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Abstract. The article deals with the problem of learning incrementally (‘on-line’) in domains where the target
concepts are context-dependent, so that changes in context can produce more or less radical changes in the
associated concepts. In particular, we concentrate on a class of learning tasks where the domain provides explicit
cluesas to the current context (e.g., attributes with characteristic values). A general two-level learning model is
presented that effectively adjusts to changing contexts by trying to detect (via ‘meta-learning’) contextual clues
and using this information to focus the learning process. Context learning and detectiomagogregular

on-line learning, without separate training phases for context recognition. Two operational systems based on this
model are presented that differ in the underlying learning algorithm and in the way they use contextual information:
MEeTAL(B) combines meta-learning with a Bayesian classifier, wkiileraL (IB) is based on an instance-based
learning algorithm. Experiments with synthetic domains as well as a number of ‘real-world’ problems show that
the algorithms are robust in a variety of dimensions, and that meta-learning can produce substantial increases in
accuracy over simple object-level learning in situations with changing contexts.

Keywords: Meta-learning, on-line learning, context dependence, concept drift, transfer

1. Motivation

The fact that concepts in the real world are not eternally fixed entities or structures, but can
have a different appearance or definition or meaning in different contexts has only gradually
been recognized as a relevant problem in concept learning. Michalski (1987) was one of
the first to formulate it; he suggested a specializeot-tiered representatioformalism to
represent different aspects of context-dependent concepts (see also Bergadano et al., 1992).
Recently, context dependence has been recognized as a problem in a number of practical
machine learning projects (e.g., Katz et al., 1990; Turney, 1993; Turney & Halasz, 1993;
Watrous, 1993; Watrous & Towell, 1995; see also Kubat & Widmer, 1996). There, various
techniques for context handling were developed. Most of these methods either assume that
contextual attributes are explicitly identified by the user, or require separate pre-training
phases on special data sets that are cleanly separated according to context.

We are studying the effects of context dependence and changing contexts in the framework
of incremental(or on-line learning, and we are interested in learners that can adapt to
different contexts without explicit help from a teacher. The scenario is as follows: assume
that a learner is learning on-line from a stream of incoming (labeled) examples. Assume
further that the concepts of interest depend on some (maybe hiddatgxt and that
changes in this context can induce corresponding changes in the target concepts. As a
simple example, consider weather prediction rules, which may vary drastically with the
change of seasons. The visible effects of such changes are increased prediction error rates.
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The developmentof on-line learners that can cope with concept driftand changing contexts
has been the subject of recent work on the FLORA family of algorithms (Kubat, 1989;
Widmer & Kubat, 1996). The basic strategy in the FLORA algorithms is to continually
monitor the success of on-line prediction and to make educated guesses at the occurrence
of context changes and corresponding concept changes. There is no explicit representation
of contexts.

But maybe one can do better. In some domains, the data may in fact contain explicit
cluesthat would allow one to identify the current context, if one knew what these clues are.
Technically, such clues would be attributes or combinations of attributes whose values are
characteristic of the current context; more or less systematic changes in their values might
then indicate a context change.

As a simple example, consider the license plates attached to vehicles in a particular
country. An agent crossing the border between, say, Austria and Germany might notice that
all of a sudden the license plates look different, in a systematic way, and that might lead it
to suspect that it is now in a different environment where some of the rules it had learned
before may not be valid any more. Many other examples of such context-defining factors
come to mind (e.g., climate or season in weather prediction, environmental conditions like
exterior temperature in technical process control tasks, lighting conditions or background
color in automatic vision, characteristics of particular rooms in indoor robotic tasks, or
speaker nationality and sex in speech processing). In the following, we will refer to such
context-defining attributes a®ntextual clues

In this article, we describe a general two-level learning model, and its realization in two
specific systems namédeTaL(B) andMETAL(IB), that carlearnto detectsuch con-
textual clues, and can react accordingly when a change in context is suspected. The model
consists of dase levelearner that performs the regular on-line learning and classification
task, and aneta-learnerthat tries to identify attributes and features that might provide
contextual clues. Context learning and detection ocliring regular on-line learning,
without separate training phases for context recognition. Perceived context changes are
used to focus the on-line learner specifically on information relevant to the current context.
The result is faster adaptation to changed concept definitions, and generally an increase in
predictive accuracy in dynamically changing domains. In the following presentation, we
will first assume only nominal (discrete) attributes, but extensions of the model to numeric
domains are quite straightforward and have in fact been implemented (see Section 7.3).

The structure of this article is as follows: Section 2 briefly introduces the basic notions
underlying Bayesian classifiers, as these will play an important role throughout the paper.
Section 3 then develops the central definitions on which our methods rest, and shows how
these definitions can be turned into operational procedures. Section 4 presents the general
meta-level learning architecture and our first realization of the architecture in a system named
METAL(B). Various aspects dffETaL(B) and meta-learning in general are studied in a
set of systematic experiments in Section 5. Section 6 desdvilees. L (IB), an alternative
realization of the meta-learning model. The two systems are tested and compared on both
synthetic data and a number of more realistic problems in Section 7. Related work is
discussed in Section 8, and Section 9 summarizes the main points of the paper.
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2. Preliminaries: Bayesian Classifiers

For the moment, let us assume that our basic incremental induction algorithsmiple

(or naive Bayesian classifigias is indeed the case in the first of the systems to be presented
below, METAL(B)). That will make it easier to explain the meta-level learning strategy,
which also has a distinct Bayesian flavor.

A simple Bayesian classifies a probabilistic classification scheme that uses Bayes’
theorem to determine the probability that an instance belongs to a particular class, given
the instance’s description. In the following, we assume that examples are described in
terms of (discretedttributesa;; we will use the ternfeaturefor a specific attribute-value
combination, notated as : v;;. Examples are assumed to belong to mutually exclusive
classesc;. Bayes’ theorem defines the posterior probability that some new instiance
belongs to class; as

plei)p(]es)
pleg|l) = ===
wherep(c;) is the prior probability of class; andp(I|¢;) is the probability of an instance
like I, given class:;. Assuming thatl is a conjunction of attribute valueg, the above
formula can be rewritten as

(A vsle:)
pleil i) = ka</\v3|ck> @)

To make this formula operational, one usually assumes that the attributes are independent,
so thatp(/\ v;|cx) can be computed as the product of the; |cz,).

Incremental induction of a Bayesian classifier is straightforward. One maintains a number
of counters, from which the prior and conditional probabilities can be estimated: aFount
of the total number of instances encountered so far, a @tileat keeps track of the relative
frequency of class; observed so far; a tabléV;; that records the number of examples
with attribute valuey; = v;;, and a tabledV C;;, that records the number of examples with
a; = v;; belonging to class;,. Learning then simply consists in updating these counters
after processing each instance. The algorithm is simple and naturally incremental. Its major
weakness is that we must assume independence of the attributes, which severely limits the
class of learnable concepts (but see Section 5.5 below).

In the following, we take this to be our basic incremental learning algorithm, with one
important modification: our learner maintaingvandowof fixed length. As new examples
are added to the window, the oldest ones are deleted from it if the window size is exceeded.
This is to ameliorate the problem that very old instances pertaining to an outdated context
may prevent the learner from effectively adjusting to new hypotheses. The window size
is a user-settable parameter, but it remains fixed during the entire learning process. The
tablesC;, AV;;, andAV C,;, are always updated with respect to the examples in the current
window.
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3. Meta-Learning: Learning to Recognize Contextual Clues

When the underlying target concept drifts or changes due to a changed context, the Bayesian
classifier (indeed, any induction algorithm that bases its hypotheses on the contents of
the window) will eventually adjust to the new concept, if the new context is stable for

a sufficiently long period. The smaller the window, the faster the adjustment, as old,
contradictory examples will be forgotten more quickly. However, in domains that provide
explicit context clues, one would expect more: the learner should learn to recognize such
clues and react in some appropriate way when they signal a potential context change. To
operationalize this goal, we first need to define the central notions.

3.1. Definitions

What are contextual clues? Turney (1993) was one of the first to explicitly acknowledge
the problem of context in learning and to try to give a formal definition of contextual and
context-sensitive features. Eventually, however, he relied on the user to identify contextual
features beforehand. His particular approach was motivated by batch learning problems
where thetesting example§.e., those to which the learned concepts would eventually be
applied) might be governed by a different context than the training examples from which
the concepts were learned. The contextual features were then used for different kinds of
normalization at prediction time. In contrast, we present a method to automatietdigt
contextual attributes in an on-line learning setting and to utilize this informatioimg
learning

Our operational definition of contextual attributes, i.e., attributes that provide contextual
clues, is based on the notion pfedictive features Intuitively speaking, an attribute is
predictive if there is a certain correlation between the distribution of its values and the
observed class distribution. This is formalized in the following two definitions:

Definition 1 (Predictive features)A feature (attribute-value combination) : v;; is pre-
dictiveif p(cy | a; = vy5) is significantly different fronp(c;,) for some classy,.

Definition 2 (Predictive attributes) An attributeq, is predictiveif one of its valuesy;; (i.e.,
some feature, : v;;) is predictive.

The most obvious kind of contextual clue one could imagine is that one or more attributes
would have constant values during a certain context (regardless of an instance’s class).
Think, for instance, of the color of the walls in a particular room. That cannot be expected
in general. We will rely on a more abstract and powerful notion: a feature is considered a
contextual clue if there is a strong correlation between its temporal distribution of values
and the times when certain other attributes are predictive. Intuitively, a contextual attribute
is one that could be used to predict which attributes are predictive at any point it time.
This notion is formalized in definitions 3 and 4:
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Definition 3 (Contextual features) A featurea; : v;; is contextualif it is predictive of
predictive features, i.e., if(ay : vk is predictive | a; = v;;) is significantly different from
pl(ag vk is predictive) for some featurey, : vy;.

Definition 4 (Contextual attributes)An attributea; is contextualf one of its valuesy;; is
contextual.

We thus have a two-level definition of contextual attributes, with both levels of definition
being of the same type. Definition Brédictive attributepis identical to Turney’s (1993)
notion of primary feature Definition 4 Contextual attributesis more specific and opera-
tional than Turney'’s definition afontextual feature@vhich essentially defines an attribute
as contextual if it is not in itself predictive, but would lead to less predictive accuracy if
omittedf. We now specify procedures to identify potentially predictive and contextual
features and attributes during the incremental learning process.

3.2. Identifying contextual features through meta-learning

Assume the base-level Bayesian classifier is learning on-line from a stream of incoming
examples. After each learning step, we ustadisticaly? test of independente determine
which features are currentfyredictive

Criterion 1 (Predictive features) A featurea; : v;; is recognized apredictiveif the
distribution of classes in examples with = v;; is significantly different (as determined

by ax? test with a given significance level) from the unconditioned distribution of classes
within the current window.

Predictive features are computed relative todheent windowbecause predictivity is a
temporary quality that may change with time and context. The information needed for the
x? testis readily available in the tabl€$ and AV C; ;. that are maintained by the base-level
learner.

Contextual featureare also determined by»g test, on a higher level. To this end, we
define ‘meta-classeg;;: an instanced is in class¢;; if featurea; : v;; is recognized as
predictive at the time of classification 6f Analogously to above, tables are maintained for
these meta-classes: the tablg counts the number of examples in meta-clags AV ;;
counts the number of examples with attribute valye- v;;, seen since the very beginning,
andAVC‘ijkl counts the number of examples with= v;; in meta-classy;. In otherwords,
AVCyjkl keeps track of the number of co-occurrences;ob;; combinations in examples
and the predictiveness of certain other featurgsv,;. These three tables are maintained
with respect to the entire learning history (not the current window), as changes of context
and the emergence of skewed predictivity distributions are long-term processes. Table 1
summarizes the various tables that need to be maintained. There are then two conceivable
operational criteria by which one could detect contextual features and attributes:

Criterion 2a (Contextual features)A featurea; : v;; is recognized asontextualif the
distribution of meta-classe;; in examples witha; = v;; is significantly different (as
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Table 1.Tables maintained for identifying predictive and contextual attributes.

Table Counts occurrences/rel.frequency of Computed over Used at
C; # examples in class; currentwindow  base-level
AV # examples withu; = v;; currentwindow  base-level
AV Cijk # examples withy; = v;; in classcy, currentwindow  base-level
Cij # examples in meta-clagg; entire history meta-level
AV; J # examples withu; = v;; entire history meta-level
AVC'MM # examples withu; = v;; in meta-clasgy; entire history meta-level

determined by &2 test with a given significance level) from the unconditioned distribution
of the ¢y, observed over the entire learning history.

Criterion 2b (Contextual features)A featurea; : v;; is recognized asontextualif, for
somefeatureay, : vy, the distribution of meta-clags; versust;,; in examples withy; = Vi
is significantly different (as determined by test with a given significance level) from
the unconditioned distribution @f,; versus:;,;, observed over the entire learning history.

Criterion 2a pays attention to global distribution changes between the predictivity of
different features, while criterion 2b is basically a direct translation of definition 3 above:
a; 1 v;; is contextual if its values correlate with the predictivitysoimeother feature, : vy;.

After some experimentation with both approaches, we have settled for criterion 2b (though
criterion 2a yields very similar results in most cases).

Recognizing contextual features and attributes via this two-stage process constitutes an
act of meta-learning the base-level learning process is monitored, and the temporal co-
incidence of predictivity of certain features and the presence of other features in training
instances leads to the identification of attributes that could provide contextual clues. The
contextual features are taken as a descriptioidentifier of the current context. In the
following, we present two learning systems with different underlying learning algorithms
that take advantage of the information provided by meta-learning.

4. A Bayesian Classifier with Meta-Learning: METAL(B)

Ourfirstalgorithmis calledIETAL (B) (METALearning with underlyinddayes classifier)
and uses a simple Bayesian classifier as its underlying (‘object-level’) incremental learning
algorithm. It was first presented in (Widmer, 1996).

In METAL(B), the contextual attributes identified by meta-learning are uskxttsthe
base-level Bayesian classifier on relevant examples when making predictions: whenever a
new instance comes in, the set of attributes that are currently contextual (if any) is estab-
lished, and the Bayesian classifier is then made to use for prediction only those examples
from the window that have the same values for the contextual attributes as the new instance
to be classified. In other words, the base-level classifier uses only those instances as a basis
for prediction that seem to belong to teame contexas the incoming example. If no
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ProcedureMETAL(B)(W, «):
[* Parameters:I¥ (fixed window size) (significance level for? test). */

initialize tablesC;, AV;;, AVCiji, Cij, AV ij, AV Cijui;

for each new incoming instandedo

begin
CAs:= currentcontextattributes(C;;, AV i;, AV Cijui, a);
Vs:=values of attribute€Asin current instancé;
Rls:= examples in current window with valu&sfor attributesCAs
Class:= class predicted fof by naive Bayesian classifier from exampRis;
add! to current window and drop oldest instance from window;
update tables’;, AV;;, AV C;;;, for base-level Bayesian learning;
PFs:= currently predictivefeatures(;, AV;;, AV Cij, ¢);
update tableg’;;, AV;, AVCy;i, for meta-level learning, giveRFs

end;

ij

Figure 1. The two-level algorithm oMETAL(B).

attributes are currently recognized as contextual, the entire window is used for Bayesian

classification. After classification, the true class of the new instance is read, and the learn-

ing tables for both base and meta-level are updated. Figure 1 summarizes the complete
two-level algorithm ofMETAL(B).

A consequence of this selective strategy is that base-level prediction becomes more expen-
sive: the Bayesian classifier can no longer use the available tahles/;;, and AV C;j,
as these summarize all examples from the window. The relative frequencies required for
the application of Bayes’ rule must now be computed dynamically from the set of currently
relevant instances (which are a subset of the window). On the other hand, this is no more
expensive than the lookup in an instance-based learning algorithm (Aha et al., 1991), and
the cost could be reduced by using an appropriate indexing scheme.

Note thatMETAL(B) depends on twparameters Unless otherwise noted, all exper-
iments reported below were performed witkr0.01 (99% confidence that the observed
difference between conditioned and unconditioned distributions is not due to chance) and
window sizelV = 100.

5. Preliminary Experiments with METAL(B)

Before moving on to an alternative realization of our general meta-learning model, let us first
have alook at a set of experiments with a synthetic domain that were designed to establish the
basic feasibility of context detection and to test various aspedtssafaL.(B)’s behavior.

They provide a number of insights into the dynamics of meta-learning, most of which
also carry over to our second learn®ETAL(IB), to be described in the next section.
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Experiments with real data as well as a comparison WittraL (IB) will be presented in
Section 7.

5.1. Basic context identification

The first experiment demonstrates the basic effects of the context detection mechanism.
METAL(B) was applied to a sequence of simple concepts that were first introduced by
Schlimmer and Granger (1986) to test their concept drift tracking algorithm STAGGER. The
concepts were later on also studied extensively in experiments with the FLORA algorithms
(Widmer & Kubat, 1996). In a simple blocks world defined by three nominal attributes

€ {small, medium, large}, color € {red, green, blue}, andshape € {square, circular,
triangular}, we define a sequence of three target conceptsf{d)= smallAcolor = red,

(2) color = green V shape = circular and (3)size = (medium V large). The (hidden)
target concept will switch from one of these definitions to the next at certain points, creating
situations of extreme concept drift. In addition, we introduce a fourth attriiutec {c1,

2, ¢3}, which is used to create perfect contextual information: whenever concept (1) is in
effect, all examples (positive and negative) are made to have watue- c1, etc.

Figure 2 plots the on-line prediction accuracyMiETaL(B) vs. the simple Bayesian
classifier on the concept sequence 1-2-3-1-2-3. Sequences of 600 examples each were
generated randomly (according to a uniform distribution) and labeled according to the
currently ruling concept; after every 100 instances the context plus underlying concept was
made to change. On-line accuracy was computed as a running average over the last 20
predictions. The figure plots the averages over ten (paired) runs.

100 F
80
40 f .
Metal (B) ——
20r Naive Bayes -]
0 (1) (2 (3 (1) 2 3
0 100 200 300 400 500 600

Instances processed

Figure 2. Effect of context identification in STAGGER concepts.

The curves show convincingly thAfeTAL (B) does make effective use of the contex-
tual information contained in the data. We witness both a less dramatic drop in accuracy
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at points of context change, and significantly faster re-convergence to high accuracy lev-
els. ObviouslyMETAL(B) quickly identifies the contextual attributext (soon after the
context has first switched from 1 to 2) and from then on concentrates only on examples
pertaining to the new context, whereas the naive Bayes algorithm gives equal consideration
to all examples in the current window, including those that still pertain to the old context.
The fact that both algorithms fail to reach an accuracy of 100% in context (1) is due to the
sparsity of the concept (only 11% of the examples are positive). The improvement produced
by meta-learning, however, is evident.

® @) ©) ey @ ©)
ctxt rec. as contextual

ctxt : c3 + -
ctxt : c2 A -
ctxt: cl -
shape : triangular - AR
shape: circular A
shape : square e s
i
St

color : blue
color : green
color : red it
size: large - -+
size: medium AR - A
size: small -

0 100 200 300 400 500 600
Instances processed

Figure 3. Predictive features and contextual attribute in STAGGER experiment.

To understand more precisely what is going on, it is instructive to look at the details of
which features are identified as predictive and contextual, and when. Figure 3 shows, for
each feature, at what times it was considered predictivéllayaL.(B) in a single run.

The topmost bar indicates when the attribettet was recognized as contextual. No other
attribute was ever considered contextual in the entire run.

The identification of predictive attributes works basically as expected: of the ‘base-level
attributes (the ones used in our hidden concept definitions), the two most retel@ant
andsize features are recognized as predictive about midway during context (Iplthe
and shape features during context (2), andze during context (3§ One can observe
a certain inertia in this recognition process. It takes a while for predictive features to
establish themselves, and they are considered predictive way into the following context.
This is simply an effect of the fixed window (of 100 instances, in this case) from which
predictivity is computed. However, that has little effect on the efficiency of the usage of
context information: it may take a while for contextual attributes to be first recognized,
but once they are established, they immediately lead to selective behavior when the context
changes.

Interestingly, the attributetxt is also recognized as predictive, and that creates a surpris-
ing effect: ctxt is recognized as contextual because of itself becoming suddenly predictive!
That ctzt is identified as predictive in context (2) is easily explained by the observation
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Figure 4. METAL(B) vs. FLORA4.

that the class distribution is very different in the first two contexts: positive examples
in context (1) are much rarer than positive examples in context (2), because concept (1)
(size = small N color = red) is very specific — only 11% of the possibieze-color-
shape combinations are instances of concept (1). So the featute= c2 in the examples
during context (2) is accompanied by a class distribution that is very different from when
ctxt = cl, which makes-txt a predictive attribute (see definition 2 in Section 3.1). At
the same time, the predictivenessctft is accompanied by constant values:bft = ¢2,
whereas:txt was not predictive whiletzt wascl in context (1), which make&xt also a
contextual attribute (definitions 3 and 4). The statuaof as a contextual attribute is later
corroborated by the changing temporal distribution of the other predictive features.

This extreme change in class distribution made it very easy to establishs contextual.
In order to remove this effect in the other experiments, in all the subsequently reported tests
with synthetic domains we made sure that the absolute distribution of classes would be the
same in each context (50% positive, 50% negative).

5.2. Comparison with FLORA4

Let us now take a quick look at hoMETAL(B) compares to another recent drift tracking
system. FLORA4 (Widmer, 1994) is the most recent member of the FLORA family of
algorithms (Widmer & Kubat, 1996). FLORAA4 is based on an incremental, symbolic
learning algorithm. LikeMETAL(B), it maintains a time window; the window size is not

kept fixed, however, but is continually adjusted by a sophisticated heuristic that monitors the
learning process and tries to recognize periods of concept drift. On the other hand, FLORA4
cannot take advantage of contextual clues in the data, it only monitors the learner’s success
in prediction.
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Figure 5. METAL(B) on STAGGER concepts — window size 300.

Figure 4 shows the accuracy curves for the simple Bayesian classifier (with fixed window),
MEeTAL(B), and FLORA4, on the same task as above (except that the classes are now
equally distributed). This simple experiment does not support general conclusions, but it
does allow us to make a number of preliminary observations; results of a more systematic
comparison that support these observations are given in Tables 2 and 3 in Section 7.1. As
expected, the basic behavior of the algorithms is similar. FLORAA4’s ability to recognize
concept drift and adjust its window allows it to adapt to changes significantly faster than
a simple (Bayesian) learner with fixed window. However, it does not ‘see’ the contextual
clue ctat. METAL(B), after having identifiedtxt as a context attribute in context (2),
clearly outperforms FLORAA4. Conversely, this result shows that if there were no contextual
clues in the data, FLORA4 would be the algorithm of choice. Combining FLORAA4’s drift
detection ability withMETAL (B)’s meta-learning might thus be a promising enterprise.

One must keep in mind that FLORAA4's object-level generalization algorithm is very
differentfromMETAL(B)’s; itis difficult to separate out the contributions of the underlying
learning algorithm and of meta-learning. Comparisons such as this are only meant to show
thatMETAL(B) is competitive with other drift tracking algorithms. The main point of this
paper is that simple learning can be improved by meta-learning, and that is what all the
following experiments will attempt to establish.

5.3. The effect of the system parameters

METAL(B) depends on two parameters: the significance levesed in they? tests at

two levels, and the fixedindow size A level of « = 0.01 has produced good results in all

our experiments. Less strict significance levels make the meta-learner less discriminating:
it becomes more easily possible for features to be accidentally ‘recognized’ as predictive
for short periods, which causes frequent changes in the distribution of predictive features.
The effect is instability. On the other hand, tighter significance levels (@.g,0.001)

have left our results virtually unchanged.
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Figure 6. STAGGER concepts with 20% attribute noise.

As for thewindow sizethe smaller the window, the faster the base-level learner will adapt
to changes, and thus the smaller the advantage afforded by meta-learning. Too narrow a
window is detrimental, as the Bayesian classifier bases its predictions on too few data
points. Too large a window, on the other hand, reduces the base-level learner’s ability
to adjust to changes and, if it permanently contains conflicting instances from different
contexts, may prevent the learner from ever reaching high predictive accuracy. Figure 5
plots the results on the STAGGER task when the window size is set told@QaL(B)
detects the contextual attribute somewhere during context (2) and uses its values to always
select the correct examples for prediction. After the first 300 examples, the window always
contains instances from all three contexts, &fiiraL.(B) can perfectly predict from then
on. For the same reason, the simple Bayesian classifier fails completely.

However, too large a window may also cause problemaMaral(B): in a large set
of partially conflicting instances, it may become impossible to find predictive features
according to our definition, and then meta-learning will never find contextual attributes,
even if they are very clear. Generally, then, the window should be large enough for stable
concept identification, but no larger than necessary.

5.4. Irrelevant attributes and noise

Bayesian learners can be expected to be quite robust in the face of irrelevant attributes and
noise (see, e.g., Langley et al., 1992). Experiments Wi#traL (B) have confirmed this,

both for object-level and meta-level learning. As an illustrative example, Figure 6 plots the
performance on the STAGGER task when the examples were subjecéttattribute

noise. Here, a noise level gf means that for each attribute in a training example, its
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Figure 7. “Quasi-contextual” learning: XOR with 5 irrelevant attributes.

true value is replaced by a random value from its domain with probahilit§0. Both the
‘base-level’ attributesolor, size, andshape and the context attributetzt were equally
subjected to noise. It is evident that meta-learning still leads to improved adjustment to
changes, though such high noise levels will eventually produce effects of instability, as
evidenced by the fact that in some cases the simple Bayesian learner achieves slightly
higher accuracy. Tables 2 and 3 in Section 7 below give a summary of the results for
various noise levels and numbers of irrelevant attributes and a comparison with our second
learner METAL(IB).

5.5. “Quasi-contextual learning”

An interesting side-effect of meta-learning is that it may in certain cases help the Bayesian
learner to overcome its inherent representational limitations, incurred by the attribute in-
dependence assumption. As an example, consider the XOR function: in the concept
x =1@ y =1, neither of the two attributes andy in isolation contributes directly to the
classification. A Bayesian classifier will always linger around the base-level accuracy of
50%, given a set of uniformly distributed examples. The same holdslforaL(B), as

long as the examples are presented in random order. However, if for some time examples
appear in a skewed distribution, meta-learning may exploit this by learning to regard one
of the attributes as contextual and the other as predictive. This two-level view of the XOR
function would then allow the system to perfectly classify from that point on: if context is

x = 1, theny = 0 implies XOR, and vice versa.

Figure 7 shows the learners on sequences of XOR examples with five additional irrelevant
attributes, where during a certain periBdbetween the 100th and the 300th instance),
examples — both positive and negative — witk= 1 were more frequent than those with
x = 0(90% vs. 10%). Before example 100 and after example 300, instances were presented
in a uniform distribution. The results are again averages over ten runs.
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The effect is very clearMETAL(B) does indeed single outas the contextual attribute
at some point during perid@, which allows it to reach an accuracy level of (almost) 100%
quickly, and also to hold on to this level during the following random period. The simple
Bayesian classifier improves its performance between examples 100 and 300 (it can never
reach 100%), but quickly drops to 50% as the instances are again uniformly distributed.

This result highlights the close relation between context-sensitive learning and learning
disjunctive concepts. Context-specific versions of a concept can be viewed as disjuncts in
a large ‘universal’ concept definition expressed in disjunctive normal form (DNF), with the
context attributes acting as ‘keys’ that identify which disjunct is currently aéti@en-
versely, if during the presentation of a disjunctive concept there are periods of skewed
example distributions, meta-learning could learn to regard different disjuncts as representa-
tives of different contexts and could thus improve the discriminating power of an underlying
(e.g., Bayesian) learning algorithm that has fundamental problems with disjunctive con-
cepts.

5.6. Abruptvs. gradual vs. no context changes

Other experiments we have performed confirm Matral.(B) is rather insensitive to the
speedf a context change, i.e., whether a new context takes over abruptly or only gradually.
Unlike systems like FLORA4 (Widmer, 1994[eTAL (B) has no problems with slow drift

— itis the overall distributions of the predictivity of features that determiheral.(B)’s
behavior, not necessarily dramatic short-term changes. That is important, because many
realistic applications are presumably characterized by more or less gradual (and noisy)
context changes.

A related point is whether the meta-learning mechanism has a detrimental effect when
there isno concept drift at all. Intuitively, one would expect that not to be the case: in a
stationary environment with stable target concepts, the set of predictive features will remain
constant, so no attributes will ever appear to be contextual. There are, however, two types
of situations that might mislealllETAL (B) into erroneously ‘detecting’ context clues: a
skewed ordering of training instances, and the presence of a large numbelefant
attributes The former case is a natural consequence of the relation between contexts and
disjunctive concepts that was demonstrated and discussed in the previous section. The
latter case presents a problem: large numbers of irrelevant (random) attributes increase the
probability of chance correlationsvhich might start the whole meta-learning machinery
and lead to instabilities in the learning process. That has been confirmed experimentally
with various stationary concepts in the STAGGER domain; the addition of 50 irrelevant
attributes led to performance decreases between two and ten percentage points. Using
stricter values (e.g., 0.001) for the significance levellleviates the problem significantly.

5.7. Complex and imperfect contextual clues

In real life, contexts may be defined by more complex combinations of features, and con-
textual attributes may be changing. Preliminary experiments suggesiithatL(B)
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has no problems witlconjunctivelydefined contexts. Contexts defined ¢hgjunctions
of features create problems, especially when the contextual attributes are not the same in
different contexts. The main problem is that contextual information is used conjunctively
in METAL(B)’s focusing strategy, which makes the base-level learner rely on very few
examplesin some cases. Generally, of course, the meta-learner suffers from the same limita-
tion as the base-level Bayesian classifier: it must assume independence bintegtual
attributes

Another potential complication is that contexts may not always be characterized by
perfectly constant values. Experiments with noise in the context attributes suggest that
MEeTAL(B) is robust to that kind of imperfection, but more refined experiments may be
needed to study other types of imperfect clues (e.g., changing value distributions).

6. An Alternative Realization of the Model: METAL(IB)

MEeTAL(B) is but one possible incarnation of a very general framework. It seemed nat-
ural and elegant to use a Bayesian classifier for object-level learning, because metalearn-
ing as defined here also has a distinct Bayesian flavor. However, it should be possible
in principle to use any other incremental induction algorithm for base-level learning. This
section presents such an alternative realization of the general mddela L (IB) (META-
Learning with underlyingnstanceBased classifier) realizes the same meta-learning strat-
egy aaMETAL(B), but uses a simplestance-basebbarning algorithm (Aha et al., 1991)
as base-level learner. New incoming examples are classified by a straightforward 1-NN
(nearest-neighbor) method, using Euclidean distance as the (dis)similarity measure. Again,
MEeTAL(IB) maintains avindowof fixed size, and only examples in the current window
are used in the nearest-neighbor search.

An instance-based learner allows us to use context information in a more flexible way,
e.g., for feature weighting, which is not directly possibléizTAL (B)’s Bayesian classi-
fier. Also, instance-based learners can in principle approximate any target function, while
Bayesian classifiers are severely limited. In the following, we present four variants of
METAL(IB) that differ in the way they use the information about suspected contextual
clues:

1. Exemplar Selection —METAL(IB)-ES:
Here, contextual information is used in the same way aslEraL(B), namely, to
select relevant exempladuring classification: only those instances from the window
are used for prediction that have the same values for the current context attributes (i.e.,
presumably belong to the same context) as the currentinstance (the one to be classified).

2. Exemplar Weighting — METAL(IB)-EW:
In this variant, contextual clues are used for exemplarghting rather than strict
selection. When classifying by nearest neighbor, each instaremplayin the current
window is assigned a weight’, and the measured similarity between new instance and
exemplar is multiplied byV'. The idea is that exemplars that are more likely to belong
to the same context as the new instance should have more influence in classification.
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Maximum weight should be given to those exemplars that perfectly match the current
context, i.e., that share the values for all current context attributes with the current
instance, and generally the weight should decrease correspondingly as this match grows
weaker. METAL (IB)-EW uses the following formula to compute exemplar weights:

W(E) = 1/(1 4 Dic.aq (E, CI))

where D¢ 4, is the distance between the exemplamand the current instanc@/,
measured only with respect to the context attribdtess.

3. Feature Weighting —METAL(IB)-FW:
This approach is somewhat orthogonal to exemplar weighting. Instead of weighting
the examples in the windowIETAL(IB)-FW uses a weighted similarity measure
that assigns different importance to individual attributes during nearest neighbor clas-
sification. Features or attributes believed tgbedictive in the current conteshould
receive correspondingly higher weights. To this end, the meta-level algorithm must be
augmented with a component thmedictswhich attributes are or should peedictive
given the current context. How can attribute predictivity be predicted? Remember that
the tables updated in the meta-learning process (in partiCAI;}amndAV(:‘ijkl) sum-
marize information about the correlation between the occurrence of certain attribute
values and the predictivity of others. That is exactly the kind of information needed
by aBayesian classifier METAL(IB)-F'W thus uses Bayes’ rule on the tabl@g
andAV@jkl to predict, for each attribute, its probability of being predictive, given the
current context, i.e., given the incoming instance’s values for the currently recognized
context attributes. The weight for each attribute is then computed as

W(A) =14 Pprea(4)

whereP,,.q(A) is the probability which the system assigns to the belief thas a
predictive attribute relative to the current instance.

4. Combined Exemplar/Feature Weighting —METAL(IB)-COM:
This variant performs both exemplar and feature weighting.

Our expectation was that weighting approaches would generally be less brittle than strict
exemplar selection, and thfeiture weightingn particular would produce a new, interesting
effect: as the feature weights are derived, via Bayes’ rule, fMRTAL(IB)’s meta-
level tables, which in turn are a kind afemory of past contextthis feature weighting
strategy should enable the system to readjust more quickly to contexts that have already
occurred beforeMETAL (IB)-COM, finally, should combine the advantages of exemplar
weighting (fast reaction to perceived context change by disregarding exemplars in the
window that pertain to an outdated context) and feature weighting (fast adjustment to
contexts that have been encountered before).

Figure 8 gives a first impression of the effects. It compares the simple instance-based
learner (with fixed window of size 100) with its various meta-learning variants on the basic
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Figure 8. Context identification iMETAL(IB).

STAGGER task (compare this to Figure 2 in Section 5.1). The curd@mwfaL (IB)-ES

is not included in this plot; exemplar selection and exemplar weighting performed nearly
identically in all our experiments. As before, the improvement brought about by meta-
learning is evident. Among the meta-learning approaches, feature weighting performs
markedly better than exemplar weighting (and equally exemplar selection), and the two
feature weighting variant8ETAL(IB)-FW andMETAL (IB)-COM) do indeed seem

to adjust to contexts faster when they reappear (see the second appearance of contexts (1),
(2), and (3)). However, more focused experiments will be needed to establish this latter
effect beyond doubt.

7. Summary of Experimental Results

In the following, we present some experimental results obtained MiiiraL(B) and
METAL(IB). The following section summarizes comparative results on our artificial
STAGGER domain. Subsequent sections report on a number of applications of the learners
to more or less ‘real-world’ data where contextual effects may play a role, but where the
exact characteristics of the problem are not always known.

7.1. MEeTAL(B) vs.METAL(IB) on synthetic data

Tables 2 and 3 offer a systematic comparisolM¥TAL(B) and METAL(IB) under
various conditions in the STAGGER domain (please see Section 5 above for a description
of the experimental setup). For comparison, we also give the corresponding figures for the
drift tracking algorithm FLORA4. Each table entry representsttital on-line predictive
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Table 2.Results on simple STAGGER problem.

Noirrelevant attrs 10 irrelevant attrs

Acc.% (o) Acc.% (o)
Naive Bayes: 82.75 (2.02) 77.51(2.12)
METAL(B): 95.75 (0.49) 85.90 (3.07)
Simple IBL: 88.10 (0.69) 68.68 (2.34)
METAL(IB)-ES: 90.05 (0.91) 74.35 (3.48)
METAL (IB)-EW: 90.05 (0.91) 74.38 (3.42)
METAL (IB)—FW: 93.75 (0.73) 73.70 (2.57)
METAL(IB)-COM: 94.23 (0.69) 78.03 (4.09)
FLORA4: 91.03 (2.19) 79.20 (5.89)

Table 3.Results on noisy STAGGER problem (with 5 irrelevant attributes).

0% noise 10% noise 20% noise 40% noise

Acc.% (o) Acc.% (o) Acc.% (o) Acc.% (o)
Naive Bayes: 79.70 (1.20) 75.73(1.96) 73.78 (1.41) 66.80 (1.93)
METAL(B): 88.40 (2.41) 80.95(1.79) 75.60(2.48) 66.00 (2.22)
Simple IBL: 72.40(1.81) 68.03(2.17) 63.78(2.02) 60.05 (1.30)
METAL(IB)-ES: 78.03(2.53) 72.10(2.96) 66.00 (2.45) 61.11 (1.46)
MEeTAL(IB)-EW: 77.95(2.45) 72.12(2.88) 65.90(2.41) 61.11(1.50)
METAL(IB)-FW: 80.47 (1.76) 73.23(2.57) 67.80(2.00) 61.37(2.34)
METAL(IB)-COM:  83.22 (2.12) 7557 (2.87) 68.58(2.41) 62.62(2.22)
FLORA4: 82.80(5.33) 72.40(4.22) 68.30(2.64) 61.68 (1.16)

accuracyachieved by a learner over 6000 training instances (i.e., average and standard
deviation over ten runs on sequences of 600 training instances each).

Table 2 gives the results for the noise-free situation, both for the basic task and with ten ad-
ditional irrelevant (random) attributes added to the data. Generally, the figures clearly show
the benefits produced by meta-learning, and among the vakimsaL (IB) strategies,
they establish the combined exemplar weighting/feature weighting strafegy L (IB)—

COM as the most effective (at least for this task).

We note that simple instance-based learning is markedly better than simple Bayesian
classification in the task with no irrelevant attributes. We may attribute this to the inherent
representational limitations of Bayesian classifiévigTAaL(B)’s result shows that this
handicap is compensated by meta-learning. In contrast, the instance-based algorithms are
significantly inferior in the situation with ten irrelevant attributes, which confirms one of
the fundamental (and well-known) shortcomings of instance-based approaches.

A similar picture emerges when the data are subjectatiiibute noise Table 3 lists over-
all accuracies in the STAGGER domain (with 5 additional irrelevant attributes) for different
noise levels. Again, meta-learning brings considerable improvement, but the amount of im-
provement decreases with higher noise levels. The combined stidtegyl.(IB)-COM
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again turns out to be the basteTAL(IB) variant, but the Bayesian systevieTaL(B)
clearly outperforms the instance-based learners.

FLORA4, which detects concept drift by performance monitoring but cannot utilize
contextual clues, performs clearly better than simple base-level learning, but not quite
as good as the best meta-learners (except in the situation with ten irrelevant attributes,
where it outperforms th&IeTaL(IB) learners, which suffer from the well-knowaurse
of dimensionalityproblem (see, e.g., Friedman, 1994)). Also, FLORA4 seems to be more
sensitive to noise than the Bayesian learners. Note also the higher variance in FLORA4’s
results; the system seems to be less stable than the meta-learners, which is due to the highly
reactive, but also somewhat ‘nervous’ window adjustment heuristic.

7.2. Real data: Chord prediction

The systems were also tested on a number of more complex ‘real-world’ problems. The first
problem comes from the domain of tonal music and consists in learning to predict (on-line)
what chord should accompany the next note in a given melody. Specifically, the task is to
correctly predict one of three classeésnic harmony(e.g., the note is to be played with a

C major chord, if the piece is in the key of C majodpminant(i.e., a G major chord in

the key of C), omther. In terms of a real scenario, imagine a guitar player who is trying

to accompany a singer in real time on pieces she does not know and tries to get at least the
two most important chord types (tonic and dominant) right.

The data used for the experiment were the melodies of Franz Schubertisan Mass
a collection of eight songs of varying length (between 42 and 113 notes). There are 553
melody notes in total. The distribution of classes is 290 (5&ic, 179 (32%)dominant
and 84 (15%pther.

The individual notes were described by 11 discrete attributesmittdeof the current
piece (major or minor), thmeter(e.qg., 4/4, 3/4, or 6/8), the curretaictus(i.e., whether the
major metrical level — the level at which one would tap one’s foot in rhythm — is the level
of quarter or eighth notes), the curréotal key(to describe modulations within a piece),
and various attributes that describe the current note itself and its predecesderdegree
(a tonality-independent abstraction of the note nardejation andmetrical strengthof
the current noteduration of the note’s predecessor, theterval and itsdirectionbetween
the previous and the current note, andiaemonythat accompanied the previous note.

We conjectured that more global properties like mode, meter, tactus, and local key might
have a context-defining effect in certain cases, i.e., that the rules determining the harmonic
role of a note might be slightly different in some of these contexts. However, we don’t know
this in detail, and the contextual effects, if any, might be weak and difficult to discover.

What makes the problem even harder is that the given attributes are mghquate
there are numerous cases of notes with the same description but different classification.
Harmonic choices are by no means unique, and the specific decision also depends on
aspects of larger context (musical form, harmonic rhythm, etc.) that are not captured by
our local representation. It is thus clearly impossible to achieve a predictive accuracy of
anything close to 100%.
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Table 4.Results of Schubert experiment.

Learning algorithm Mean acc. (%) Std. dev.  #runs better min.better max.better
Naive Bayes: 68.75 1.07 0 — —
METAL(B): 74.62 1.44 50 2.57 9.22
Simple IBL: 76.14 0.87 0 — —
METAL(IB)-COM: 79.58 0.89 50 1.99 5.25

To reduce the effect of the specific ordering of the songs, the algorithms were run on
50 random permutations of the eight songs. The window size was set to 300 to enable
the learners to reuse information learned from previous songs (the average song length is
69). Table 4 shows the results in terms of total classification accuracy. In both cases, the
advantage of meta-learning over the respective simple base-level learner is significant at
the 0.05 level, according to a two-tailed t-test. Also, the meta-learners scored better than
the simple classifiers iall of the 50 runs, with a maximum advantage of 9.2 percentage
points in the Bayesian and 5.25 percentage points in the instance-based case. Both simple
IBL and METAL(IB) perform markedly better than their Bayesian counterparts. The
representational flexibility of the underlying IBL learner seems to be an advantage in this
domain.

The attributes most often singled out as contextual were meter and tactus, less frequently
mode, and very rarely local key (which was surprising to us, but probably indicates that
the periods of modulation are too short and unstable to be contextually significant). In-
terestingly, note duration also was sometimes considered contextual: it does not help in
directly predicting the harmony, but it is useful as a ‘secondary’ decision criterion. In other
words, there is some dependency between this attribute and some more predictive ones, and
meta-learning resolves the dependency by treating note duration as a contextual attribute.

As an illustrative example, Figure 9 plots the on-line prediction accurabymfal.(B)
vs. the simple Bayesian classifier in a single run (on the standard song ordering as given
in the original mass). The dashed vertical lines indicate the boundaries between different
songs. Note, however, that context changes may also occur in the middle of songs — e.g.,
when a modulation changes the local key. Indeed, inspection of the learning traces indicates
that there is quite a number of rather small contexts, some of which recur quite frequently.

This observation points to an alternative way of interpreting meta-learning: instead of a
focusing or selection strategy, it could also be viewed as a procaansferof (learned)
knowledgeacross contexts That interpretation leads one to ask the following question:
could it be that the eight pieces are so different that there cannot be much useful transfer
from one piece to the next, i.e., that one would achieve better results by learning from
each pieceseparately simply starting from scratch with every new piece? And indeed, it
turns out that running, e.g., a simple Bayesian classifier on each piece separately yields a
total accuracy over the eight songs of 69.54%, which is slighidyer (though not at a
statistically significant level) than the 68.75% achieved by simple Bayesian learning with a
fixed window over the whole sequencelETAL (B), on the other hand, achieves markedly
higher accuracy. An intriguing, though at this point somewhat speculative, explanation of
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Figure 9. Accuracy in chord prediction tasR{ETAL(B)).

this effect is that indiscriminate transfer can indeed be harmful, but that our meta-learners
perform what might be callegelective cross-contextual transfer only those pieces of
information are carried over that appear relevant to the current context. This observation
suggests an interesting direction for future investigations.

7.3. Real data: Vowel recognition

Another real-world domain with obvious contextual effects is speech recognition. A
speaker’s sex, nationality, or age may have a strong influence on the relevance of vari-
ous features. For an experiment in this domain, we used P. Turney’s version of the ‘vowels’
data set from the UCI repository (Merz & Murphy, 1996). The problem is to recognize a
vowel spoken by some arbitrary speaker. The training instances are vowels spoken by dif-
ferent persons. There are eleven classes (different vowels), and the instances are described
by ten continuous features (derived from spectral data). In addition, there is a symbolic at-
tribute specifying the speaker’s sex (male or female). Speaker identity (the person’s name),
which is also given in the original data, was not used as an attribute.

Each of the eleven vowels is spoken six times by each speaker. There are 15 different
speakers, eight male, seven female. The data come in groups: all the 66 examples pertaining
to one particular speaker appear in a contiguous group, and the sequence of speakers in
terms of sex is 4 mal— 4 fema¢ — 4 male — 3 female.

As the data contain numeric attributes, our algorithms had to be extended to handle
also numbers. For the instance-based learner underiiimga L (IB) this is trivial. The
solution adopted for the Bayesian classifieNETAL (B) is quite simple (for more so-
phisticated approaches see John & Langley, 1995). We assume that numeric features follow
a normal distribution; instead of maintaining counts of attribute-value and attribute-value-
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class combinations, the Bayesian classifier keeps track of the mean values and standard
deviations, from which the required probabilities can be estimated. At the meta-level, fi-
nally, we have settled for a rather simplistic preliminary solution: numeric attributes are
discretized into N (currently 4) intervals of equal length; these are then treated as symbolic
values at the meta-level (i.e., when it comes to determining which features are predictive
or contextual).
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Figure 10. Accuracy in vowel classificatiolETAL(B)).

Figure 10 showdVETAL(B)’s performance in this task (with a window size of 300).

Note the clear peaks corresponding to the 15 speakers. There seem to be considerable
differences between individual speakers. Simple Bayed@mndaL.(B) perform basically
identically for the first four speakers (which are all male), but soon after the gender has
changed for the first time (with speaker B)lETAL(B) recognizes sex as a contextual
attribute and from then on adapts to new speakers much more effectively than the naive
Bayesian classifier.

METAL(IB)’s result is rather surprising (Figure 11): there is no difference between
simple IBL and meta-learning. Simple IBL is near perfect in this domain. All the speakers
seem to be extremely consistent in their way of producing vowels, and sufficiently different
from each other so that a local classification method like IBL can achieve maximum accu-
racy. On the other hand, the differences between individual speakers, even of the same sex,
seems to preclude any useful transfer between them.

7.4. Real data: Calendar scheduling

As a final example of a real-world domain where context tracking may be beneficial,
consider the calendar scheduling problem described in (Mitchell et al., 1994), where the
task is to predict certain aspects (location, duration, start time, and day of week) of meetings
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Figure 11. Accuracy in vowel classificatiolETAL(IB)).

in an academic environment, based on information about the events (e.g., information about

the attendees) and about the recent scheduling history. It seems plausible to assume that
scheduling patterns and preferences may depend on the season and may change at semester
boundaries in the academic year.

As a very preliminary first result, Figure 12 showgeTaL(B)'s performance in pre-
dicting the duration of each meeting on the sequence of 1685 entries from one user’s (Tom
Mitchell's) calendaf. The calendar spans a period of approximately 23 months, and in
addition to the given attributes, we added a very grossly (i.e., without knowledge about
the specific situation at CMU) derived attribute to each instance, namelgethesteor
academic term events in the months January through May were assigned tspittiregy
term, June through August summey September through Decembeirfadi.

The figure shows no really spectacular effects. The two most obvious points where the
two curves differ are around = 400 — this is soon after the first context change from
summer to fall — and around = 800, which is soon after a change from fall to spring.

In particular, between instances 780 and 868TAL(B) avoids a valley of decreased
accuracy that the Bayesian classifier has to go through. An analysis of the learning protocol
shows that this is indeed due to the attribtéem being picked out as a contextual clue.
MEeTAL(IB) produces a similar effect, but it generally performs more poorly in this task.

This preliminary result is quite inconclusive; if anything, it does suggest that some con-
textual influences are at work here, and that they can be detected. More experimental work
with different target classes and maybe more refined context information may lead to more
substantial results.



282 G. WIDMER

100 | .
T I b i w““’ '\ a
80 - ST bl R
U RN B oo
Ilv \K\y_‘v‘};uwlj [ ‘g‘ i E A ) ‘,“ ! ‘L ‘ J‘\
60 L “Fw i ! ! i l ’, [ ) ‘;‘ |
“x 1 0 l j L“ ‘ w W ‘,' ! i
40 iy g - . :
AR | ]
Y
20 I Simple Bayes -—-- :
MetaL(B) —
O 1 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600

Instances processed

Figure 12. Predicting the duration of meetingslETAL(B)).

8. Related Work

A number of methods and algorithms for adapting classifiers to different contexts have
recently been developed, many of them motivated by the emergence of context effects in
practical applications. For instance, Watrous and Towell (1995) describe a neural network
for ECG monitoring that is augmented with an explicit ‘patient model’. The model consists
of three pre-defined parameters and is used to adjust the neural classifier to the individual
characteristics of a particular patient by modulating the weights on the inter-layer connec-
tions. The model can be trained on individual patients. A similar approach was taken to
adapt a classifier to different speakers in speech recognition (Watrous, 1993).

Earlier, Katz et al. (1990) had described a two-stage neural network classifier, where
a higher-level network learned to switch between a set bhse-level classifiers. The
application domain was the recognition of targets on infrared and daytime television images.
Different contexts were characterized by features such as lighting conditions and maximum
image contrast. Again, these contextual attributes were explicitly defined beforehand.
Examples from different contexts had to be presented in separate batches.

Turney (1993) discusses classification problems where the test examples (those that will
be processed using the learned classifier) are governed by a different context than the training
set from which the classifier was learned. He discusses sexgrablization strategiethat
use information about contextual and context-sensitive features to transform the examples
to be classified. The methods assume that the contextual and context-sensitive features
are knowna priori. The methods are demonstrated in a number of practical applications,
among them, the diagnosis of aircraft engines (Turney & Halasz, 1993).

In the area of learning control rules, interesting work on detecting context changes has
been reported in (Ramsey & Grefenstette, 1993). In their system SAMUEL, a learner
monitors a set of pre-defined context indicator variables; a change in these is interpreted
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as signaling the beginning of a new context, and the underlying concept learner (a genetic
algorithm) is restarted on the set of new observations (more precisely, it generates new
synthetic observations by running an internal world simulation model).

All these approaches assume that contextually relevant attributes are known, or that the
learner is in some way explicitly trained on different contexts. Previous attempts at auto-
matically recognizing context changes without information about context clues have relied
primarily on monitoring the performance element (e.g., Cobb & Grefenstette, 1993; Widmer
& Kubat, 1996): sharp drops in predictive accuracy or some other measure of performance
were interpreted as signs of a potential context change. The novelty of the methods pre-
sented here is that contextual features are detected automatically and dynamically, during
the regular (on-line) learning process, and that they are then used immediately to focus the
classifier on relevant information.

On the other hand, the SAMUEL system of Ramsey & Grefenstette (1993) includes an
interesting strategy callathse-based initialization of genetic algorithnWhen the genetic
algorithmis restarted on a new set of observations, the initial population of candidate control
rules is selected on the basis of previous experience: the system looks at previous (stored)
contexts and select the best rules from thenost similar previous contexts to seed the
genetic algorithm. That is a form of diretcansferof knowledge between similar contexts.

A similar strategy was implemented in the context tracker FLORA3 (Widmer & Kubat,
1993), which stored and re-used classification rules presumably pertaining to different
contexts. Some such ability would be desirable also inleEraL(B) andMETAL(IB)
systems. Also, there has recently been some work on adapting learned concept descriptions
to new contexts (e.g., Kubat, 1996) that might lead the way to interesting extensions of our
algorithms. These are topics of current research.

With respect to on-line learning and the dynamic tracking of changes, the first to address
the problem otoncept driftwvere Schlimmer and Granger (1986). Their system STAGGER
learns by updating statistical (Bayesian) measures of logical sufficiency and necessity of
a set of description items in a distributed concept representation, and by simultaneously
and incrementally searching the space of description items that can be constructed by
conjunction and disjunction of individual features.

The FLORA algorithms (Widmer & Kubat, 1996) use a time window and a dynamic
windowing strategy in an attempt to react even faster to concept drift. The window size
und thus the rate dbrgettingis controlled and dynamically adjusted by a heuristic that
monitors the learning process. Similartime-based forgetting operators were also put forward
for unsupervised learning situations (Kilander & Jansson, 1993).

More sophisticated and selective forgetting strategies are conceivable. For instance,
Salganicoff (1993) introduced the notion @énsity-adaptive forgettingThe idea is not
to rely solely on the age of exemplars. Rather, examples are forgotten only if there is
subsequent information in their vicinity in attribute space to supersede them. That prevents
useful information from being discarded simply because it has not been refreshed quickly
enough. Th&IeTaL(B) andMETAL(IB) learnersin their current form need to maintain a
time-based window, because the calculation of predictive and contextual attributes crucially
depends on tracking changes over time. Still, some more selective forgetting strategy akin
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to density-adaptive forgetting might be an interesting option. Again, this is a topic for future
research.

9. Conclusion

To summarize, the main contribution of this article is to have shown that it is indeed
possible for an incremental learner to autonomously detect, during on-line object-level
learning, contextual clues in the data if such exist. The key is an operational definition
of predictive and, based on those, contextual features. ldentification and subsequent use
of contextual information is an act aheta-learning There are various ways in which

such context information can be used. Two different realizations of the meta-learning
model have been presentedlETAL (B) relies on a Bayesian classifier as the underlying
incremental learner and uses context information to select those known instances as a basis
for prediction that seem to belong to the same context as the new insteiea L (I1B)

is based on an instance-based algorithm and uses contextual information for exemplar and
feature weighting. The feasibility of context recognition and its benefits have been shown
in a number of experiments.

The question as to which of the two systems MeTAL(B) or METAL(IB) — is
better cannot be answered in this form. As our experimental evidence suggests, some
domains lend themselves more to an instance-based approach, while in others — especially
in domains with high noise rates and many irrelevant attributes — the Bayesian approach
may prove more effective. Moreover, alternative realizations of the general learning model
with other, more robust or powerful base-level learners are conceivable. For instance,
the simple nearest neighbor classifier usedVinTaL(IB) could be replaced by more
sophisticated instance-based methods that are also better at tolerating noise. A number of
other conceivable extensions and refinements of the algorithms have been identified in the
previous section.

Generally, we regard the work presented here as a small first step into what might become a
rich field of research. The identification of contextual features is a first step toneamtag
and thus being able t@ason abouytcontexts. That is the level where we expect the full
power of meta-learning to become apparent. Reasoning and learning about contexts could
be used in a variety of ways and for a number of purposes, e.g., constructive induction, the
recognition of (and faster readjustment to) previously encountered contexts, the emergence
of expectations and predictions of the next context, etc.

There is also an interesting connection between our learning model and the notions of
transferandlife-long learning as recently proposed by Thrun and Mitchell (1995). As
noted above in the context of the Schubert experiment, our learners can be interpreted as
performingcross-contextual transfeand they certainly are ‘lifelong’ learners. At first
sight, the two models might appear to be orthogonal (one performs transfer across learning
tasks, the other across contexts within a single task), but there are interesting parallels, and
further research might lead to the formulation of a more general model that integrates both
aspects of transfer.
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Notes

1. Indeed, contextual attributes will be used for this purpose in the algoNflma L (IB).

Note also how our definitions generalize the intuitive notion of a contextual clue as somethingtmetént

during one context: an attribute that takes a constant characteristic value during each context (and a different
one for each context) will be easily identified as a contextual clue by our definitions, provided that there are
indeed changes in the target concept that manifest themselves in the form of changing attribute predictivity.
However, our definitions do not require perfect constancy; all they require is a sufficiently strong correlation,
over time, between observed predictivity of certain features and observed occurrence of others.

3. Of courseall values of the respective attributes (in principle), not just those appearing in the positive concept
definition; the other values are predictive of negative instances.

4. It may seem surprising thAfeTAL(B) fails to achieve a perfect 100% during periddbut then performs
perfectly afterwards. Close examination reveals that this is due to the limited window size of 100 and the
highly unbalanced instance distribution duriAginstances withx = 0 are so rare that the prediction of the
focused base-level learner is based on very few cases whenevérin an incoming example, which allows
coincidental features to mislead the Bayesian classifier. Itis only later, when the examples are again uniformly
distributed, that predictive performance becomes perfect.

5. Of course, this analogy is only approximate, implying as it does that each context-specific concept version
would be purely conjunctive. Still, the analogy may be useful in giving us an alternative view of the problem
of learning DNF, especially in on-line settings.

6. Thedatahave been made available by Tom Mitchelland co-workers at http://www.cs.cmu.edu/ afs/cs/project/theo-
5/www/cap-data.html. Special thanks to Dayne Freitag for help with data and attributes.
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