overall, these

are worst-case assumptions that are supposed to result in up-

per limits of systematic XCO2 errors due to aerosols and re-

sulting errors of the retrieved emissions. For a more detailed

discussion, see Buchwitz et al. (2013b).

The resulting SEs of the retrieved emissions for scenario

S02 are found to be negative, indicating systematic under-

estimation of retrieved emissions (see Fig. 10). As can be

seen, the absolute magnitudes of errors are slightly higher

than those for S01. The mean and standard deviation of

SE for S02, considering all N useful overpasses and the

500 km swath width, are −3.6 Mt CO2 yr−1 (−7.5 %) and

2.1 Mt CO2 yr−1 (3.4 %), respectively.

Another scenario, S04, investigates the impact of both

high-resolution aerosol-related errors (used for S02) and the

default CarbonSat measurement errors (used for S01) on re-

trieving anthropogenic emissions. Inversions are performed

by utilizing these two sources of error, i.e. the XCO2 system-

atic error for S04 is the sum of XCO2 systematic error spec-

ified in S01 and S02 (see Figs. 8d and 9d). As expected, the

SEs of the retrieved emission for S04 is found to be higher

than those of S01 and S02, and their values are close to the

linear sum of systematic emission errors for S01 and S02 (see

Table 1). As already explained, the definition of S04 likely

represents the possible worst-case measurement scenario in

particular with respect to aerosol-related errors.

4.2.3 Impact of biospheric modelling error (S03, S05,

S06)

In this section, we explore the impact of modelling error on

retrieving Berlin city emissions. In the last two sections, it

is assumed that the spatial variability introduced by the bio-

genic component of XCO2 in the target region is well known

or sufficiently small that it can be ignored. However, in re-

ality, there are notable perturbations caused by the spatial

variability of biogenic XCO2 in the target region that can-

not be ignored. As an example, Fig. 7c illustrates the bio-

genic XCO2 variability in the target region during a Carbon-

Sat overpass. Most critical in terms of this uncertainty is how

well the biogenic XCO2 pattern is correlated with the anthro-

pogenic XCO2 pattern. In this case, the uncertainty in the

retrieved emissions depends on how accurately the biogenic

fluxes can be modelled, as well as the associated transport

model uncertainty in simulating the biogenic XCO2 pattern.

Note that we assume negligible transport uncertainty for the

anthropogenic XCO2 pattern in order to distinguish the re-

trieved emission errors due only to the biogenic XCO2 pat-

tern. In order to account for this modelling-related error, we

consider scenario S03. In S03, we assume an extreme case

where biogenic XCO2 cannot be modelled at all; hence, bio-

genic XCO2 is treated as the perturbation seen in the mea-
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Figure 11. Same as Fig. 9, but for S03, quantifying the impact of the worst-case modelling-related errors by assuming that biogenic XCO2

variations cannot be modelled at all.

surement vector (y) of the inversion system (see Figs. 8c and

9c). However, it should be noted that, in reality, biospheric

modelling uncertainty is not expected to be as high as this

assumption. A simple biosphere model such as VPRM used

in this study could capture 50–65 % of the biospheric flux

variability in most of the cases (squared correlation coeffi-

cient (VPRM vs. observations), R2 ∼ 0.50–0.65).

The systematic errors of the retrieved emissions for S03

are found to be significantly higher compared to the errors

for the above-mentioned scenarios than those for S01 and

S02 (see Fig. 11). It is noteworthy that this uncertainty is not

related to CarbonSat measurement errors, but arises due to

the inability of the model to simulate the biospheric contri-

bution. Hence, this uncertainty should be treated as a model-

related error. Due to the extreme assumption of modelling

error in S03, the uncertainty values reported in this section

have to be considered as the extreme upper limits of the pos-

sible total uncertainties in the retrieved fluxes due to biogenic

modelling error. Despite this, the SE of the retrieved emission

for S03 is within the range of 20–25 % (10–15 Mt CO2 yr−1)

for most of the scenes although we assumed the largest un-

certainty in modelling biogenic XCO2. The reason for this is

that the spatial biospheric XCO2 pattern in the target region

that disturbs the inverse system typically differs from the an-

thropogenic XCO2 pattern in many of the good CarbonSat

overpasses, enabling these two sources/sinks (anthropogenic

and biogenic) to be disentangled reasonably well for cities

like Berlin.

Additionally, we define other scenarios, S05 and S06, to

investigate the impact of the biogenic modelling errors in

combination with other error sources, such as CarbonSat

measurement errors and high-resolution aerosol-related er-

rors. Systematic error estimations for these scenarios are

summarized in Table 1 and these results suggest that a dom-

inant part of the retrieved emission error is caused by the

unknown biogenic variability.

4.2.4 Inversion experiment using different prior

emission fluxes (S07–S11)

The inversion results presented so far have not taken into ac-

count the impact of imperfect knowledge of the spatial pat-

tern of emission fluxes and the different time dependences of

the emissions; hence, the inverse optimization adjusts only

the amplitude of the emission plume corresponding to the

anthropogenic CO2 emission in the target region. Although

the error arising from these unknown spatial emission struc-

tures is not directly related to CarbonSat measurement errors,

we attempt to perform an experiment using two different flux

inventories, with one of the flux inventories representing the

prior fluxes and the other representing the true fluxes. The

experiment is designed with an inversion setup, which is es-

sentially the same as that described in Sect. 3.3, but with the

following exception. Here, the prior emission fluxes are pre-

scribed from the IER emission inventory (Fig. 2b); hence,

the modelled anthropogenic XCO2 is based on IER emission

fluxes (see Fig. 4b and Sect. 2.1.1). Similar to the sections

above, the EDGAR emission inventory is considered to have

the true fluxes and the measurement vector (y), which corre-

sponds to CarbonSat simulated observations, is based on the
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Figure 12. Similar to Fig. 9, but for the inversion experiment S09 using IER (a priori) and EDGAR (true) emission fluxes.

EDGAR emission inventory, as described in Sect. 3.1. The

retrieved posterior fluxes of this inversion optimization are

compared with true fluxes to estimate the retrieved posterior

flux errors and to assess how well inversion studies can bene-

fit from CarbonSat measurements in the case of discrepancy

between true and prior fluxes in terms of spatial patterns of

distribution.

Similar to the above section, systematic errors of the re-

trieved fluxes are estimated specifically for each source of

errors or combination of errors by defining scenarios S07

through S11 (see Table 1). It should be noted that the IER and

EDGAR fluxes are not entirely different in terms of temporal

variations, though the magnitude of the emissions in the tar-

get region is notably different (see Fig. 5). However, there ex-

ists a dissimilarity of approximately 70 % of the spatial pat-

terns between these two inventories (based on the correlation

of spatial variability between two inventories, R2 ∼ 0.30) in

the target region.

For most of the overpasses, the random errors of the

retrieved emission fluxes over the target region (single

overpass) are found to be less than 20 % (approximately

10 Mt CO2 yr−1) of the emission fluxes for both swath widths

(not shown). These values are comparable to those shown in

Fig. 6, indicating the potential of CarbonSat simulated ob-

servations to retrieve surface fluxes, even when uncertainties

in the spatial pattern of the prior emission fluxes are present.

Figure 12 shows the SE of the retrieved emissions estimated

for the scenario S09, where CarbonSat measurement errors

and high-resolution errors are considered in addition to the

uncertainty in the spatial pattern of the prior fluxes. For both

swath widths, the estimated SE for S09 is found to be less

than 10 Mt CO2 yr−1 in many instances (for about 85 % of

useful overpasses). Systematic errors for other scenarios are

summarized in Table 1. Depending on the error sources, the

inversion experiment shows that the mean and standard de-

viation of SE, considering all N useful overpasses and the

500 km swath width, ranges from −0.2 to 10.8 and 6.9 to

11.1 Mt CO2 yr−1, respectively. Furthermore, the systematic

errors of the retrieved emission fluxes for both swath widths

are found to be lower than the difference between the prior

fluxes and the true fluxes except for a very few cases, provid-

ing confidence in the inverse results although only a simple

inverse optimization methodology is used.

5 Discussion

In this section, we discuss the merits of instruments like

CarbonSat for retrieving emission fluxes and its potential in

disentangling anthropogenic and biogenic CO2 fluxes over

cities like Berlin. Caveats related to the simple inversion ap-

proach used here are discussed.

For the study of CO2 emissions, it is necessary to as-

sess whether local anthropogenic XCO2 enhancements are

large enough to be detected by using the retrieved XCO2

data products from the satellite-borne instrument, taking into

account the measurement noise. Our analysis shows that

anthropogenic XCO2 enhancements around Berlin are well

above the retrieval biases for most of the overpasses and the

number of potential observations, after filtering out the con-

www.atmos-chem-phys.net/16/9591/2016/ Atmos. Chem. Phys., 16, 9591–9610, 2016



9606 D. Pillai et al.: Tracking city CO2 emissions from space

taminated pixels, is large enough to minimize the random

error component (not shown). Given the availability of such

a dense sampling coverage with similar retrieval biases, one

can be confident in utilizing CarbonSat’s observations for re-

trieving city emission trends or absolute emission fluxes via

appropriate inverse modelling.

In a real scenario, the question arises whether it is possible

to clearly separate local anthropogenic XCO2 enhancements

from CarbonSat’s total column measurements, which are in

addition influenced by biospheric sources or sinks. More-

over, in order to isolate the XCO2 enhancement caused by lo-

cal sources (such as city emissions), it is necessary to specify

the background signal, representing the CO2 column with-

out any influence of local fluxes. These additional biospheric

and background influences can be ignored if the target city is

well isolated from other strong urban sources and/or active

biospheric regions as well as has negligible local biospheric

activity. However, only a few cities or urban areas meet the

above criteria, and a typical European city, in general, has

considerable local or nearby biogenic influences. Under these

conditions, it is necessary to disentangle biogenic, anthro-

pogenic and background contributions from CarbonSat’s ob-

servations. To assess the relative contribution of biogenic and

anthropogenic sources, one can utilize additional co-emitted

tracers such as CO and NOx (Newman et al., 2013; Silva et

al., 2013; Berezin et al., 2013; Reuter et al., 2014). In the

time frame of a potential CarbonSat mission, Sentinel-5 will

be providing data on CO and tropospheric NO2 (Ingmann

et al., 2012), which, when combined with CarbonSat data,

are expected to provide information for the attribution of air

masses originating from fossil fuel combustion. Depending

on the extent of the variability and the possible uncertainties,

we can also rely on the biospheric and global model simula-

tions to differentiate different source-sink contributions.

By assuming that the biospheric patterns are accurately

modelled and that these biogenic signals can be subtracted

from the measurement vector to isolate the anthropogenic

contribution of XCO2, our simple inversion system is con-

structed such that it takes into account the impact of Car-

bonSat sampling errors on the retrieved city emissions over

Berlin. The applicability of our results to a scenario where

these assumptions are not valid needs to be examined, but the

current setup is not well suited for this purpose since we have

not taken into account additional state vectors for biospheric

contributions. On the other hand, the current setup allows us

to investigate the extremely pessimistic scenario where we

assume that we cannot model the biospheric contribution at

all (see Sect. 4.2.3).

When using observations at CarbonSat’s 2 km spatial res-

olution, as mentioned in Sect. 4.1, it is likely that the magni-

tude and variability of local anthropogenic XCO2 enhance-

ment would be higher than our estimation that is based on

simulations at 10 km spatial resolution. One of the main ad-

vantages of CarbonSat’s resolution is its ability to provide a

large number of cloud-free observations and this study iden-

tified the potential observations over Berlin by utilizing Car-

bonSat’s 2 km spatial resolution.

Although we utilize high-resolution forward simulations,

at present our inversion system uses only one scaling fac-

tor for the entire target region for each useful overpass. This

means that the current setup cannot provide posterior esti-

mates for each pixel or emission sector within the target re-

gion. In other words, the flexibility to capture the true spatial

variation of fluxes is more limited in our simple inversion

system than in pixel- or parameter-wise inversions. Using

this simple inversion system may thus overestimate the re-

trieved flux uncertainty. While interpreting our results, one

should keep in mind that we do not specify other important

sources of errors in the inversion system, such as transport er-

ror. As previously noted, the main focus of this study is to es-

timate the retrieved flux uncertainties that are caused only by

CarbonSat’s measurement errors. However, these transport-

related errors, which provide proper weight to the obser-

vations depending on the capability of the transport model,

need to be taken into account when estimating the total flux

uncertainty via inverse modelling.

6 Summary and conclusion

In the present study, we examine the potential of a satellite

mission like CarbonSat for improving the current knowledge

on the surface–atmosphere exchange of atmospheric CO2.

A significant contribution by the CarbonSat GHG observa-

tions will be the ability to retrieve the emissions of local-

ized (moderate to strong CO2 and CH4) emission sources

such as cities, power plants, methane seeps, etc., as a result

of its unique sampling capability at high spatial resolution

(approximately 2 km × 2 km) with a good spatial coverage

using a much wider swath. To demonstrate this, we have in-

vestigated the error on the retrieved fluxes using synthetic

data which are similar to that expected from CarbonSat. We

have simulated emissions from a medium-size city (in terms

economic contribution and trade) and assessed the capabil-

ity to retrieve anthropogenic emission fluxes for the city and

its surrounding region (Berlin-centred target region investi-

gated here: ∼ 100 km × 100 km) from CarbonSat simulated

observations. The results show that these potential space-

based, top-down flux estimates have high accuracy; hence,

this study contributes to the definition of achievable targets

for emission fluxes at the city scale.

The study utilizes a Bayesian inversion approach based

on the WRF-GHG modelling system at a high spatial res-

olution to optimize anthropogenic CO2 emissions for the

target region using CarbonSat simulated observations for a

time period of 1 year. The inverse system is designed in

such a way that one can quantify the random and system-

atic errors of the retrieved anthropogenic emission fluxes for

a given set of XCO2 measurement and modelling errors. The

CarbonSat measurement errors are estimated using the error
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parameterization scheme of Buchwitz et al. (2013a), which

takes into account different sources of uncertainties, includ-

ing scattering-related errors. Based on the EDGAR emis-

sion inventory, the local anthropogenic XCO2 enhancement

over Berlin is found to be approximately 0.80–1.35 ppm. The

latter is similar to the detectable limit of single CarbonSat

ground pixels. However, typically there will be several hun-

dred observations available per overpass, sampling the emis-

sion plume and its surrounding. The impact of CarbonSat

measurement errors on the retrieved emissions is assessed

for two swath widths (240 and 500 km). By performing a

Bayesian inversion based on 1 year of CarbonSat simulated

observations, we show that the random error of the retrieved

Berlin CO2 emissions is typically less than 15–20 % of the

total city emissions. In other words, the CarbonSat measure-

ments can be utilized in atmospheric top-down approaches

to quantify emissions of medium-sized cities such as Berlin

with a precision better than 8–10 Mt CO2 yr−1.

In order to quantify the SE of the retrieved fluxes, we

use different scenarios in terms of various sources of sys-

tematic error in the inversion system. For scenario S01, we

use CarbonSat’s default XCO2 systematic errors (retrieval bi-

ases) from Buchwitz et al. (2013a), and assume no biogenic

XCO2 modelling error. For S01, we find that SE is in the

range of 3–6 Mt CO2 yr−1 for most of the cases (40–80 %

of the good overpasses as identified by the quality filtering

procedure), indicating a high potential of utilizing Carbon-

Sat’s measurements to retrieve city emissions. Based on the

analysis using a 1-year period of CarbonSat simulated obser-

vations, we show that narrowing the swath width (from 500

to 240 km) decreases the total number of useful overpasses,

as expected, but we do not find any significant difference be-

tween the single-overpass SEs estimated for the two swath

widths investigated here.

As explained in Buchwitz et al. (2013b), the default XCO2

systematic errors only reflect aerosol-related biases at quite

low spatial resolution. On the spatial scale of the city of

Berlin, aerosol-related biases may be larger. To consider this,

we use the worst-case measurement scenario as used by

Buchwitz et al. (2013b), in which we assume that the aerosol-

related biases may be perfectly correlated with the signal of

interest, which is the city CO2 emission plume in combina-

tion with a high amount of aerosols in the plume. For this, we

define a scenario S04 and refer to this as a high-resolution

aerosol error in this paper. The estimated emission uncer-

tainty for this scenario (S04) is found to be higher than that

of S01, with a mean and standard deviation of approximately

−6.1 and 3.8 Mt CO2 yr−1, respectively.

The above-mentioned results, however, are mostly domi-

nated by the assumption that there is a negligible influence

of biospheric fluxes that perturb the emission plume over

the target region, or that these biospheric contributions can

be modelled very well. By further investigating the extreme

case in which the biospheric contribution is assumed to be

totally unknown and treated as perturbation in the inver-

sion system (scenario S03), we find that the single-overpass

SE of the retrieved emission is significantly increased to

7.5 ± 9.5 Mt CO2 yr−1 (mean ± standard deviation). Never-

theless, the magnitude of the uncertainty is not overwhelm-

ingly large over the target region, despite the worst-case as-

sumption used here. It should be kept in mind that the above-

mentioned uncertainty is not directly related to the perfor-

mance of CarbonSat measurements, but more towards the

model’s inability in simulating the biospheric contribution

well. Hence, for the effective utilization of these measure-

ments, the noises induced from other sources have to be taken

into account, which requires careful design of the inverse op-

timization methodology using transport models at high reso-

lution, enabling them to handle the information contained in

those measurements. On comparing the results from different

scenarios, we show that the systematic error of the retrieved

fluxes depends largely on the accuracy of the CarbonSat sim-

ulated observations and more importantly on the modelling-

related errors.

Further investigation by designing a synthetic inversion

experiment is motivated by the possible impact of spatial

structural variability of the emission fluxes, which is not con-

sidered in the above-mentioned inversions. We acknowledge

that our current inversion setup is too simple to examine how

suitable CarbonSat measurements are for this purpose, as we

use only one scaling factor for the entire target region. Nev-

ertheless, we find promising results from this experiment in

which the modelled and true XCO2 concentrations are based

on two distinct emission inventories (IER and EDGAR) dif-

fering in spatiotemporal patterns. By showing that the sys-

temic error of the retrieved fluxes is lower than the differ-

ence between the prior fluxes and the true fluxes in most

of the cases, the results from the inversion experiment build

confidence in our uncertainty estimations and ensure that the

optimization is done correctly. The random error of the re-

trieved emissions for a single overpass is estimated to be

less than 10 Mt CO2 yr−1 for both swath widths. Hence, it

is expected that given the availability of the high-resolution

CarbonSat simulated observations, it is likely to deduce the

structural patterns of the emission fluxes. Based on the above

analysis, however, no firm conclusion can be made regarding

the magnitude of the retrieved flux uncertainty when prior

fluxes significantly deviate from true fluxes in representing

the structural variations of emissions. For this purpose, a

more sophisticated inverse methodology involving additional

extended state vectors and calculation of the response func-

tion of the elements of the state vector (adjoint calculation)

is required. Since we use the same transport model to gener-

ate the (pseudo) observations and the influence functions, the

inversion results shown here may be slightly optimistic. Al-

though it is not within the scope of this study, the transport-

related errors are expected to be non-negligible and should

be properly addressed in the inverse modelling applications

of satellite data.
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Using the dense CarbonSat measurements in an inverse

modelling framework at high resolution is expected to im-

prove the inference of CO2 fluxes by disentangling different

sources of variations. But to what extent one can differenti-

ate regional contributions from different sources should be

investigated in further detail.

Overall, the present study demonstrates that an instrument

like CarbonSat has high potential to provide important in-

formation on city CO2 emissions when exploiting the at-

mospheric XCO2 observations using a high-resolution in-

verse modelling system. Utilizing these measurements to-

gether with in situ, airborne, and other satellite measurements

is expected to provide more detailed and reliable information

on natural and anthropogenic fluxes, facilitating the monitor-

ing of future climate mitigation strategies.

7 Data availability

The L4 eddy covariance data set has been accessed from http:

//www.europe-fluxdata.eu/.
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