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Abstract— The articulated intervention AUV (AIAUV) is an
underwater swimming manipulator (USM) with intervention
capabilities. Station-keeping and trajectory tracking are essen-
tial for the AIAUV to be able to move in confined spaces and to
perform intervention tasks. In this paper we propose using the
generalized super twisting algorithm, which is an extension of
the regular super-twisting algorithm, for the trajectory tracking
of the joint angles, position and orientation of the base of
the AIAUV in 6DOF. Furthermore, we show the ultimate
boundedness of the tracking errors. We also demonstrate the
applicability of the proposed control law and compare the
performance with the regular super-twisting algorithm with
adaptive gains.

I. INTRODUCTION

The articulated intervention autonomous underwater vehi-

cle (AIAUV) is an underwater vehicle (UV) with multiple

joints such as a manipulator arm, and multiple thrusters,

i.e. an underwater swimming manipulator (USM). The

thrusters give the AIAUV station-keeping capabilities and en-

able the AIAUV to perform trajectory tracking without using

body undulations, which are necessary for underwater snake

robots (USRs) [1]. The joints enable the AIAUV to operate

as a manipulator arm, thus enabling the AIAUV to perform

intervention tasks. These manoeuvring capabilities and its

slender body enable the AIAUV to move around in confined

spaces in which a remotely operated vehicle (ROV) or AUV

would not have access. Moreover, the AIAUV has adopted

the high kinematic redundancy of USRs and the fully energy-

efficient hydrodynamic properties and tetherless operation of

AUVs. These properties enable the AIAUV to exploit the full

potential of the inherent kinematic redundancy [2], [3].

Station-keeping and trajectory tracking are essential for

the AIAUV to be able to move in confined spaces and

to perform intervention tasks. Since the AIAUV is subject

to hydrodynamic and hydrostatic parameter uncertainties,

uncertain thruster characteristics, unknown disturbances, and

unmodeled dynamics, and since the coupling forces caused

by joint motion are even larger for the AIAUV than for

ROVs because it has no separate vehicle base and a low

mass compared to an ROV, it is essential for the control

approach to be robust. The design of a robust trajectory

tracking controller is therefore the objective of this paper.

Sliding mode control (SMC) is a robust and versatile non-

linear control approach that has been used for many differ-

ent systems and applications, including three-phase power
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converters [4], Markovian jump systems [5], [6], stochastic

systems [7], [8] and microgrid control [9] just to mention

some. For UVs SMC has been used for singularity-free

control [10] to address partly unknown non-linear thruster

characteristics [11], [12] and for trajectory control [13] -

[16]. SMC has also been used to handle coupling forces

between a manipulator arm and a UV [17]. In [18], SMC is

applied to land-based snake robots to achieve robust tracking

of a desired gait pattern and underactuated straight-line path

following.

In recent years, SMC has been developed into higher-order

SMC schemes, that removes the chattering problem. The

super-twisting algorithm (STA) with adaptive gains [19] has

been tested for the AIAUV in 2DOF and in 6DOF in [20] and

[21], respectively, because it is the most powerful second-

order continuous SMC algorithm. STA attenuates chattering,

and no conservative upper bound on the disturbance gradient

has to be considered to maintain sliding because of the

adaptive gains.

In [20] tracking control of the centre of mass of the

AIAUV in 2D was considered by using STA with adap-

tive gains [19] and a higher-order sliding mode observer

(HOSMO) [22]. It was proven that the tracking errors were

ultimately bounded, and the simulation results demonstrated

that the proposed control method provided excellent tracking

capabilities. The results obtained in [20] were therefore

extended to 6DOF in [21]. In [21], the position, orientation

and joint angles were considered for the tracking problem,

and equally good results were obtained in theory and in

simulations. In [20] and [21], a HOSMO had to be used

because velocity measurements were unavailable. When us-

ing a HOSMO, Euler angles have to be used to represent

the system since the observer does not work with a different

number of states in position versus velocity.

In this paper the generalized super-twisting algorithm

(GSTA) [23], will be used for trajectory tracking in 6DOF.

GSTA is an extension of STA that provides finite-time

convergence in the presence of time- and state-dependent

perturbations, which is essential for robust control of the

AIAUV. As in [21], we consider the position, orientation

and joint angles for the trajectory tracking, but we assume

that the velocity measurements are available. We thus avoid

using a HOSMO, which means that we can use quaternions

to represent the system. We then avoid singularities in the

Jacobian matrix at θ = ±π/2, which is a well-known

problem with using Euler angles (xyz-convention). Finding

and including an observer that works with quaternions will

be a task for future work. Furthermore, we show the ultimate



boundedness of the tracking error, and we illustrate our

theoretical findings with simulation results. Finally, GSTA

is compared with STA with adaptive gains.

The contributions can be summarized as follows:

• The trajectory tracking control problem of an AIAUV

in 6DOF is solved by using GSTA.

• It is proven that the tracking errors are ultimately

bounded.

• The results are compared with those obtained with the

STA with adaptive gains.

The remainder of this paper is organized as follows. In

Section II, the model and the tracking control problem for

the AIAUV are defined mathematically. The control law

for tracking the desired trajectory is presented in Section

III. In Section IV, we prove the ultimate boundedness of

the tracking errors. A description of the simulation model

implemented for this paper and the simulation results are

presented in Section V. Conclusions and suggestions for

future work are given in Section VI.

II. MODELLING AND THE TRACKING CONTROL PROBLEM

In this section, we present the model and the mathematical

definition of the tracking control problem for the AIAUV.

The AIAUV is composed of n links connected by n − 1
motorized joints, where each joint is regarded as a one-

dimensional Euclidean joint. We consider link 1 to be the

base and link n to be the front, where the end-effector is

positioned. Furthermore, the AIAUV is equipped with m
thrusters. To provide station-keeping capabilities it has tunnel

thrusters acting through the links, and to provide forward

thrust it has one or more thrusters acting along the body of

the AIAUV. For control purposes, the AIAUV is considered

to be a floating-base manipulator operating in an underwater

environment, subject to added mass forces, dissipative drag

forces, and gravity and buoyancy forces. This allows us

to model the AIAUV as an underwater vehicle-manipulator

system (UVMS), with dynamic equations given in matrix

form as [24], [25]

M(q)ζ̇ + C(q, ζ)ζ +D(q, ζ)ζ + g(q,RI
B) = τ(q) (1)

where q ∈ R
(n−1) is the vector representing the joint angles,

M(q) is the inertia matrix including added mass terms,

C(q, ζ) is the Coriolis-centripetal matrix, D(q, ζ) is the

damping matrix and g(q,RI
B) is the matrix of gravitational

and buoyancy forces. The control input is given by the

generalized forces τ(q):

τ(q) =

[

T (q) 06×(n−1)

0(n−1)×m I(n−1)×(n−1)

] [

τthr
τq

]

(2)

where T (q) ∈ R
6×m is the thruster configuration matrix,

τthr ∈ R
m is the vector of thruster forces and τq ∈ R

(n−1)

represents the joint torques. To implement the control input

τ(q), a thruster allocation scheme as proposed in [26] needs

to be implemented to distribute the desired control inputs

onto the m thrusters. The vector of body-fixed velocities, ζ,

is defined as

ζ =
[

vT ωT q̇T
]T

∈ R
6+(n−1) (3)

where v and ω are the body-fixed linear and angular veloc-

ities of the base of the AIAUV, and q̇ is the vector of joint

angle velocities. In [21] we used Euler angles to represent

the orientation of the AIAUV. Here, we will instead use

quaternions to avoid singularities in the Jacobian matrix.

Using Euler parameters rather than Euler angles provides

us the advantage of a well-defined Jacobian matrix, which is

necessary to be able to use the inverse of the Jacobian matrix.

However, at the same time, we cannot use the HOSMO

from [22], which means that we need velocity measurements

to control the system. The complete state vector specifying

the position, orientation, and shape of the AIAUV is then

represented as

ξ =
[

ηT1 pT qT
]T

∈ R
7+(n−1) (4)

where η1 =
[

x y z
]T

∈ R
3 is the position of the base

and p =
[

εT η
]T

=
[

ε1 ε2 ε3 η
]T

∈ R
4 is the

unit quaternion describing the orientation of the base in the

inertial frame. The Euler parameters η and ε satisfy

η2 + εT ε = 1. (5)

The kinematic differential equation for the unit quaternion

can be written as [24]
[

ε̇
η̇

]

=
1

2

[

ηI3 + S(ε)
−εT

]

ω = Jk,oq(p)ω (6)

where I3 is the (3 × 3) identity matrix and S(·) is the

cross-product operator defined as in [27, Definition 2.2]. To

complete the dynamic model, we can write the relationship

between the body-fixed velocities and the complete state

vector specifying the position, orientation, and shape of the

AIAUV as

ξ̇=J(p)ζ=





RI
B(p) 03×3 03×(n−1)

04×3 Jk,oq(p) 04×(n−1)

0(n−1)×3 0(n−1)×3 I(n−1)×(n−1)



ζ (7)

where RB
I is the rotation matrix expressing the transforma-

tion from the inertial frame to the body-fixed frame.

The desired velocities are denoted as

ζd =
[

vTd ωT
d q̇Td

]T
(8)

in the body-fixed frame. The desired velocities, ζd, are

typically given by the inverse kinematics as described in

[28]. The desired trajectory,
[

ηT1,d pTd qTd
]T

, can then be

reconstructed from the desired velocity using, for instance,

a CLIK algorithm [29, Ch. 11]. The desired orientation of

the base of the AIAUV with respect to the inertial reference

frame is given by the unit quaternion, pd =
[

εTd ηd
]T

,

and the corresponding rotation matrix R(pd). The orientation

error can then be specified by the composite rotation

RT (pd)R(p) = R(p̃) (9)

where

p̃ =

[

ε̃
η̃

]

=

[

ηεd − ηdε+ S(εd)ε
ηηd + εT εd

]

(10)

is the unit quaternion representing the orientation error. For

the orientation, the aim is to ensure that p = ±pd, which

corresponds to p̃ =
[

01×3 ±1
]T

. The tracking errors then

consist of the position error η̃1, the orientation error ε̃ and

the joint angle error q̃, and the tracking error vector can then

be written as

ξ̃ =





η̃1
ε̃
q̃



 =





η1 − η1,d
ηεd − ηdε+ S(εd)ε

q − qd



 . (11)

The goal of the tracking problem is to make the error



vector, ξ̃, converge to zero. The tracking control objective

is therefore to make (ξ̃, ζ̃) = (0, 0) an asymptotically stable

equilibrium point of (1) and (7), which will ensure that

the tracking error will converge to zero. Note that η̃ is not

included as an independent state in (11), since η̃ and ε̃ satisfy

(5). When ε̃→ 0, then p̃ =
[

01×3 ±1
]T

.

III. SLIDING MODE CONTROL

In this section, we find the error dynamics for the system

and propose a tracking control law for the AIAUV based on

the theory of SMC.

A. Error dynamics

Define x1 = ξ̃ and

x2=





RI
B(p̃) 03×3 03×(n−1)

03×3
1
2 (η̃I3 + S(ε̃)) 03×(n−1)

0(n−1)×3 0(n−1)×3 I(n−1)×(n−1)



(ζ − ζd)

= T (p̃)ζ̃ .

(12)

Note that T−1(p̃) is well defined such that (12) is a globally

valid coordinate transformation. The reason why this is well

defined will be explained in Sec. IV. The reason for choosing

x2 = T (p̃)ζ̃ is that this makes x2 = ẋ1, and by using that, we

can prove that the error variables asymptotically converge to

zero when the sliding surface is equal to zero (see Sec. III-B

for the proof), which is a requirement when designing the

sliding surface. If x2 was chosen to be equal to ζ̃, then this

would not have been the case. The error dynamics can then

be written as
ẋ1 = x2

ẋ2 =
d

dt
(T (p̃))T−1(p̃)x2 +M−1(q̃ + qd)T (p̃)

(−C(q̃ + qd, (T
−1(p̃)x2 + ζd))(T

−1(p̃)x2 + ζd)

−D(q̃ + qd, (T
−1(p̃)x2 + ζd))(T

−1(p̃)x2 + ζd)

− g(q̃ + qd, R
I
B) + τ(q̃ + qd)−M(q̃ + qd)ζ̇d).

(13)

To reduce the space used to write the model, we will

introduce some new functions, f1(·) =
d
dt (T (p̃))T

−1(p̃) and

f2(·) = (−C(·)(T−1(p̃)x2 + ζd)−D(·)(T−1(p̃)x2 + ζd)−
g(·)−M(·)ζ̇d, such that the model can be written as

ẋ1 = x2

ẋ2 = f1(·)x2 +M−1(·)T (·)(f2(·) + τ(·))
(14)

B. Sliding surface

To use an SMC approach, we must first design a sliding

surface. It should be designed such that when the sliding

variable σ goes to zero, the error variables asymptotically

converge to zero and such that the control input τ(q) appears

in the first derivative of σ. The sliding surface is chosen as

σ = x1 + x2 ∈ R
6+(n−1). (15)

If σ = 0, we will have x1 + x2 = 0. Since x2 = ẋ1, we can

write this as

ẋ1 = −x1 (16)

which ensures that x1 globally exponentially converges to

zero. Since x1 = ξ̃, the original state variable ξ̃ will also

globally exponentially converge to zero if σ = 0.

C. Generalized super-twisting algorithm

In this section, the equations describing GSTA are pre-

sented in detail. The GSTA proposed in [23] can be written

as
uGSTA = −k1φ1(σ) + z ∈ R

6+(n−1)

ż = −k2φ2(σ)
(17)

where
φ1(σ) = ⌈σ⌋

1

2 + βGSTAσ

φ2(σ) =
1

2
⌈σ⌋

0
+

3

2
βGSTA⌈σ⌋

1

2 + β2
GSTAσ

(18)

where ⌈a⌋
b

= |a|
b
sgn(a), and k1 ∈ R

6+(n−1), k2 ∈
R

6+(n−1) and βGSTA ∈ R
6+(n−1) are controller gains. With

the extra linear term, compared to STA, three degrees of

freedom are obtained in the design of GSTA gains: k1, k2
and βGSTA. The linear growth term βGSTAσ in φ1 helps to

counteract the effects of state-dependent perturbations, which

can exponentially increase in time. By choosing the gains

as described in [23], the algorithm is proven to make σ
go to zero, globally and in finite time in the presence of

state- and time-dependent uncertain control coefficients and

perturbations. Note that the gains when chosen as described

in [23], are defined based on bounds on the perturbations

and control coefficients.

D. Super-twisting algorithm

We want to compare the GSTA with an algorithm that

has previously been used and proved more efficient than a

PD controller for the AIAUV; the STA with adaptive gains,

[20]. In this section for completeness, we briefly present the

equations describing the STA with adaptive gains, previously

presented in [20] and [21]. The difference between [20], [21]

and the algorithm presented here, is that the sliding surface σ
is chosen differently. The STA with adaptive gains proposed

in [19] can be written by the update law

uSTA = −α|σ|1/2 sgn(σ) + v ∈ R
6+(n−1)

v̇ = −βSTA sgn(σ)
(19)

where the adaptive gains are defined as

α̇ =

{

ω1

√

γ1

2 if σ 6= 0

0 if σ = 0
(20)

and

βSTA = 2ε1α+ λ1 + 4ε21 (21)

where ε1 ∈ R
6+(n−1), λ1 ∈ R

6+(n−1), γ1 ∈ R
6+(n−1) and

ω1 ∈ R
6+(n−1) are positive constants and σ is the sliding

surface. For implementation purposes, a small boundary is

put on the sliding surface such that the adaptive gains can

be expressed as

α̇ =

{

ω1

√

γ1

2 if |σ| > αm

0 if |σ| ≤ αm

βSTA = 2ε1αx + λ1 + 4ε21

(22)

where the design parameter αm is a small positive constant

chosen empirically. The STA with adaptive gains makes σ
and σ̇ go to zero in finite-time, [19].

IV. STABILITY ANALYSIS

In this section, we will analyse the closed-loop system,

and we show that the tracking error converges asymptotically



to zero. In the proof of Theorem 1 under the analysis of

subsystem 2, we state the results obtained in [23] before

we use the Lyapunov function obtained in [23] to prove

uniformity, which has not been shown previously.

A. Overall closed-loop dynamics

By using the fact that ẋ1 = x2 from (13), (15) can be

written as

ẋ1 = σ − x1. (23)

By differentiating (15), we obtain

σ̇ = ẋ1+ẋ2 = x2+f1(·)x2+M
−1(·)T (·)(f2(·)+τ(·)) (24)

and by using that x2 = σ + x1, we obtain

σ̇ = σ+x1+f1(·)(σ+x1)+M
−1(·)T (·)(f2(·)+τ(·)). (25)

Now, by introducing ϕ(σ, x1, t) = ϕ1(σ, x1, t)+ϕ2(σ, x1, t),
where ϕ1(0, x1, t) = 0, γ(·) =M−1(·), and by setting

τ(·) = T−1(·)uGSTA (26)

we obtain

σ̇=−k1γ(·)φ1(σ)+ϕ1(σ, x1, t)+γ(·)(z+
ϕ2(σ, x1, t)

γ(·)
) (27)

where ϕ1(σ, x1, t) = σ + f1(·)σ + γ(·)(−C(·)σ − D(·)σ)
and ϕ2(σ, x1, t) = x1+f1(·)x1+γ(·)(−C(·)(x1+T (·)ζd)−
D(·)(x1+T (·)ζd)−T (·)g(·)−T (·)M(·)ζ̇d). Now by setting

σ1 = σ and σ2 = z + ϕ2(σ, x1, t)/γ(·), we can write the

overall closed-loop dynamics as
∑

1

{

ẋ1 = σ1 − x1

∑

2

{

σ̇1 = −k1γ(·)φ1(σ1) + ϕ1(σ1, x1, t) + γ(·)σ2

σ̇2 = −k2φ2(σ1) +
d
dt (

ϕ2(σ1,x1,t)
γ(·) )

(28)

Theorem 1: Consider the error dynamics given by (13)

and let the sliding surface σ be defined by (15). Let

the control input be given by (26). Then, the closed-loop

dynamics is described by (28), and the origin of this cascade

system is uniformly globally asymptotically stable (UGAS),

which ensures the asymptotic convergence of the tracking

error when 0 < km ≤ γ(·) ≤ kM , |ϕ1(·)| ≤ α|φ1(σ)| and

| ddt (
ϕ2(·)
γ(·) )| ≤ ∆, where km, kM , α and ∆ are positive

constants.

Proof: To analyse the cascade system (28), [30,

Lemma 2.1] will be used. Note that the system is actually

interconnected, but since subsystem 1 is well behaved as

long as σ does not explode, i.e. x1 is bounded, the system

can be analysed with cascaded theory by analysing along

the trajectories with x1(t) bounded. When analysing the

complete system, we will prove that this is indeed the case,

i.e. prove that x1(t) is uniformly globally bounded. We first

start by analysing subsystem 1 without perturbations.

Analysis of subsystem 1 with σ1 = 0: With σ1 = 0,

subsystem 1 can be written as
∑

1

{

ẋ1 = −x1 (29)

This is clearly a globally exponentially stable linear system,

but since we will need a Lyapunov function to analyse

this system when σ1 6= 0, we use the Lyapunov function

candidate V1(x1) =
1
2x

2
1 for the analysis. The derivative of

V1 yields

V̇1(x1) = x1ẋ1 = x1(−x1) = −x21 ≤ −||x1||
2

(30)

This means that the Lyapunov function satisfies:
k1||x1||

a ≤ V1(x1) ≤ k2||x1||
a

∂V1
∂x

f(t, x) ≤ −k3||x1||
a

(31)

with k1 = k2 = 1
2 , k3 = 1 and a = 2. Hence, by virtue of

[31, Theorem 4.10], the origin for subsystem
∑

1 with σ = 0
is globally exponentially stable.

Analysis of subsystem 2: Subsystem
∑

2 has the same

structure as the system in [23]. In [23], it is proven that the

origin of the system is globally finite-time stable (GFTS) if

0<km≤γ(·)≤kM , |ϕ1(·)|≤α|φ1(σ)| and | ddt (
ϕ2(·)
γ(·) )|≤∆,

where km, kM , α and ∆ are positive constants. Since the

system is GFTS it is also globally asymptotically stable [32,

Proposition 3]. To prove that the origin of σ is UGAS, [32,

Theorem 12] will be used. The function V = ξTPξ, where

ξT = [φ1(σ1) σ2] and P =

[

p1 −1
−1 p2

]

, p1p2 > 1, is the

generalized Lyapunov function for subsystem 2; see [23] for

details. This function is globally proper and continuous (but

not Lipschitz continuous on the line σ1 = 0). For σ1 6= 0,

this function is differentiable and

DVF (σ1,σ2)(σ1, σ2) ≤ −µ1

√

V (σ1, σ2) (32)

where µ1 > 0 and
(

σ̇1
σ̇2

)

∈F (σ1, σ2)=

(

−k1γ(·)φ1(σ1) + ϕ1(σ1, x1, t) + γ(·)σ2
−k2φ2(σ1) +

d
dt (

ϕ2(σ1,x1,t)
γ(·) )

)

(33)
For σ1 = 0 and σ2 6= 0 we need to calculate a generalized

directional derivative. Thus, consider the limit

D{hn},{un}V(0,σ2)=lim
n→∞

V(hnu
σ1

n ,σ2+hnu
σ2

n )−V(0,σ2)

hn
(34)

where {hn} ∈ K (K is a set of all sequences of real numbers

converging to zero, i.e. {hn} ∈ K ⇔ hn → 0, hn 6= 0), un =
(uσ1

n , uσ2

n )T , {un} ∈ M(d) (M(d) is a set of all sequences

of real vectors converging to d ∈ R
n, i.e. {vn} ∈ M(d) ⇔

vn → d, vn ∈ R
n), and d ∈ F (0, σ2). In this case uσ1

n → σ2
and uσ2

n → q, where q ∈ [− 1
2k2 ±∆, 12k2 ±∆]. Hence,

D{hn},{un}V (0, σ2)= lim
n→∞

V (hnσ2, σ2 + hnq)− V (0, σ2)

hn

= lim
n→∞

(

p1(|hnσ2|
(1/2)

sgn(hnσ2) + βhnσ2)
2

− 2(|hnσ2|
(1/2)

sgn(hnσ2) + βhnσ2)(σ2 + hnq)

+ p2(σ2 + hnq)
2 − p2σ

2
2

)

/hn = −∞

(35)

Therefore,

DF (σ1,σ2)V (0,σ2)={−∞}≤−µ1

√

V (0,σ2) for σ2 6=0 (36)

and the origin of subsystem 2 is therefore globally uniformly

finite-time stable [32, Theorem 12], and therefore, it is also

UGAS. This results implies that ||σ(t)|| < β ∀t ≥ 0.

Analysis of the complete system: To analyse the complete

system, [30, Lemma 2.1] is used. To check whether the

solutions of the complete system are uniformly globally

bounded, the boundedness of x1 must be evaluated when

σ1 6= 0. The derivative of the Lyapunov function V1 is then

as follows:
V̇1(x1) = −||x1||

2 + σx1

≤ −||x1||
2 + θ||x1||

2 − θ||x1||
2 + β||x1||

≤ −(1− θ)||x1||
2 ∀ ||x1|| ≥

β

θ

(37)



where 0 < θ < 1. The solutions are then UGB because the

conditions of [31, Theorem 4.18] are satisfied. Consequently,

the conditions of [30, Lemma 2.1] are satisfied, which

implies that the origin of the complete system is UGAS.

Remark 1: One way for the inequalities in Theorem 1 to

be satisfied is if the assumptions in Theorem 2 are satisfied.

The parameters α, km, kM and ∆ should then be chosen

according to the inequalities (38), (41) and (42) given in

the proof, and the procedure in [23] can then be used for

choosing the gains k1, k2 and βGSTA in (17) and (18), which

will ensure the finite-time convergence.

Theorem 2: Consider the closed-loop system in (28). If

the following assumptions are satisfied

Assumption 1: The AIAUV is neutrally buoyant.

Assumption 2: The AIAUV has only revolute joints.

Assumption 3: The reference trajectory and its derivatives

are continuous and bounded by design.

Assumption 4: The matrix || d
2

dt2T (·)|| ≤ TM , where T (·)
is defined in (12) is bounded, the Coriolis-centripetal matrix

is bounded by ||C(·)||≤CM ||x2|| and || ddtC(·)||≤Cm||x2||,
the damping matrix is bounded by ||D(·)|| ≤DM ||x2|| and

|| ddtD(·)|| ≤ Dm||x2||, and the matrix of gravitational and

buoyancy forces is bounded by || ddtg(·)||≤gM ||x2||.
Assumption 5: x2(t) is bounded.

then positive constants km, kM , α and ∆ exist such that

1) Inequality 1: 0 < km ≤ γ(·) ≤ kM
2) Inequality 2: |ϕ1(·)| ≤ α|φ1(σ)|

3) Inequality 3: | ddt (
ϕ2(·)
γ(·) )| ≤ ∆

are satisfied.

Remark 2: These assumptions are valid since the AIAUV

is a mechanical system.

Proof: To be able to prove that the above inequalities

are satisfied, we first note some properties that arise from

having revolute joints: [24].

1) Property 1: λmin(M) ≤ ||M || ≤ λmax(M)
2) Property 2: M =MT > 0
3) Property 3: Ṁ = C+CT and ζT (Ṁ−2C)ζ = 0 ∀ ζ ∈

R
6+(n−1)

Proof of Inequality 1: 0 < km ≤ γ(·) ≤ kM
Since γ(·) =M−1(·), we need to prove that

0 < km ≤M−1(·) ≤ kM (38)

From Properties 1 and 2, we have that the above is true, and

Inequality 1 is therefore satisfied.

Proof of Inequality 2: |ϕ1(·)| ≤ α|φ1(σ)|
Since ϕ1(σ, x1, t) = σ + f1(·)σ + γ(·)(−C(·)σ − D(·)σ)
with f1(·) =

d
dt (T (p̃))T

−1(p̃), we need to prove that

|σ + f1(·)σ + γ(·)(−C(·)σ −D(·)σ)| ≤

α|φ1(σ)| = α|⌈σ⌋
1

2 + βGSTAσ|.
(39)

By rewriting
|1 + f1(·) + γ(·)(−C(·)−D(·))||σ| ≤

α|φ1(σ)| = α|⌈σ⌋
1

2 + βGSTAσ|
(40)

we find that if

|1 + f1(·) + γ(·)(−C(·)−D(·))| ≤ α, (41)

the inequality holds. Now, T (·) is a matrix that contains the

rotation matrix RI
B , the identity matrix and the expression

Fig. 1. The Eelume vehicle (Courtesy: Eelume)

(1/2)(η̃I3 + S(ε̃)), which comes from Jk,oq(p̃). Since they

are all bounded, the matrix T (·) will also be bounded. The

matrix T (·) is also well defined since quaternions are used,

which means that T−1(p̃) exists and will also be bounded.

By taking the derivative of T (·) we find that for d
dt (T (p̃))

to be bounded, x2(t) needs to be bounded, which it is by

assumption. The function f1(·) is therefore a function of

bounded signals and f1(·) is thus bounded. The function

γ(·) is found to be bounded in the proof of Inequality 1.

The matrices C(·) and D(·) are bounded by assumption as

long as x2(t) is bounded, which is bounded by assumption.

The matrices C(·) and D(·) are therefore bounded, and since

all the functions on the right-hand side of (41) are bounded,

the inequality holds. Eq. (39) is therefore satisfied, and thus

Inequality 2 is satisfied.

Proof of Inequality 3: | ddt (
ϕ2(·)
γ(·) )| ≤ ∆

Since ϕ2(σ, x1, t) = x1 + f1(·)x1 + γ(·)(−C(·)(x1 +
T (·)ζd)−D(·)(x1 + T (·)ζd)− T (·)g(·)− T (·)M(·)ζ̇d), we

need to prove that

|
d

dt
((x1+f1(·)x1+γ(·)(−C(·)(x1+T (·)ζd)−D(·)

(x1+T (·)ζd)−T (·)g(·)−T (·)M(·)ζ̇d))/γ(·))|≤∆.
(42)

By differentiating, we find that for the above to hold, we

need that d
dtf1(·),

d
dtγ(·),

d
dtC(·),

d
dtD(·), g(·), d

dtg(·) and
d
dtM(·) are bounded since x1(t), x2(t), f1(·), γ(·), T (·),

M(·), C(·), D(·), d
dt (T (p̃)), ζd, ζ̇d and ζ̈d have been proven

to be bounded before or are bounded by assumption.

For the functions d
dtf1(·) to be bounded, we need for the

matrix d2

dt2T (·) to be bounded, which it is by assumption;

thus d
dtf1(·) is bounded. The time derivative d

dtγ(·) is

bounded if d
dtM(·) and M(·) are bounded. Since C(·) is

bounded, d
dtM(·) is bounded (from Property 3), and M(·)

is bounded by Property 1. The function d
dtγ(·) is therefore

bounded. Furthermore, d
dtC(·) and d

dtD(·) are bounded since

x2(t) is bounded by assumption. The matrix g(·) is bounded

since the AIAUV is neutrally buoyant, and d
dtg(·) is bounded

by assumption since x2(t) is bounded. Now, since (42) is

satisfied Inequality 3 is satisfied.

V. SIMULATION RESULTS

A. Implementation

The complete model and controllers are implemented

in MATLAB Simulink. The model is implemented by the

method described in [33].The implemented AIAUV is based

on the Eelume robot, Fig. 1. The AIAUV has n = 9 links and

m = 7 thrusters. The properties of each link are presented



in Tab. I. In the thrusters column, ”2: Z, Y” means that the

links have 2 thrusters, one working in the z-direction and

one working in the y-direction of the link. Since the robot

has n = 9 links, it has n− 1 = 8 joints. All the joints were

implemented as revolute. The joint properties are presented

in Tab. II. In the simulation we use an inverse kinematic

TABLE I

EELUME LINK PROPERTIES

Link nr. Length [m] Volume [m3] Thrusters

1 0.62 0.0143 0
2, 4, 6, 8 0.104 0.006 0

3 0.584 0.0127 2: Z, Y

5 0.726 0.0098 3: X, X, Z

7 0.584 0.0127 2: Y, Z

9 0.37 0.0078 0

TABLE II

EELUME JOINT PROPERTIES

Joint nr. Joint rotation axes

1, 3, 5, 7 Z

2, 4, 6, 8 Y

controller to give us the reference that we want the AIAUV

to follow, as proposed in [26]. The thruster allocation matrix

is also implemented as proposed in [26].

B. Simulations

The task that is performed in the simulation is trajectory

tracking for the base of the AIAUV. A suitable path for

the base to follow is generated by giving set-points to an

inverse kinematic controller. The set-points given are for the

end-effector of the AIAUV, and the inverse kinematic then

generates a reference trajectory for the base and joints, such

that the end-effector reaches it target. Three different set-

points are given to the inverse kinematic, and they change

at 5, 200, 400 seconds. In Fig. 2 and Fig. 3 the reference

trajectory for the base (i.e. position and orientation) and

joints are presented. For the simulations, a fixed-step solver

with a step size of 10−4 was used. Gains where chosen

such that the comparison with the STA with adaptive gains

would be as fair as possible. Specifically, the gains were

chosen such that the two algorithms use the same maximum

thruster force, i.e. the absolute maximum amplitude for the

thruster forces are as similar as possible. Since the STA

has an adaptive gain α, the choice of parameters is not that

important for the STA. The choice of gains can impact how

fast the adaptive gain reaches its optimal value, but it will

always reach that value. The gains for the STA were therefore

chosen by tuning them manually. Specifically, the gains in

the super-twisting algorithm with adaptive gains were set

to ε1 = [0.0001e14]
T , λ1 = [0.1e6 5e8]

T , γ1 = [e14]
T ,

ω1 = [8e14]
T and αm = [0.005e14]

T . In Fig. 5 the thruster

forces applied when using STA with adaptive gains are

presented. The GSTA gains were then tuned to achieve

Fig. 2. Reference position and orientation of the base

Fig. 3. Reference joint angles

Fig. 4. GSTA: Thruster forces

similar maximum amplitude for the resulting thruster forces.

The gains were chosen as k1 = [5e14]
T , k2 = [0.0002e14]

T

and βGSTA = [15e14]
T where ei is a 1 × i vector of ones.

In Fig. 4 the thruster forces applied when using GSTA are

presented. Fig. 6 presents the simulation results for the

position errors and orientation errors of the base. In Fig. 7,

the simulation results for the joint angles errors are presented.

Tab. III presents the absolute maximum position error before

and after settling for both algorithms.

C. Discussion

From Figs. 6 and 7 we can see that there are small dif-

ferences in the tracking performance of the two algorithms.



Fig. 5. STA with adaptive gains: Thruster forces

Fig. 6. Position and orientation error

Fig. 7. Joint angles error

In the x-direction we can see that the GSTA has a smaller

overshoot than the STA before settling, and for θ and ψ we

can see that when the STA is used there are small oscillations

at the beginning of the simulation. For ψ we can see that after

200s and 400s, i.e. when the set-points are changed for the

end-effector, there is a small overshoot for both algorithms.

However, the overshoot at 200s is a bit larger for the STA

then for the GSTA. For the joint angle errors, shown in Fig. 7,

we can see the same tendencies as we did for the orientation

errors. The STA produce some oscillations in the beginning

that the GSTA does not have, and then there is an overshoot

for both algorithms at 200s and 400s. However, for the joint

angle errors the overshoot at 200s is a bit larger for the GSTA

than for the STA. By taking a look at Table III, we see that

for the position and orientation (expect for y) the GSTA gives

better error before settling, while for the joint angle errors

the STA gives better error before settling. The STA also gives

better error after settling ((11/14) cases). This can perhaps be

explained by looking at the thruster use in Fig. 4 and Fig. 5.

We can see that the thruster forces used when using STA

(Fig. 5) are much more aggressive than when using GSTA

(Fig. 4). In the beginning the STA uses longer time to settle,

but after 200s and 400s the GSTA uses longer time to settle.

The STA does however have some tendencies of chattering,

that the GSTA does not have. So the GSTA has a bit better

thruster use, since the thruster forces are smoother. It also has

mostly smaller errors before settling, at least for the position

and orientation, but it does have larger errors after settling.

The STA on the other hand is more aggressive, and therefore

produces some larger overshoots in the beginning, but it gives

better errors than the GSTA after settling. The thruster use

for both algorithms are well within the thruster limit of 50N ,

which is the limit of the thrusters on the AIAUV.

One thing worth noticing about the GSTA is that by tuning

the gains one can reduce the thruster use noticeably, without

losing too much when it comes to tracking capabilities.

While for the STA this is not that easy since the gains are

adaptive, and therefore will converge to what is appropriate.

One can choose the gains such that the STA with adaptive

gains is a bit less aggressive, but then it takes longer time

for the errors to converge, and the errors are not noticeable

changed. Using the GSTA, the simulations show that even

though we reduce the thruster use we can achieve an error in

the magnitude of 10−4, and also a low error before settling.

Then the question comes down to whether we need better

tracking error than 10−4, and that depends on restrictions

on thrusters and positioning systems. For instance, if the

positioning system does not give better measurement errors

than 10−4, then we might not need better tracking errors than

10−4.

TABLE III

ABSOLUTE MAXIMUM VALUE FOR ERRORS

Errors

GSTA STA

Before settling After settling Before settling After settling

x 0.0384 2.4886 · 10−6 0.1166 6.1575 · 10−8

y 0.0089 2.6793 · 10−7 0.0075 3.7481 · 10−7

z 1.2834 · 10−4 1.3775 · 10−7 0.0039 2.7480 · 10−8

φ 5.2596 · 10−4 4.1004 · 10−5 0.0018 3.8510 · 10−6

θ 2.8117 · 10−4 2.3776 · 10−7 0.0101 2.8715 · 10−7

ψ 0.0126 1.2887 · 10−5 0.0181 5.4592 · 10−7

q1 0.0101 1.8077 · 10−5 0.0026 8.2499 · 10−7

q2 1.6885 · 10−4 8.1314 · 10−6 1.5384 · 10−5 3.9801 · 10−6

q3 0.0055 5.5463 · 10−6 0.0023 6.1911 · 10−8

q4 8.5975 · 10−5 2.6329 · 10−6 7.1403 · 10−6 2.0984 · 10−6

q5 0.0015 1.4348 · 10−7 0.0011 4.2552 · 10−9

q6 4.5758 · 10−5 2.9402 · 10−6 9.6045 · 10−6 1.3011 · 10−6

q7 1.0849 · 10−4 5.2766 · 10−8 5.0211 · 10−4 3.1874 · 10−8

q8 6.3008 · 10−6 4.5485 · 10−8 4.5491 · 10−6 3.4363 · 10−7



VI. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we have proposed the generalized super-

twisting algorithm for solving the trajectory tracking control

problem of the AIAUV. Furthermore, we have proven that

the closed-loop error system is uniformly globally asymp-

totically stable, and have performed a simulation study

to verify the applicability of the proposed control law in

6DOF. Specifically, we have performed a comparison study

between the generalized super-twisting algorithm and the

super-twisting algorithm with adaptive gains. The conclusion

of the simulation study is that both algorithms can be

used, but which one should be used depends on restrictions

on thruster forces and the accuracy of the measurement

data. The generalized super-twisting algorithm shows better

thruster use than the super-twisting algorithm with adaptive

gains.

Future work includes experiments to investigate the per-

formance of the control algorithm in practice and finding and

including an observer that work with quaternions.
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