
TRACKING CONTROL OF A MOBILE ROBOT BASED ON TAYLOR 
FORMULA  

Abstract−−−−−−−− In this work, a strategy to calculate 
the control actions for a mobile robot following a pre 
established trajectory is proposed. For this purpose, 
the Taylor series development of controlled variables 
is used and the control action is calculated to make 
the system follow the reference trajectory. As main 
result, an easy form to implement the strategy is 
obtained. Simulation and experimental results are 
presented, showing the advantages of the control 
strategy proposed. 
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I. INTRODUCCIÓN 

Trajectory tracking is one of the main problems of 

control systems for which, in a search for a small 

tracking error, various controllers have been proposed in 

the literature, for example, Kim (2003) proposes a 

receding horizon tracking control for time-varying 

linear systems with constraints both on the control 

signal and on the tracking error, based on the 

minimization of a functional for finite-time costs. 

Besides, Linear Matrix Inequalities (LMI) are used in 

order to synthesize the controller. In Chem et al. (1995) 

a controller is proposed only for linear, non-varying 

systems which are exponentially stable and of non-

minimum phase, which needs a set of input/output data. 

In Fujimoto et al. (2001), a perfect-tracking control 

based on multirate feedforward control for linear 

systems is presented. Specifically, the design is made 

for a SISO system which, nevertheless, can be extended 

for a MIMO system. In Young-Hoon (2000), the case in 

which the dynamic equations of the tracking error are 

described by a set of non-linear, time-varying, periodic 

differential equations, is considered. 

In Shuli (2005) a mobile robot controller that is based 

on the error model of Kanayama (1990) is proposed. As 

a result, instead of just one controller, two are hended,

which are used depending on whether the angular 

velocity is null or not. The work of Shuli (2005) shows 

only simulation results.  

In Scaglia et al. (2005) a control based on numeric 

methods is shown, where the mobile robot linear speed 

depends on the current and desired orientation. In 

Scaglia et al. (2006a) the integral trapezoidal method is 

used to compute the control signal. The design is based 

on the model of Kanayama (1990) and here, conditions 

are established over the tracking error so that the 

equations system can always have solution. In (Scaglia 

G., et al., 2006b) the controller is computed solving the 

normal equations. In (Scaglia G., et al., 2007) the 

system evolution is approximated by means of a linear 

interpolation method, this allows a better system 

precision. The strategies previously mentioned can be 

applied to other systems, as can seen in Rosales et al. 

(2006), where the controller design for the RTAC 

system (also called TORA, a classic nonlinear problem, 

which is interesting due to the interaction between the 

traslational and rotational movements) is proposed in 

order that the system tends to the origin from any initial 

position. The proposed design is based on a system 

approximation using numerical methods and on the 

control signal calculus solving a linear equations 

system. Simulation results are presented; these results 

show tha advantages of the proposed control strategy 

which is obtained by using a simple design procedure. 

In this work, a strategy based on Taylor’s 

development of a variable to control is presented, in 

which the control signal is calculated modifying some 

terms of this mathematic development to obtain that the 

system output follows the reference signal. The main 

advantage of this methodology is that depending on the 

approximation by Taylor formula considered, different 

control signal expressions are obtained. Here, the 

proposed methodology is applied to a multivariable 

non-linear system (considering the problem of tracking 

trajectory of a mobile robot). Experimental and 

simulation results for this case show the advantages of 

the proposed methodology. The main contribution of 

this article is that the proposed methodology is based 

                   Scaglia Gustavo

                   Mut Vicente

                   Rosales Andres

      

     Universidad Nacional de San Juan(U.N.S.J.),Argentina



upon easily understandable concepts and there is no 

need for complex calculations to get the control signal.  
 

The paper is organized as follows: Section 2 states the 

problem and presents the methodology proposed to 

design the controller. Section 3 describes the application 

of the strategy to a typical robotic system described by a 

multi-variable nonlinear system as the mobile robot 

model is. Conclusions and suggested future work are 

detailed in Section 4. 

II. STATEMENT OF THE PROBLEM 

A non-linear kinematic model for a mobile robot 

will be used (see Fig. 1), which is represented by 

Campion (1996),  

 

.

cos

sin

x V

y V

W

θ
θ

θ

 = =

 =

ɺ

ɺ    (1) 

where, V is the linear velocity of the mobile robot, W is 

the angular velocity of the mobile robot, ( , )x y  is the 

Cartesian position, θ  is the orientation of the mobile 

robot, { }R  is the inertial frame and { }
c

R  is the frame 

attached to the robot. The values of 

( ) ( ) ( ) ( ), , ,x t y t t V tθ  and ( )W t  at discrete time t = 

nTo, where To is the sampling period, and 

{ }0,1,2,3,n ∈ ⋯  will be denoted as , , ,n n n nx y Vθ  y 
nW .  

Then, the aim is to find the values of 
nV  and 

nW  so that 

the mobile robot may follow a pre-established trajectory 

( )( ), ( )xd t yd t . 

 

 
Fig. 1 Geometric description of the mobile robot. 

 

The trajectory followed by the mobile robot is 

described by parametric equations as shown in Eq.(2), 
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If the function ( )y y t=  can be derived until 1m +  

order, with neighborhood of t = nTo included, so the 

following Taylor’s Formula is valid: 
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Where the complementary term ( )Rm t  is calculated 

as Eq. (4), 
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If the time instant t is close enough to nTo, so the 

Eq. (3) can be expressed as, 
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Similar expressions can be obtained for the state 

variables ( )x t  and ( )tθ . Eq. (5) shows the different 

order derived influence over the state variable in a later 

instant of time t. In this paper, the value that this 

derivative must have in each sample time, is calculated 

and therefore, the control signals, too. So that the 

mobile robot follows the previous established trajectory, 

as shown in section III. 

III. CONTROLLER DESIGN  

A first order Taylor approximation of Eq. (2) will be 

first considered, then, 

 

1

1

1

n n n

n n n

n n n

x x x To

y y y To

To

+

+

+

≈ +
 ≈ +
 ≈ +

ɺ

ɺ

ɺθ θ θ
 (6) 

 

 If we desire that the mobile robot goes from its 

Cartesian position ( ),n nx y  to ( )1 1,n nxd yd+ + , then from 

Eq. (6), xɺ  and yɺ  in time nTo should have the following 

values,  
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Replacing Eq. (7) in Eq. (1), 
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where, Vd, dθ  are the linear velocity and orientation 

angle in instant nTo, respectively, necessaries to make 

the mobile robot go from ( )
nn

yx ,  to ( )
11

, ++ nn
ydxd . 

  
Now, from Eq.(8), 
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Eq.(10) represents a two equations one unknown 

(Vd) system, which optimal solution by minimal square 

is (Strang G. ,1980), 
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 1 1cos sinn n n nxd x yd y
Vd d d
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+ +− −
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In this work, we propose replace 
1n+θ  in Eq. (6) for 

dθ  given by Eq. (9) and, in this way, calculate the ɺθ  

value, this means, 
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From Eqs. (12) and (13) the proposed controller for 

mobile robot  is as follows, 
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where the constants kv
2
, kw

2
 allow adjusting the system 

behavior and they satisfy 20 1kv< ≤ , and  20 1kw< ≤ . 
 

Simulation and experimental studies were carried 

out with a mobile robot PIONEER 2DX available at the 

Instituto de Automática (INAUT) to test the proposed 

controller performance. The simulation software 

SAPHIRA of Active Media was also used (Konoologe 

K, 1998). Fig. 2 shows the Pioneer 2DX and the 

laboratory facilities where the experiences were carried 

out. In the PIONEER 2DX the value of the sample time 

To is 0.1 sec. 

 
Fig. 2. Pioneer 2DX mobile robot and its environment 

 

In order to test the performance of the proposed 

controller, a circumference of 600 mm. radius was used 

as a desired trajectory, with center on the origin of the 

coordinate system. The starting point for the robot was 

the center of the circumference, and an initial 

orientation 0º=θ . From this starting point it evolves to 

the desired trajectory. The reference trajectory starts at 

(600,0)mm  and is generated at constant linear and 

angular velocities respectively known as Vref  and 

Wref . Fig. 19 shows the system simulation (Koonolige 

K, 1998) on the x-y plane for 2 2 1kv kw= =  in Eq. (14) 

and 100 / sec.Vref mm=  
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Fig. 3: Simulation results: Simulated and Desired 

Trajectory, Vref = 100 mm/sec. 
 

It can also be noticed from this figure that the 

mobile robot follows the desired trajectory but in an 

oscillatory manner. In order to correct this problem, the 

control actions can be calculated by the minimization of 

a quadratic index, in which not only the tracking error 

but also the square of state variables derivatives have 

been considered. Thus, the state variables variation is 

minimizing as well as the error between the real and 

desired trajectory, 
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From Eqs (16) y (17), 
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where, 
1n nx xd x+∆ = − , 

1n ny yd y+∆ = − . 

 

If Eqs. (14) and (18) are compared, then can be seen 

that, to minimize the state variables variations, the 

values of kv
2
 y kw

2
 should be chosen less than one. For 

this reason, we propose to reduce the values kv
2 and kw

2 

to values kv
2
 = 0.2 and kw

2
 = 0.2.  

 

In Fig. 4 the real trajectory of the mobile robot 

PIONEER 2DX in the x-y plane is shown. On the other 



hand, Figs. 5 and 6 show the time evolution of the x,y 

coordinates. 
 

Fig. 4 shows the mobile robot following the 

reference trajectory without making undesirable 

oscillations. Figs. 5 and 6 show the time evolution of 

coordinates x and y of the mobile robot while 

navigating, respectively.  From Figs. 5 and 6, it can be 

noted that the mobile robot reaches the desired 

trajectory very quickly, and it follows this trajectory 

with an error smaller than 10 mm. In Figs. 4, 5 and 6, it 

can also be noted that the robot arrives at the end of the 

reference trajectory and it remains in that position 

without oscillations.  
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Fig. 4: Experimental result: Real and Desired Trajectory, 

Vref = 100 mm/sec. 
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Fig. 5: Experimental results: Evolution of x(t), Vref = 100 

mm/sec. 
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Fig. 6: Experimental results: Evolution of y(t), Vref = 100 

mm/sec. 
 

Fig. 7 shows experimental results obtained with the 

mobile robot PIONEER 2DX when the navigation 

velocity is increased to Vref = 200 mm/sec. and Wref  = 

19.1 deg/sec. It can be seen from Fig. 7 that the mobile 

robot follows the desired trajectory with a maximum 

error of 10 mm, which is very small when compared 

with the distance between wheel axes (330 mm). Figs. 8 

and 9 show the time evolution of the real linear and 

angular velocities, denoted as Vreal and Wreal, 

respectively, of the mobile robot and the control actions. 

As it can be observed, the linear and angular velocities 

of the mobile robot stay very close to the reference 

values generated by the desired trajectory. 
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Fig.7:  Experimental results:  Real and Desired Trajectory, 

Vref = 200 mm/sec., Wref = 19.1 deg/sec.,  kv2 = 0.2,  kw2 = 

0.2. 
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Fig. 8: Experimental results:  Real Linear velocity and 

Control Action 
nVc , 200 /sec.Vref mm=  
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Fig. 9: Experimental results: Real angular velocity and 

nWc  , 19.1deg/ sec.Wref =  

 

If a second order Taylor approximation is used, so  
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By derivation of Eq. (19), we obtain,  
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Then, an equations system can be built with two 

equations and two unknown for each variable x,y, 
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obtaining, 
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where, Eqs. (23) to (26) represent the values that first 

and second derivatives of x and y variables should have, 

to make the mobile robot go from ( )
nn

yx ,  to 

( )
11
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In this way, the linear velocity variation in the 

interval ( )1nTo n To+    will approximately have the 

shape given in Fig. 10. 
 

As it is posible to use only one control signal so that 

it stays constant between each sampling period, we 

propose to define a new control signal whose value is 

defined by, 
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In a similar way, for the 
nW  we have, 
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And as Eq. (35), the expression obtained is 
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Fig. 10 Interpretación grafica de la variación de V(t) 

 

In Fig. 11 x-y plane robot trajectory is shown when a 

reference trajectory is a 600 mm radius circumference, 
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Fig. 11:  Experimental results:  Real and Desired 

Trajectory, Vref = 200 mm/sec., Wref = 19.1 deg/sec., C1 = 1, 

C2 = 1.   
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Fig. 12:  Experimental results:  Real and Desired 

Trajectory, Vref = 200 mm/sec.  

nTo  ( 1)n To+  

t 

V(t) 

α Vn 

tan nVα = ɺ  

( )( ) n nV t V V t nTo= + −ɺ  



If Figs. 7 and 11 are compared, it can be seen that 

the performance of the controllers is very similar, and to 

remark the advantage of the use of Eqs. (35) and (38), a 

trajectory of a 1200 mm side square generated by a 

constant linear velocity reference (Vref = 200 mm/sec.), 

will be used. This reference represents a very hard and 

demanding trajectory. In Fig. 12 the trajectory followed 

by the mobile robot using Eq. (18) for the controller 

design, is shown. On the other hand, from Fig. 13, it can 

be seen the trajectory followed by the mobile robot 

when the control action is calculate using Eqs. (35) and 

(38), with C1 = 0.5, C2 = 0.8. In Fig. 14, the control 

signals and the evolution of the linear and angular 

velocities depending on the time instant are shown. It 

can be observed how the robot linear velocity decreases 

when it arrives to the square corner. 
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Fig. 13:  Experimental results:  Real and Desired 

Trajectory, Vref = 200 mm/sec., C1 = 0.5, C2 = 0.8. 
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Fig. 14:Experimental results: a) Real Linear velocity and 

Control Action Vnew , b) Real angular velocity and Wnew . 

It can be observed here, that when a higher order 

approximation is used, a better system response is 

obtained, when an abrupt change in the trajectory 

orientation exists. 

IV. CONCLUSIONS 

In this work, a strategy to find the control actions to 

make the system follow a pre-established reference 

trajectory is proposed. For this purpose, the Taylor’s 

development of the state of the system is made. This 

methodology is simple, and can be applied to different 

kinds of systems, and it is not necessary to make 

complex calculus to compute the control actions. As the 

system approximation order using Taylor’s series is 

greater, different characteristics of the control signal can 

be obtained. In this way, it can be obtained, not only the 

amplitude but also the first derivative (slope), second 

derivative and so on, of the control action in a time 

instant nTo. This can be used to improve the system 

behaviour when the trajectories have abrupt variations.  

Future work will entail the generalization of this 

methodology to cases where the states cannot be 

measured and, consequently, observers are needed.  
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