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Tracking Control for Networked Control Systems

Nathan van de Wouw, Payam Naghshtabrizi, Marieke Cloosterman, João Pedro Hespanha

Abstract— A solution to the approximate tracking problem
for Networked Control Systems (NCSs) with uncertain, time-
varying sampling intervals and network delays is presented.
The uncertain, time-varying sampling and delays cause inexact
feedforward, which induces a perturbation on the tracking
error dynamics. Two alternative modeling approaches are used:
a discrete-time model and a model in terms of delay impulsive
differential equations. Sufficient conditions for the input-to-
state stability (ISS) of the tracking error dynamics with respect
to this perturbation are given. These ISS results provide
bounds on the steady-state tracking error as a function of the
plant properties, the controller parameters, and the network
properties. The results are illustrated on a mechanical motion
control example.

I. INTRODUCTION

In this paper, we study the tracking control problem
for NCSs with uncertain, time-varying sampling intervals
and network delays. NCSs are control systems in which
the communication between the actuators, sensors and the
controllers takes place over a communication network. The
benefits of using such a communication network, as opposed
to dedicated point-to-point wiring, is increased architec-
tural flexibility, decreased maintenance costs and system
wiring [1], [2]. The presence of the communication network;
however, induces non-ideal behavior in the form of uncertain,
and time-varying sampling intervals, network delays, and
packet loss [1].

Different models for NCSs with uncertain, and time-
varying sampling intervals and network delays have been
proposed in literature. In [3], [4], [5], [6], a discrete-time
modeling approach is employed in the face of network
delays. In [7], NCSs, with uncertain sampling intervals and
network delays, are modeled in terms of impulsive delay
differential equations. For both model-types, stability criteria
have been proposed; see [5], [6] for stability conditions for
discrete-time models and to [7] for stability results for the
impulsive delay models.

To this date, the work on NCSs has largely focused
on modeling, stability, and stabilization problems. Track-
ing control, however, poses additional challenges, some
of which are specifically aggravated by the network. In
tracking control, typical high-performance designs include
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feedforward thereby inducing the desired trajectory in the
controlled system, whereas feedback assures convergence to
the desired solution and favorable robustness and disturbance
attenuation properties. Due to the delays and variation in
sampling intervals, the feedforward signal generally arrives
at the actuator later than intended, leading to a network-
induced feedforward error and reduced tracking performance.
Consequently, only approximate tracking can be achieved.
In the NCS literature, the tracking problem has received
little attention. Recent works related to the tracking control
of NCSs are [8], [9]. In [8], an H∞-approach towards the
tracking control problem of NCSs with network delays (and
constant sampling intervals) is presented; however, the fact
that the feedforward generally experiences delays is not taken
into account. In [9], the optimal tracking control problem is
studied with a focus on the effects of quantization of the
feedforward.

Here, we analyze the ISS property of NCSs with respect
to the feedforward error. Based on the ISS property we
provide an asymptotic upper bound for the tracking error
that depends on the properties of the plant, the controller and
the network. ISS properties of (nonlinear) NCSs have been
studied in [10]. Herein, the role of the network protocol in
guaranteeing such stability properties is studied and NCSs
with time-varying sampling intervals and multiple-packet
communication are considered; however, no network delays
are taken into account.

The outline of the paper is as follows. In Section II,
an NCS model for tracking is proposed and the approx-
imate tracking problem is formulated. In Section III, two
approaches for analyzing the ISS properties of this NCS
model are addressed. Moreover, ultimate bounds for the
tracking error are provided in Section IV. In Section V,
an example is presented illustrating the benefit of the ISS
results. Finally, conclusions are given in Section VI. Most
proofs will be omitted due to lack of space and can be found
in an extended version of this paper [11].

Notation: A function γ : [0,∞) → [0,∞) is said to be
of class-G if it is continuous, zero at zero and non-decreasing.
It is of class-K if it is of class-G and strictly increasing. It is
of class-K∞ if it is of class-K and unbounded. A continuous
function β : [0,∞)× [0,∞) → [0,∞) is said to be of class-
KL if β(., t) is of class-K for each t ≥ 0 and β(s, .) is
monotonically decreasing to zero for each s > 0. We denote

the transpose of a matrix A by AT and we write P > 0
(or P < 0) when P is a symmetric positive (or negative)

definite matrix. We write a symmetric matrix
[

A B
BT C

]

as
[

A B
∗ C

]

. When there is no confusion we write x(t) as x.

II. AN NCS MODEL FOR TRACKING CONTROL

A two-channel NCS is schematically depicted in Figure 1.
It consists of a continuous-time plant and a discrete-time
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Figure 1: Schematic overview of the two-channel NCS with vari-
able sampling and network delays.
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Figure 2: Schematic overview of the one-channel NCS with vari-
able sampling and network delays.

controller, which receives information from the plant only
at the sampling instants sk. Due to the fact that we allow
for a variable sampling interval hk, the samplings instants

sk =
∑k

i=1 hi, ∀k ≥ 1, s0 = 0, are non-equidistantly
spaced. Moreover, the computation times and the network
delays result in a sensor-to-controller delay τ sc

k and in a
controller-to-actuator delay τ ca

k , which have to be taken into
account. Similar to [1], the sensor acts in a time-driven
(though variable) fashion and the controller and actuator
(including the zero-order-hold (ZOH) in Figure 1) act in an
event-driven fashion. Hereto, we assume that all sensors are
sampled synchronously and there is a single sensor-sending
source.

The two-channel NCS in Figure 1 is equivalent to the
one-channel NCS in Figure 2 with τk := τsc

k + τ ca
k given

that the controller is static and time-invariant [4], [1]. We
call τk the (kth total) loop delay and tk := sk + τk the
(kth) input update time. Out of order packets will be dropped
and consequently the sampling times {s1, s2, s3, · · · } and the
input update times {t1, t2, t3, · · · } form strictly increasing
sequences in [s0,∞) for some initial time s0.

The continuous-time model of the plant is given by:

ẋ(t) = Ax(t) + Bu∗(t), x(0) = x0,
u∗(t) = uk, for t ∈ [tk, tk+1), t1 = τ1,

(1)

with A and B the system and input matrices, t ∈ R the
time variable, uk = u(sk) ∈ R

m the sampled input, and
xk = x(sk) ∈ R

n the state at sampling times.

In what follows we introduce the tracking problem, control
signal construction, the tracking error dynamics, and we
argue that the ISS property of the error dynamics is the
relevant notion to study the effect of the network on the
tracking problem.

Control signal construction: We desire the system to
asymptotically track a desired trajectory xd(t). The proposed
control law consists of a feedforward part and a feedback
part. The exact feedforward uff

e (t) should be selected such
that the desired state trajectory xd(t) is a solution to the
continuous-time system

ẋd(t) = Axd(t) + Buff
e (t). (2)

Here, we assume that xd(t) is at least C2, guaranteeing that
uff

e (t) is at least C1. We propose the following tracking
control law for (1):

uk := uff
e (sk) − K

(

xk − xd(sk)
)

, (3)

that consists of the superposition of a sampled feedforward
component uff

e (sk) with a linear tracking-error feedback
component with feedback gain matrix K ∈ R

m×n. We em-
ploy time-stamping on the measurements; so, the sampling
time sk is known, which enables the computation of the
control command (3) at time tk := sk + τk.

The implemented continuous-time feedforward uff (t)
in (1), (3) is piecewise constant, given by

uff (t) = uff
e (sk) for t ∈ [tk, tk+1), (4)

and differs from the exact feedforward uff
e (t) due to the

zero-order hold and the network delays. Therefore, we will
decompose the implemented feedforward as the sum of
the exact feedforward part uff

e (t) and a feedforward error:

uff (t) = uff
e (t) + ∆uff (t) for t ∈ [tk, tk+1), with the

feedforward error simply defined by ∆uff (t) = uff
e (sk) −

uff
e (t) for t ∈ [tk, tk+1).

Closed-loop system: Applying the control law (3) to
system (1) yields the following closed-loop NCS dynamics:

ẋ(t)=Ax(t)+B1

(

xk − xd(sk)
)

+B2

(

uff
e (t)+∆uff (t)

)

,

(5)

for t ∈ [tk, tk+1) and with B1 := −BK and B2 := B.

The initial condition x̄(0) :=
[

xT (0) xT (s0)
]T

for this
system consists of both the initial state at time s1 = 0, i.e.,
x(0) = x0, and the hold state x(s0) at time s0 < 0. So, the
network delays cause the initial state to involve a past state.

Tracking error dynamics: We define the tracking error
e by e = x−xd. By combining (5) and (2) we can formulate
the continuous-time tracking error dynamics as follows:

ė(t) = Ae(t) + B1e(sk) + B2∆uff (t), (6)

for t ∈ [tk, tk+1), and with ē(0) :=
[

eT (0) eT (s0)
]T

.
We consider the approximate tracking problem. Herein, we

aim to ensure asymptotic ultimate boundedness of the track-
ing error, i.e. e(t) = x(t) − xd(t) ≤ ǫ for t → ∞ for some
small ǫ > 0. Some tracking error is to be expected in the
NCS setting, as the implemented feedforward signal uff (t)
in (4) will never equal the exact feedforward uff

e (t). The
reasons for non-exact feedforward are, firstly, the fact that
the control signal (and therefore also the feedforward signal)
will be passed through a zero-order hold and, secondly, the
fact that the network delays (in particular the controller-
to-actuator delay τ ca

k ) in general cause the feedforward
to be implemented too late. In the next section, we will
propose sufficient conditions for the input-to-state stability
(ISS) of the continuous-time tracking error dynamics (6)

with respect to the input ∆uff (t). An ISS property of the
tracking error dynamics guarantees that the controller solves
an approximate tracking problem.

III. INPUT-TO-STATE STABILITY OF NCSS WITH

TIME-VARYING DELAYS AND SAMPLE TIMES

In this section, we propose sufficient conditions for the
input-to-state stability of the continuous-time tracking error

dynamics (6) with respect to the input ∆uff (t). In the
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subsequent subsections, we propose two approaches towards
proving such ISS properties: in the first approach, the dynam-
ics are largely analyzed in a discrete-time setting, whereas
in the second approach the dynamics are analyzed using
delay impulsive differential equations. We will see later that,
depending on the problem, either approach can be favorable
over the other when considering the stability bounds and the
ISS gains provided.

We say that the system (6) is uniformly ISS over a given
class S of admissible sequences of sampling times and delays
{sk, τk} if there exist a KL-function β(r, s) and a K-function
γ(r) such that, for any initial condition ē(0) and any bounded

input ∆uff (t), the solution to (6) satisfies

|e(t)| ≤ β(|ē(0)|, t) + γ( sup
0≤s≤t

|∆uff (s)|), (7)

with functions β and γ that are independent of the choice
of the particular sequence {sk, τk}. We would like to have
the ISS property for any sequence of delays such that
τmin ≤ τk ≤ τmax, ∀k ∈ N and any sequence of sam-
pling times such that hmin ≤ sk+1 − sk ≤ hmax for
given hmin, hmax, τmin, τmax where 0 ≤ hmin ≤ hmax and
0 ≤ τmin ≤ τmax. Consequently, the class of admissible
sequences is characterized by

S := {{sk, τk} : hmin ≤ sk+1 − sk ≤ hmax,

τmin ≤ τk ≤ τmax} .
(8)

A. Discrete-time Approach

Under the assumption that τk < hk, ∀k, the discretization
of (6) at the sampling instants sk results in the following
discrete-time system, which forms the basis of our analysis:

ek+1 =eAhkek +

∫ hk−τk

0

eAsdsB1ek

+

∫ hk

hk−τk

eAsdsB1ek−1 + ∆u
ff

k ,

(9)

where ∆u
ff

k :=
∫ hk

0
eAsB2∆uff (hk + sk − s)ds. Since

τk < hk, ∀k, we can define an extended state for the

system (9) by ξk :=
(

eT
k eT

k−1

)T
and we obtain the

following discrete-time state-space model:

ξk+1 = Ãξk + B̃∆u
ff

k , (10)

with ξk ∈ R
2n,

Ã =

[

eAhk +
∫ hk−τk

0
eAsdsB1

∫ hk

hk−τk
eAsdsB1

I 0

]

,

(11)

and B̃
T

=
[

I 0
]

, where Ã = Ã(hk, τk). Moreover, ek =

Czξk, with Cz =
[

I 0
]

. Note that the matrix Ã depends
on the sk and τk, but this dependence was not made explicit
to keep the formulas short.

Before we formulate conditions for the input-to-state sta-
bility of system (6), we recall results on the global asymptotic
stability of the equilibrium point ξ = 0 of the discrete-

time system (10) for the case that ∆u
ff

k = 0 for all

k (i.e., the case of stabilization). When ∆u
ff

k = 0, the
system (10) can be viewed as a switching discrete-time
system for which stability can be guaranteed using a common
quadratic Lyapunov function approach. More specifically,

stability is guaranteed if the following (infinite) set of matrix
inequalities is feasible:

Ã
T
PÃ − (1 − α)P < 0, P = P T > 0 (12)

∀{sk, τk} ∈ S and for some 0 < α < 1. Based on these
stability results, we will show (see Theorem 1) that the input-
to-state stability of (6) is guaranteed if the following (infinite)
set of matrix inequalities is feasible:

P = P T > 0
[

Ã
T
PÃ − (1 − α)P Ã

T
PB̃

∗ B̃
T
PB̃ − c4I

]

< 0,
(13)

∀{sk, τk} ∈ S, for some 0 < α < 1 and c4 > 0. For the
case of constant sampling intervals hk = h, ∀k, sufficient
conditions for the feasibility of (12) in terms of (finite sets)
of LMIs are proposed in [5] based on a (real) Jordan form
representation of the NCS applicable to both small and
large delays. Based on the sufficiency of (13) for ISS, the
necessary derivations of the finite set of LMIs are similar
to those in [5]. For the sake of brevity, we will omit such
technicalities here.

Let us now present the result on the input-to-state stability
of the continuous-time tracking error dynamics (6).

Theorem 1

Consider the tracking error dynamics (6) with {sk, τk} ∈ S
and τk < sk+1 − sk, ∀k. Suppose there exist a matrix P
and scalars 0 < α < 1 and c4 > 0 for which (13) is
satisfied. Then, the system (6) is uniformly ISS over the class
S with respect to the time-varying input ∆uff (t) and the
inequality (7) is satisfied with

β(r, t) = g1(t)r, γ(r) = g2r, (14)

where

g1(t) =

{

g1,1 + ǫ + ǫ
h1

t, t ∈ [0, s2]

g1,k−1 +
g1,k−g1,k−1

hk
(t − sk), k ≥ 2,t ∈ [sk, sk+1],

g1,k =‖CzP
− 1

2 ‖

(

c1

√

ᾱkλmax(P )+c2

√

ᾱk−1λmax(P )

)

,

g2 = c3

(

1 + (c1 + c2)‖CzP
− 1

2 ‖

√

c4

α

)

, (15)

with g1,k defined for k ≥ 1, ǫ > 0, ᾱ := 1 − α and

c1 = max(c̄1, ĉ1 + ĉ2), c2 = max(c̄2, c̃2),

c3 = ‖B2‖c(hmax, hmax),
(16)

with c(r1, r2) :=

{

eλmaxr1−1
λmax

if λmax 6= 0

r2 if λmax = 0
and

c̄1 = max(1, eλmaxτmax),

c̄2 = ‖B1‖c(τmax, τmax), c̃2 = ‖B1‖c(hmax, τmax)

ĉ2 = ‖B1‖c(hmax − τmin, hmax − τmin),

ĉ1 =

{

max (eλmaxhmax , eλmaxτmin) if λmax 6= 0

1 if λmax = 0.

(17)

This result implies that the state e of the NCS is globally
uniformly ultimately bounded and the asymptotic bound is

given by lim supt→∞ |e(t)| ≤ g2 supt≥0 |∆uff (t)| with g2
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as in (15). Note that all parameters in (15), (16) and (17) are
known and depend on the system dynamics and the feedback
gain matrix (matrices A, B1 and B2), the network param-
eters (maximum and minimum sampling intervals hmax and
hmin, respectively, and maximum and minimum delays τmax

and τmin, respectively) and the parameters α, c4 and matrix
P satisfying (13).

An asymptotic bound for the tracking error e at the
sampling instants is given by

lim sup
k→∞

|ek| ≤ c3‖CzP
− 1

2 ‖

√

c4

α
sup
t≥0

|∆uff (t)|

=: ḡ2 sup
t≥0

|∆uff (t)|.
(18)

This bound can in many practical cases (e.g., for sufficiently
small sampling intervals) be sufficient and it is typically
much less conservative since ḡ2 < g2. The difference
between g2 and ḡ2 originates from the need to upperbound
the inter-sample behavior of e, thereby introducing additional
conservatism.

B. Delay Impulsive Approach

In the previous section, we established sufficient condi-
tions for the ISS property of the system (6) by adopting
the discrete-time NCS modeling approach. As used in this
paper, this approach required the delays to be smaller than
the sampling interval, i.e., τk ≤ hk, ∀k. Without this
assumption, i.e., for large delays, the discrete-time approach
yields increasingly complex models [12], [5]. We now model
the system (6) as a delay impulsive system, which avoids an
increase in model complexity when dealing with large delays.

Impulsive dynamical systems exhibit continuous evolu-
tions described by ordinary differential equations and in-
stantaneous state jumps or impulses. We refer to impulsive
dynamical systems with delay in the jump equation as delay
impulsive systems. First we consider a more general system
of the form

ẋ(t) = fk(x(t), t,w(t)), t ∈ [tk, tk+1), (19a)

x(tk+1) = gk(x(s−k+1), t
−
k+1), k ∈ N, (19b)

where fk, gk are locally Lipschitz functions such that
fk(0, t,0) = 0, gk(0, t) = 0, ∀t ∈ R≥0. For system (19),
we assess the ISS property over the set S of impulse-delay
sequences defined in (8) using the tools developed for delay
differential equations in [13]. Given a Lyapunov-like function

V : R
n × [0, ρmax] × [−hmax − τmax,∞) → [0,∞),

(20)

we use the shorthand notation V (t) := V (x(t), ρ(t), t),
where ρ(t) := t − tk, t ∈ [tk, tk+1) characterizes
the time between impulses. ρ(t) is a continuous func-
tion of time with derivative equal to one almost every-
where except at the update times tk. We denote its upper
bound by ρmax := supt≥0 ρ(t), which is a function of
hmin, hmax, τmin, τmax. We define td := hmax + τmax,
|xm(t)| := max−td≤θ≤0 |x(t+θ)|, for t ≥ 0 and ‖xm‖t0 :=
sups≥t0

|xm(s)| = sups≥t0−td
|x(s)|.

Theorem 2

Assume that there exist α1, α2 ∈ K∞, γv, γw ∈ G, a
scalar α3 > 0, and a function V as in (20), such that for

any impulse-delay sequence {sk, τk} ∈ S the corresponding
solution x to (19) satisfies:

α1(|x(t)|) ≤ V (t) ≤ α2(|x(t)|),∀ρ ∈ [0, ρmax],∀t ≥ 0

(21)

V (t) ≥max
{

γv(Vm(t)), γw(‖w‖t0)
}

⇒
dV (t)

dt
≤ −α3V (t),∀t ≥ 0

(22)

γv(s) < s, ∀s > 0, (23)

and that

V (tk+1) ≤ lim
t↑tk+1

V (t), ∀k ∈ N. (24)

Then, the system (19) is uniformly ISS over the class S
of impulse-delay sequences with γ(s) := α−1

1 (γw(s)),

β(s, t) := α−1
1 (e

−⌊
t+td
T+td

⌋α3T
α2(s)), where T > 0 is small

enough such that γv(s) ≤ se−α3T ∀s ≤ Vm(t0).

Note that β(s, t) satisfies all the conditions of a class-KL
function except that for fixed s it is only non-increasing and
not continuous everywhere because for n(T + td) ≤ t <
(n + 1)(T + td),∀n ∈ N the function β(s, t) is flat and it
reduces at t = n(t + T ),∀n ∈ N. However, it is easy to
construct a β̄(s, t) ∈ KL from β(s, t).

System (6) can be written as a delay impulsive system of
the form

ζ̇(t) = Fζ(t) + B̄2∆uff (t), t ∈ [tk, tk+1) (25a)

ζ(tk+1) =
[

eT (tk+1) eT (sk+1)
]T

, k ∈ N, (25b)

with the initial condition ζ(0) :=
[

eT (0) eT (s0)
]T

,

ζ(t) :=
[

eT (t) vT
1 (t)

]T
, v1(t) := e(sk), for t ∈

[tk, tk+1), and F :=

[

A B1

0 0

]

, B̄2 :=

[

B2

0

]

. We employ

a Lyapunov candidate function of the form V (t) := eT Pe+
(ρmax−ρ)(e−v2)

T X(e−v2), where V (t) = V (ζ̃(t), ρ(t)),

v2 := e(tk), t ∈ [tk, tk+1), ζ̃ :=
[

eT vT
2

]T
and P ,X

are symmetric positive definite matrices. Note that V (t) is
positive (for any e and v2 not both equal to zero) and satisfies
(21). Along jumps this Lyapunov function does not increase
since the first term remains unchanged and the second term
is non-negative before the jumps and it becomes zero right
after the jumps and consequently (24) holds. We choose
γv(s) := ps, 0 < p < 1; so (23) holds and we choose
γw(s) := gws2, gw > 0. If the LMIs that appear below in
Theorem 3 are feasible then (22) is satisfied and consequently
Theorem 2 guarantees that system (25) is uniformly ISS over
the class S of sampling-delay sequences.
Theorem 3

Assume that there exist positive scalars α, λi, 1 ≤ i ≤
4, gw, p < 1 and symmetric positive definite matrices P ,X
and (not necessarily symmetric) matrices N1,N2 that satisfy
the following LMIs:





M 1+ρmaxM 2 N 1A N 1B1 N 1B2

∗ −τ−1
maxλ1P 0 0

∗ ∗ −τ−1
maxλ3P 0

∗ ∗ ∗ −τ−1
maxλ2I



 < 0,

(26a)
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M1 + ρmaxM3 N1A N1B1

∗ −τ−1
maxλ1P 0

∗ ∗ −τ−1
maxλ3P

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

(26b)

N1B2 (N1 + N2)A (N1 + N2)B2

0 0 0

0 0 0

−τ−1
maxλ2I 0 0

∗ −ρ−1
maxλ1P 0

∗ ∗ −ρ−1
maxλ2I















< 0,

where

β1 := (λ1 + λ2g
−1
w )τmaxp + λ4 + α,

F̄ := [A B1 0 B2 ] , β2 := λ1p + λ2g
−1
w p, (27)

M1 :=

[

P
0
0
0

]

F̄ + F̄
T

[

P
0
0
0

]T

− N1 [ I −I 0 0 ]

− [ I −I 0 0 ]
T

NT
1 − N2 [ I 0 −I 0 ]

− [ I 0 −I 0 ]
T

NT
2 −

[

I
0
−I
0

]

X [ I 0 −I 0 ]

− λ4gw

[

0
0
0
I

]

[0 0 0 I ] + β1

[

P
0
0
0

]

[ I 0 0 0 ]

+ λ3pτmax

[

0
0
P
0

]

[0 0 I 0 ] ,

M2 :=

[

I
0
−I
0

]

XF̄ + F̄
T
X

[

I
0
−I
0

]T

+ (β1 + β2ρmax)

[

I
0
−I
0

]

X

[

I
0
−I
0

]T

,

M3 := β2

[

P
0
0
0

]

[ I 0 0 0 ] + (N1 + N2)B1 [0 I 0 0 ]

+

[

0
I
0
0

]

BT
1 (N1 + N2)

T . (28)

Then, system (6) is uniformly ISS over the class S of
sampling-delay sequences with respect to the time-varying in-
put ∆uff (t), i.e., inequality (7) is satisfied with the functions
β, γ defined in (14) with

g2 :=

√

gw

λmin(P )
, g1(t) :=

√

λmax(P )

λmin(P )
p
⌊

α(t+td)

αtd−log p
⌋
. (29)

The conditions in Theorem 3 depend on τmax and ρmax

which is the maximum of the input update interval. With
regard to the fact that ρmax ≤ τmax + hmax, we can
replace ρmax by τmax + hmax and express the conditions
in Theorem 3 in terms of τmax and hmax. However, these
conditions do not explicitly depend on the values of hmin and
τmin. Consequently, this approach towards modeling NCSs
may result in more conservative conditions in comparison

to those obtained using the discrete-time approach when
0 ≪ hmin ≃ hmax or 0 ≪ τmin ≃ τmax. These topics will
be discussed further in the examples presented in Section V.

IV. TRACKING CONTROL PERFORMANCE

Theorems 1 and 3 on the ISS property of NCSs can be
applied to the tracking problem of NCSs with variable sam-
pling intervals and delays, as stated in Section II. Namely,
the satisfaction of the conditions in either of these theorems
guarantees that the approximate tracking problem is solved
and an ultimate bound on the tracking error is available. A
straightforward analysis shows that an upper bound on the
feedforward error is given by

|∆uff (t)| ≤ R :=

√

√

√

√

m
∑

i=1

R2
i , ∀t ∈ R, (30)

with Ri := γ1,i(τmax + hmax), γ1,i = supt∈R
|
∂u

ff
e,i

(t)

∂t
|

where uff
e,i denotes the i-th component of uff

e , for i =
1, . . . ,m. The following corollary is based on Theorems 1
and 3 and the bound on the feedforward error defined
in (30). It characterizes the steady-state tracking performance
achieved by applying the tracking controller (3), with uff

e (t)
satisfying (2), to the NCS (1).

Corollary 1

Consider the NCS (1), with sampling-delay sequences
{sk, τk} ∈ S and S defined by (8). Consider controller (3),
with uff

e (t) satisfying (2). If either the LMIs (13) or the
LMIs (26)–(28) are feasible, then the tracking error dynam-
ics (6) is uniformly ISS with respect to the feedforward error
∆uff (t) over the class S. Moreover, the tracking error is
globally uniformly ultimately bounded with the asymptotic
bound computed from the following methods:

• Method 1: if the LMIs (13) are feasible, then the
asymptotic bound on the tracking error is given by
lim supt≥0 |e(t)| ≤ g2R, with g2 given in (15) and R
given in (30);

• Method 2: if the LMIs (26)-(28) are feasible, then the
asymptotic bound on the tracking error is given by
lim supt≥0 |e(t)| ≤ g2R, with g2 given in (29) and R
given in (30).

V. ILLUSTRATIVE EXAMPLE

We consider an example of a motion control system from
the document printing domain. The continuous-time state-
space representation can be described by (1), with A =
(

0 1
0 0

)

, B =

(

0
b

)

, with b = nrR

JM+n2JR
. Herein, the first

state represents the sheet position (of a sheet in a single
motor-roller pair) and the second state is the sheet velocity.
Moreover, JM = 1.95 · 10−5kgm2 the inertia of the motor,
JR = 6.5·10−5 kgm2 the inertia of the roller, rR = 14·10−3

m the radius of the roller, n = 0.2 the transmission ratio be-
tween motor and roller and u the motor torque. The feedback
gain matrix in (3) is K =

(

50 1.18
)

. Consider a harmonic

desired trajectory: xd(t) =
(

Ad sin(ωt) Adω cos(ωt)
)T

,
with Ad = 0.01 and ω = 2π. The exact feedforward is

given by uff
e (t) = −Adω2

b
sin(ωt).

Let us first consider the case of a constant sampling
interval (h = 5 × 10−3 s), but time-varying and uncertain
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Method 2, g2R

Figure 3: Tracking error bounds for a constant sampling interval

h = 5 × 10−3 s and time-varying and uncertain delays
in the set [0, τmax].

delays in the set [0, τmax]. Figure 3 depicts the error bounds
as provided in Corollary 1 for τmax < h. The results for
the discrete-time approach are obtained using a finite set of
LMIs guaranteeing the satisfaction of (13), based on a (real)
Jordan form approach as in [5]. Note that, for the discrete-
time modeling approach, also the bound for the tracking
error at the sampling times sk (ḡ2R, with ḡ2 as in (18))
is included by means of the dotted line. Figure 3 shows that
by using the discrete time approach, ISS can be guaranteed
up to τmax = 0.94h, but using the delay impulsive approach
ISS can be guaranteed only up to τmax = 0.33h. So, the
discrete-time approach allows to prove ISS for a larger range
of delays. However, the delay impulsive modeling/analysis
approach provides much tighter (ISS) bounds on the tracking
error (note that the scale of the vertical axis is logarithmic).
Note that the overestimation of the bound on the tracking
error for the discrete-time modeling approach is significantly
worsened due to upperbounding the intersample behavior
(compare the solid and dotted lines in Figure 3).

Next, we consider the case in which the sampling interval
is variable, i.e., h ∈ [hmin, hmax], and the delay is zero.
Figure 4 depicts the error bounds as provided in Corollary 1.
In this example, we take hmin = hmax/1.5, so hmin 6= 0.
Using the discrete-time modeling approach, we can assure
ISS almost up to hmax = 1.34 × 10−2 s, which is the
sampling interval for which the system with a constant
sampling interval (and no delay) becomes unstable (see the
dashed vertical line in Figure 4). This fact shows that the
proposed ISS conditions are not conservative from a stability
perspective. Using the delay impulsive modeling approach,
ISS can only be guaranteed up to hmax = 9 × 10−3 s.
However, the delay impulsive approach clearly provides sig-
nificantly less conservative bounds on the tracking error. This
type of plot is instrumental in determining an upperbound
on the maximum sampling interval needed to guarantee a
minimum level of steady-state tracking performance.

VI. CONCLUSIONS

In this paper, a solution to the approximate tracking
problem of Networked Control Systems (NCSs) with un-
certain, time-varying sampling intervals and network delays
is presented. The uncertain, time-varying sampling intervals
and delays cause inexact feedforward, which induces a
perturbation on the tracking error dynamics.
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Figure 4: Tracking error bounds for variable sampling intervals h ∈

[hmin, hmax] and no delays, where hmax = 1.5hmin.

Sufficient conditions in terms of LMIs for the input-to-
state stability (ISS) of the tracking error dynamics with
respect to this perturbation are given. Hereto, two NCS
modeling approaches are used: a discrete-time model and
a model in terms of delay impulsive differential equations.
These ISS results provide bounds on the steady-state tracking
error as a function of the plant properties, the controller
parameters and the network properties. Such error bounds
can readily be used to formulate design rules regarding the
maximum sampling interval or the maximum delay allowed
to guarantee a certain steady-state tracking performance.

The results are illustrated on a mechanical motion control
problem showing the effectiveness of the proposed strategy
and providing insight in the differences and commonalities
between the two NCS modeling approaches.
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