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Abstract 

In this paper, a fractional integral sliding mode control (FISMC) strategy with a 

disturbance observer (DO) is proposed for the trajectory tracking problem of the 

underwater manipulator, under lumped disturbances namely parameter uncertainties and 

external disturbances. The modified fractional integral sliding mode surface (FISMS) is 

designed to guarantee the fast convergence of system states. The DO method and the 

second-order sliding mode control law are used in the controller design, in which the 

former is introduced to compensate the effect of the lumped disturbances. Also, a 

saturated function is selected to replace the sign function to attenuate the chattering 

phenomenon. The stability of the overall closed-loop system is proved via Lyapunov’s 

finite-time stability theory. Numerical simulations are performed on a 6 degree of 

freedom (DOF) underwater manipulator. Simulation results demonstrate that the 

proposed control scheme can achieve better tracking performance and stronger 

robustness against disturbances, by comparing with the DO-based PD control and the 

DO-based PID-type linear sliding mode control (SMC). 

Keywords: fractional integral sliding mode control; disturbance observer; finite-time 

stability; trajectory tracking; underwater manipulator  
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1. Introduction 

Unmanned underwater vehicles (UUVs) equipped with one or more underwater 

manipulators, play an indispensable role in the fields of marine scientific research and 

resource exploration and development (e.g., Antonelli 2006; Sivcev et al. 2018). Since 

these manipulators have uncertainties due to high coupling and time-varying 

nonlinearity, and are affected by the external disturbances like payload variations, 

underwater currents, etc., it is more difficult to control than those operated in air. Some 

advanced control methods (e.g., Wit et al. 2000; Lee and Choi 2000; Pandian and 

Sakagami 2010; Patompak and Nilkhamhang 2012) have been proposed to overcome 

these issues. Wit et al. (2000) has proposed a control method based on singular 

perturbation theory for an UVMS with disturbances; Lee and Choi (2000) presented a 

robust control based on neural network and backpropagation learning algorithm for an 

underwater manipulator with uncertainties, in which the neural network gains were 

determined by trial and error; Pandian and Sakagami (2010) proposed a neurol-fuzzy 

control approach with feedback gain adjustment and dynamic estimate for multi-link 

underwater manipulator depending on neural networks with more training data; 

Patompak and Nilkhamhang (2012) delivered an adaptive SMC based on the 

backstepping method for underwater robotic vehicles with parametric uncertainties and 

external disturbances. The above methods can make the system have a good tracking 

performance, but they have only discussed their asymptotically stable property. This 

paper devotes to designing an appropriate controller to achieve faster convergence and 

better robustness for underwater manipulators with the lumped disturbances, including 

dynamics uncertainties and external disturbances. 
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Generally, SMC has quite good natures such as fast convergence and insensitive to 

uncertainties, where sliding mode surface is taken as a key factor (Feng et al. 2014). The 

conventional linear sliding mode surfaces like PD-type (Xu et al. 2007) can only make 

the system errors achieve the asymptotic convergence to equilibrium, while the nonlinear 

ones can ensure the finite-time convergence, e.g., terminal sliding mode control (TSMC) 

(Mobayen 2015). And, the method in Xu et al. (2007) can guarantee the asymptotic 

stability of the system, but in lack of discussing its finite-time stability. Mobayen (2015) 

has proposed a TSMC scheme that can make the system achieve the finite-time 

stability, but the singularity problem still exists in it. To handle such issue, some 

nonsingular TSMC methods (e.g., Liu and Zhang 2013; Wang et al. 2016, 2019a, 2019b, 

2019c) have been proposed for the controller design, in which different ways are 

required for modifying the sliding mode surfaces. Among, fractional-order nonsingular 

terminal sliding mode control (FONTSMC) strategies (e.g. Wang et al. 2016, 2019b, 

2019c) have been reported according to the fractional-order integrator and differentiator 

theory. They can all take advantage of the extra fractional-order DOF compared to only 

integer-order TSMC (e.g., Liu and Zhang 2013; Wang et al. 2019a). Moreover, another 

control method in Basin et al. (2016) has been proposed for the finite-time convergence 

being expanded to the fixed-time convergence, in which it can obtain the uniform 

bounded settling time and not involve in the initial system states. The improvement can 

be a quite difference from the above-mentioned FONTSMC strategies. Combining this 

advantage and the singularity-free requirement, in this paper a modified FISMC method 

is proposed which can achieve the finite-time convergence and also avoid the singular 

problem. 
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Another problem is to deal with the dynamics uncertainties and external disturbances 

of the underwater manipulator. For such situation, an adaptive SMC scheme in Liang 

and Li (2014) has been adopted for the attitude tracking problem, where the adaptive 

technique was utilized to estimate the upper bounds of the lumped disturbances including 

system uncertainties and external disturbances. Based on a distributed fast TSMC 

strategy, Hussian et al. (2017) has used the assumed known function to handle the 

bounded uncertainties of the system. Compared with the researches (e.g., Liang and Li 

2014; Hussian et al. 2017), Dinh et al. (2018) has proposed a robust controller for the 

electro-hydraulic manipulator in which a DO was presented to estimate the bounded 

lumped disturbances. To estimate the bounds of such states, Huang et al. (2019) and 

(2020) have addressed the interval observer design problems of both discrete-time and 

asynchronous switched systems, respectively. Since only a few literatures considered the 

convergence of the estimation errors for the uncertainties or external disturbances, in this 

paper another DO (e.g., Shtessel et al. 2007) was introduced to handle this problem. The 

exploitation of such DO method was to guarantee that the estimation errors can converge 

to zero in finite time. In other words, after a certain finite time the control system can 

still be stable, and would not be affected by disturbances.  

Motivated by aforementioned analyses, a FISMC scheme with a DO is proposed to 

solve the trajectory tracking problem of the base-fixed underwater manipulator, which is 

subjected to the lumped disturbances including dynamic uncertainties and the external 

disturbances. The primary objective of this scheme is to make the system realize the 

finite-time stability, and to ensure the finite-time convergence of the estimation errors of 

the lumped disturbances. Since the proposed controller refers to the design of the 

modified FISMS, the state error of the system can achieve the finite-time convergence 
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without the appearance of singular conditions in the derivation process. The DO method 

is utilized to alleviate the effect of the lumped disturbances so as to achieve the finite-

time convergence of the estimation errors. On this basis, the second-order sliding mode 

control law is introduced in the design of the system controller. Furthermore, this paper 

adopts a saturated function to replace the sign function in order to deal with the 

chattering issue. Through the finite-time stability theory, the overall system can achieve 

the finite-time stability, which guarantees its fast convergence, high-precision tracking 

performance and good robustness against disturbances. Simulation results demonstrate 

the effectiveness of the proposed controller in comparison with other control schemes.  

To conclude, the contributions in this paper are concisely described in the following. 

(1) To propose a modified FISMS. It can make the state errors realize the finite-time 

convergence and avoid the singularity problem. (2) To design a modified FISMC scheme 

with a DO. Base on the modified FISMS, combing the DO method and second-order 

sliding mode control law, the proposed method can guarantee the finite-time stability of 

the system and the finite-time convergence of the disturbance estimation errors. (3) To 

testify the validation of the proposed control through the comparative simulation results.  

This paper is organized as follows. Firstly, section II presents the tracking purpose of 

the underwater manipulator along with its dynamic analysis. Section III describes a 

FISMC algorithm with a DO and analyses the finite-time stability of the system. In 

section IV, numerical simulations are performed on a 6 DOF underwater manipulator. 

Finally, several conclusions are drawn in section V. 

2. Problem description 

This paper primarily considers the control problem that a fixed-base underwater 

manipulator tracks a small underwater vehicle in the short-range phase, meanwhile, the 

Page 6 of 29

https://mc06.manuscriptcentral.com/tcsme-pubs

Transactions of the Canadian Society for Mechanical Engineering



Draft

 

 

 

7 

target trajectory is assumed within the workspace of the manipulator end effector. Here, 

a 6 DOF underwater manipulator is selected, and its configuration is shown in Fig. 1. In 

addition, its coordinate system is built by D-H notation (Craig 2004), which contains the 

base frame 0 0 0 0o x y z− and link frame ( 1, ,6)i i i io x y z i− = . For each link frame, four 

quantities are defined, including joint variable i , link twist 1i − , link length 1ia − and link 

offset id ( 1, ,6)i = .These link parameters are listed in Table 1.  

2.1. The dynamics of the underwater manipulator 

In the following, the dynamics of an underwater manipulator with m DOF instead of 

only 6 DOF would be presented. Based on the Lagrange function and the strip theory 

(Dunnigan and Russell 1998), its dynamic equation with hydrodynamic effects is 

established and expressed in the form: 

                               ( ) ( ) ( )+ ( ) + + =h d+  +M C         G B                                    (1) 

where  ,  , m R stand for the joint position vector, joint velocity vector, and joint 

acceleration vector, respectively. ( ) m mM R is defined as the symmetric and positive 

definite inertial matrix and ( ) m m C R  is the Coriolis and centrifugal matrix. ( )G  , 

( ) mB R are the gravitational and buoyancy vectors.
m

h  R represents the 

hydrodynamic torque vector caused by fluid acceleration force, water resistance and 

additional mass force. 
m

d  R denotes the external disturbance like payload variations 

and underwater currents, and m R  is the joint input torque. Then, the dynamic eq. (1) 

can be rewritten as 

0 0( ) ( ) + ( ) + =d+   M        H H                                  (2) 
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where 0( ) = ( ) ( ) −M M M   , ( ) ( ) ( ) ( ) + ( )  =  +  +  M C        H G B

+ h , 0 0 0 0 0( ) ( ) + ( ) + ( ) + h = C       H G B . Among them, 0 ( )M  , 0 ( )C   , 

0 ( )G  , 0 ( )B , 0h are known nominal values of the model parameter variables, 

and ( )M  , ( ) C   , ( )G  , ( B ) , h are uncertain model parameters. 

A new variable 1 2[ , ]  
x = x x is introduced into eq. (2), satisfying 1 =x   and 2 =x  , 

so eq. (2) can be described as follows, 

                                
1 2

1

2 0 1 0( )( ( ) + )−−

=


= + M 

x x

x x H x d
                                         (3) 

where
1

0 1( ) ( ) − −=  +Md x H x d ,
1

0 1( ) d − −= M d x , and d  denotes the lumped 

disturbance vector of  the dynamic system, namely parameter uncertainties and external 

disturbances.  

2.2. Preliminaries 

In the paper, some notations are defined:  

1 1
|| || | |

n

ii


=
= , 2|| || =   , 1 1

1 1 1[ ] ( ) | |sign   =  , 1

1[ ] [[ ], ,[ ]]n

n

  = , 

1[ ] [[ ], ,[ ]]r r r

n  = , where +r R , 1[ , , ] n

n  = R  , 1 +[ , , ] n

n  = R . 

Assumption 1: The  lumped disturbance vector d is twice differentiable, and there 

exists a known positive constant dL  satisfying 1|| || dLd . 

Lemma 1 (Basin et al. 2016) : Consider the system 1 2 1, , ,n n ny y y y y u−= = = , if the 

control input is assigned as 1 2( ) ( )u u t u t= + , satsfying 1

1 1 1( ) [ ] [ ]n

n nu t y y
 = − − −  

and 1

2 1 1( ) [ ] [ ]n

n nu t y y
 = − − − , where 1, , 0n   , 1, , 0n   are selected such 

that the polynomials 
1

2 1

n n

n     −+ + + + and 
1

2 1

n n

n     −+ + + +  are all 

Hurwitz; 1, , n   satisfy 1 1 1/ (2 )i i i i i   − + += −  with 1 1n + =  and n = ; 1, , n   
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satisfy 1 1 1/ (2 )i i i i i   − + += −  with 1 1n + =
 
and n = , thus there exists small 

1 2, (0,1)    such that, for every 1(1 ,1)  − , 2(1,1 )  + , the system state defined 

as 1 2[ , , , ] n

ny y y  y = R  can converge to the origin within a fixed time which does 

not depend on the initial condition. 

3. The design of controller 

The desired joint position vector d  is assumed to be twice differentiable, and define 

its joint position error e  and joint velocity error e , i.e. e d=  −   and e d=  −  . 

The control objective is that joint position vector   can track the desired d  in finite 

time. 

The FISM variable s is defined as follows, 

                       2 2 1 1

2 1
0 0
([ ] [ ]) ([ ] [ ])

t t

e e e e edt dt= + + + + C Cs
                                     (4)                    

where 1[ , , ]ms s =s and 1diag[ , , ]h h hmc c=C , 1[ , , ]h h hm  = , 1[ , , ]h h hm  = , 

1,2h = . Besides, their constant components 1ic , 2ic , 1i , 2i , 1i , 2i  are selected 

referring to Lemma 1, satisfying 1ic , 2 0ic  , 20 1i  , 1 2 2/ (2 )i i i  = − , and 

21 2i  , 1 2 2/ (2 )i i i  = −  ( 1, , )i m= . This modified sliding mode surface can 

relax the requirement for the initial states and finally make the system states achieve the 

finite-time convergence. Meanwhile, the integral technique is used to avoid the singular 

conditions in the derivation process. Detailed explanations are shown in eq. (5).
 

In the sliding phase ( ) 0is t = , 1, ,i m= , and its derivation meets ( ) 0is t = , namely    

                                    2 2 1 1

2 1([ ]+[ ]) ([ ]) [ ]) 0i i i i

ei i ei ei i ei eic c
       + + + =                          (5) 
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From the case of 2n =  in Lemma 1, eq. (5) can be transformed into the similar 

situation: consider the control system =ei ei  , =ei u , with 2[ , ]ei ei   R being defined 

as its state. If the control input is chosen as 2 2 1 1

2 1([ ]+[ ]) ([ ]) [ ])i i i i

i ei ei i ei eiu c c
      = − − + , 

by use of the Lemma 1, thus there exists small 1 2, (0,1)    such that, for 

every 2 1(1 ,1)i  − , 2 2(1,1 )i  + , the system state [ , ]ei ei   can converge to the 

origin within a fixed time which does not depend on the initial condition. Similarly 

considering 1, ,i m= , it can be concluded that in any initial conditions the joint 

position error e  can converge to the origin in finite-time.  

In view of the eq. (3), the error dynamic equation can be expressed as follows, 

                                         e  = + +F U d                                                                 (6) 

where 
1

0 1 0( ) ( ) d

−= − −M F x H x  and 
1

0 1( )

−= MU x τ . For convenience, the scalar 

formulations of the equation in eq. (6) are presented, namely  

                                         , 1, ,ei i i iF U d i m  = + + =                                             (7) 

Then, referring to Shtessel et al. (2007), the finite-time DO is introduced to estimate 

the lumped disturbance vector d , 

                                       

1/3 2/3

0 0 0 0 0 1

1/2 1/2

1 1 1 1 1 0 2

2 2 2 1

0 1 2

, [( ) ]

, [( ) ]

( )

ˆ ˆˆ , , , 1, ,

i i i i i

i i ei

i i i i i i

i i i

i i i

ei i i

z v F U v L z z

z v v L z v z

z L sign z v

z d z d z i m

   







= + + = − − +

= = − − +

= − −

= = = =

                      (8) 

where L is a positive constant satisfying | |id L ( 1, , )i m= and 0( 1, 2,3)j j  =  are 

the observer coefficients. And the variables ˆ ˆˆ , ,ei i id d  denote the estimation of 0

iz , 1

iz , 2

iz , 

respectively. Define their estimation errors 0 0

i i

eie z = − , 1 1

i i

ie z d= − , 2 2

i i

ie z d= − , 
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1, ,i m= . Combining eqs. (7) and (8), the dynamic equations of the estimation errors 

are transformed into  

                                                 

1/3 2/3

0 0 0 1

1/2 1/2

1 1 1 0 2

2 2 2 1

[( ) ]

[( ) ]

( )

i i i

i i i i

i i i

i

e L e e

e L e e e

e L sign e e d







= − +

= − − +

= − − −

                                             (9) 

From the analysis in Shtessel et al. (2007), it can be concluded that in eq. (9) the 

estimation errors are bounded, and meanwhile there exist a finite time 1T  such that the 

estimation errors can converge to zeros. Then the control scheme can be obtained based 

on the following Theorem 1. 

Theorem 1: For the dynamic system in eq. (6), the finite-time stability of the system 

can be achieved via the following second-order sliding-mode control law: 

2 2 1 1 2/3

2 1

1/3

ˆ([ ] [ ]) ([ ] [ ]) [ ]

[ ]

e e e e p n

w

 = − + − + − − − +

= −

C C K

K

U d F s w

w s

      
                    (10)        

where control gains 1diag[ , , ]p p pmk k=K , 1diag[ , , ]w w wmk k=K and their components 

are all positive constants. Here define 1[ , , ]mw w =w as an auxiliary term. 

Proof: Choose the positive definite Lyapunov function candidate as follows to 

analyze the system stability: 

                       
2 1/3

1 1 1 0
[ ]

ism m

i wii i
V w k v dv

= =
= +                                                     (11) 

In view of eqs. (4) and (10), the dynamic equation in eq. (6) turns to be 

                       

2/3

1

1/3

[ ] , 1, ,

[ ], 1, ,

i

i pi i i

i wi i

s e k s w i m

w k s i m

= − − + =

= − =
                                                  (12) 

By utilizing eqs. (10) and (12), the time derivative of eq. (11) can be calculated as 
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1/3

1 1 1

1/3 1/3 2/3

11

1/3

11

[ ]

( [ ] [ ]( [ ] ))

( [ ] | |)

m m

i i wi i ii i

m i

i wi i wi i pi i ii

m i

wi i wi pi ii

V w w k s s

w k s k s e k s w

k e s k k s

= =

=

=

= +

= − + − − +

= − −

 





                  (13) 

In eq. (13), it can be seen that 
1 11

| |
m i

wii
V k e

=
  if | | 1is  and 

1/3 4/3

1 1 1 1 11 1 1, ,
| || | | || | max | |

m mi i i

wi i wi ii i i m
V k e s k e s e V

= = =
     if | | 1is  . Since the estimation 

error 1

ie  is always bounded, it can result from eq. (13) that 1V  and is  will be bounded in 

finite time 1[0, ]T . In addition, the estimation error remains 1 0ie =  for 1t T  . In this case, 

the derivative of the Lyapunov function
1 1

| | 0
m

wi pi ii
V k k s

=
 −  . Then, the dynamic 

equations in eq. (12) become 

                                         

2/3

1/3

[ ] , 1, ,

[ ], 1, ,

i pi i i

i wi i

s k s w i m

w k s i m

= − + =

= − =
                                                (14) 

For this case, the derivative of the Lyapunov function
1 1

| | 0
m

wi pi ii
V k k s

=
 −  . 

Therefore, is  and iw  can achieve the asymptotic convergence to zero. According to 

Shtessel et al. (2007), the asymptotical stability implies the finite-time stability, namely, 

is  can converge to zero in finite time. From the above analyses of eq. (5), the joint 

position error e  can converge to equilibrium point in finite time.  

In order to attenuate the chattering phenomenon, for the terms 2/3[ ]s and 1/3[ ]s in eq. 

(10), sign( )is is replaced by sat( )is  to design this control law, where 

                          
tanh( ),| | , 1, ,

sat( )
sign( ),| | , 1, ,

i i i

i

i i i

s s i m
s

s s i m





 =
= 

 =
                                             (15) 
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In summary, the proposed controller can ensure the finite-time stability of the whole 

closed-loop system. The whole trajectory tracking process of the underwater 

manipulator  is depicted in Fig. 2. 

First, the desired joint positions of the manipulator end effector can be obtained by 

utilizing the desired trajectory via the inverse kinematics. And the FISMS (eq. (4)) is 

adopted and applied in the control scheme. The DO (eq. (8)) is introduced to estimate 

the lumped disturbances. Based on FISMC and DO, the second-order sliding-mode 

control law (eq. (10)) is used for the controller design. Then, a complete closed-loop 

system can be formed. Finally, the actual trajectory of the manipulator end effector can 

be acquired by the forward kinematics.  

4. Simulation 

Numerical simulations through MATLAB/Simulink Tool are performed on the 6 

DOF underwater manipulator presented in section 2, in which its main link parameters 

are detailed in Table 1. Some other assumptions are given in this section about the 

system. Firstly, the density of its six hollow links for the manipulator is 2700kg/m3. 

Assume that the positions of gravity centre and buoyancy centre are consistent; the 

density, velocity and acceleration of the fluid are 1025.9kg/m3, [0.1, 0, 0] m/s and [0.01, 

0, 0] m/s2; the coefficient of water resistance is 1.05DC =  and the coefficient of 

additional mass force is 0.8MC = . Under these situations, it is still acknowledged that 

the target object moves in the workspace of the manipulator end effector, where its 

trajectory called the desired trajectory can be expressed as 

( , , ) (10cos( /160) 0.72 ,d d dX Y Z t= + 10sin( /160),1) mt for [0,300]st  , and its 

orientation keeps coinciding with the base frame. The initial position of the manipulator 
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end effector is given by (10.72, 0, 1) m. The sample time of the simulation is 0.1s, and 

the number of the simulation steps N equals 3000. Simulations are operated under 5 

different cases to validate the effectiveness of the control system, while the related 

parameters in the DO assigned as 1 3 = , 2 1.5 = , 3 1.1 = , 0.1L =  are suitable for all 

of those 5 cases. 

Case 1-2: The external disturbances are only considered as the lumped disturbances, 

i.e. =d d , and the components of the vector are 
2

1 0.1sin(0.15 ) 0.03rad / sd t = + , 

2

2 0.1cos(0.2 )rad / sd t = , 2

3 0.1sin(0.2 ) 0.01rad / sd t = + ,  
2

4 0.1cos(0.2 ) rad / sd t = , 

2

5 0.1sin(0.15 ) 0.02rad / sd t = + , 
2

6 0.1cos(0.15 )rad / sd t =  for [50,150]st , and in 

other time period, 2[0,0,0,0,0,0] rad / s

=d . In this situation, the constant parameters 

of the proposed controller in eq. (10) are listed in Table 2. In case 2, the proposed 

controller with no DO method is utilized to handle the effects of the disturbances, while 

its other control parameters are the same with case 1. 

Case 3-5: Consider this situation that the lumped disturbances contain both 

parameter uncertainties and the external disturbances, satisfying 0( ) = 0.1 ( )M M  , 

0( ) = 0.1 ( )  C C    , 0( ) = 0.1 ( )G G  , 0( ) = 0.1 ( )B B  , 0= 0.1h h  and 

2

1 0.8sin(0.15 )rad / sd t = , 
2

2 0.1cos(0.2 )rad / sd t = , 2

3 0.1sin(0.2 )rad / sd t = , 

2

4 0.5cos(0.2 ) rad / sd t = , 2

5 0.1sin(0.2 )rad / sd t = , 
2

6 cos(0.15 )rad / sd t = for 

[0,300]st . In case 3, the control law of the DO-based PD control is designed as  

2 1
ˆ

PD e e = − − − −C CU d F                                             (16) 

For the DO-based PID-type linear SMC in case 4, its control law is 

2 1
ˆ sat( )PID SMC e e  − = − − − − − C CU d F s                          (17) 
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with the PID-type linear sliding mode surface 

2 1
0

t

e e edt= + + C Cs                                                (18) 

Then, related constant parameters in case 3-5 are set to perform the following 

simulations and study the tracking performances of the system, where the parameters of 

the proposed controller in case 5 are selected referring to Table 2; the values of 2C , 1C  

for both PDU  and PID SMC−U  are chosen the same as ones in case 5; to make the 

comparative fair, the terms  and sat( )s in case 4 are valued at 
1, ,6

max( )wi pi
i

k k
=

=  and 

same as in eq. (15), respectively. 

Besides, for a clear comparison, the averaged position errors in three directions and 

their averaged total position error, and the averaged disturbance estimation error are 

defined as follows: 

                  2 2 2 2 2

2 1 2|| || / , , , , , || || /h h t x y z dE N h x y z E E E E E N= = = + + =e e              (19)                               

where xe , ye , ze indicate separately the X, Y, Z direction position error. 

Only considering the external disturbances in case 1-2, some simulation results are 

shown in Figs. 3-10. In Fig. 3, the manipulator end effector has achieved the tracking 

control for the desired trajectory of the moving object. To further clarify the tracking 

results, Figs. 4- 6 describe the position errors between desired trajectory and tracking 

trajectory in X, Y and Z direction, respectively, under case 1 and case 2. From Figs. 4- 6, 

although all of the position errors in two cases may occur sudden changes at t=50s due 

to the external disturbances, finally their steady-state position errors can reach the range 

of about [-0.01, +0.01] m. Compared with case 1, the position errors in case 2 have 

caused a little larger chattering because the disturbances are not handled.  
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Figs. 7-8 describe the six components of the external disturbance term and their 

estimations in case 1, which show that their errors may have a little differences only at 

t=50s and t=150s. Such results are attributed to the DO which compensates the effect of 

the disturbances. Figs. 9-10 indicate the six joint input torques in case 1. It’s obviously 

seen that the external disturbances have large influence on the joint input torques, 

especially at the periods of its sudden appearance and disappearance. Under such 

situations, the position errors and the disturbance estimation errors in case 1 can still 

keep in small regions, which can satisfy the requirements of the tracking performance. 

Seen from the averaged tracking errors in Table 3, although there are no significant 

differences of their averaged position errors between case 1 and case 2, the averaged 

disturbce estimation error in case 1 has a small value that shows the compensation for 

the effect of the external disturbances (see Figs. 7-8).  

Subsequently, comparisons are made with PD control in case 3, PID-type linear 

SMC in case 4 and the proposed controller in case 5, where all of these methods need 

exploit the DO in Eq. 6 to deal with the lumped disturbance. Seen from Figs. 11- 13, 

three position errors in case 5 can obtain faster convergence than those in case 3 and 

case 4 at the beginning. Their three steady-state position errors can all reach the range of 

about [-0.01, +0.01] m in the final phase, while these steady-state errors in case 5 have 

much smoother changes than other two cases (see Figs. 11-13). Moreover, the averaged 

total position error in case 5 decreases about 0.003m compared to ones in both case 3 

and case 4, shown in Table 3. 

Figs. 14-15, Figs. 16-17 and Figs. 18-19 show six components of the lumped 

disturbance term and their estimations in case 3-5, respectively. It can be observed that, 

under the same DO method, the errors between the six disturbance components and 
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their estimations in case 3 are a little larger than those in case 4-5. This result can be 

obviously seen from their averaged disturbance estimation errors in Table 3, owing to 

the more superior SMC scheme than PD control.  

In summary, simulation results under 5 different cases, show that the control system 

with the proposed scheme has better tracking performance and stronger robustness of 

disturbance rejection, which testifies the effectiveness of the proposed controller.  

5. Conclusion 

This paper proposes the FISMC strategy with a DO for the trajectory tracking control 

of the underwater manipulator under the lumped disturbances, including parameter 

uncertainties and external disturbances. The proposed FISMS is used so that the state 

error of the system can achieve the finite-time convergence. Meanwhile, the control 

scheme is designed by combining with the DO method and the second-order sliding 

mode control law, in which the DO is taken as a compensator to ensure that the 

estimation error can converge in finite time. In order to alleviate the chattering 

phenomenon, a saturated function is selected in the control law to replace the sign 

function. The closed-loop system is proved to be the finite-time stability by the stability 

analysis. Comparative simulation results show that the control system with the proposed 

scheme has better high-precision tracking performance and robustness of disturbance 

rejection, which demonstrates the feasibility and effectiveness of the proposed 

controller.  

Appendix stability proof 

Case 3: the DO-based PD control. 

Taking eq. (16) into the error dynamics of system in eq. (6) instead of U  results in 
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2 1
ˆ

e e e+ + = −C C d d                                                 (A1) 

From the above analysis for the estimation error dynamics in eq. (9), we can acquire 

that the estimation error term ˆ( )−d d  is bounded, and after a finite time it can converge 

to zero. In view of the bounded-input bounded-output stable theory (Zheng and Chen 

2018), the joint position error e can achieve the asympototic convergence to 

equilibrium point. 

Case 4: the DO-based PID-type linear SMC. 

Selecting another Lyapunov function  

2 1/ 2V = s s                                                                 (A2) 

and taking its time derivative along eqs. (6), (17) and (18) yields  

                                     

2

2 1

2 1

1 1

( )

( )

ˆ( ) sat( )

ˆ| | | | sat( )

e e e

PID SMC e e

V













−

 



=

= + +

= + + + +

= − − 

  − − 

C C

C C

s s

s

s F U d

s d d s s

s d d s s

  

                        (A3)                                         

Similar to the discussion with eqs. (9) and (13), it can result from eq. (A3) that 2V  

and is  will be bounded in a finite time 2[0, ]T . When the estimation error holds 1 0ie =  

for 2t T , the derivative of the Lyapunov function satisfies 2 sat( ) 0V  = −  s s . Thus, 

the PID-type linear sliding mode surface is  can achieve the asymptotic convergence to 

zero based on the Barbalat’s Lemma. Then in the sliding mode phase =s 0 , by use of eq. 
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(18) it concludes that the joint position error e  can converge to equilibrium point 

asymptotically.  

Declaration of conflicting interests 

The author(s) declared no potential conflicts of interest with respect to the research, 

authorship, and/or pubilcation of this article. 

Funding 

This research has been supported by National Natural Science Foundation of China 

(No. 51979116), the HUST Interdisciplinary Innovation Team Project, the Innovation 

Foundation of Maritime Defense Technologies Innovation Center and the Fundamental 

Research Funds for the Central Universities, HUST: 2018JYCXJJ045, HUST: 

2018KFYYXJJ012. 

References 

Antonelli, G. 2006. Underwater robots: motion and force control of vehicle-manipulator 

systems (Second Edition).  Springer-Verlag Berlin Heidelberg. 

Basin, M., Shtessel, Y., and Aldukali, F. 2016. Continuous finite- and fixed-time high-

order regulators. J. Frankl. Inst. 353(18): 5001-5012. doi:10.1016/j.jfranklin. 

2016.09.026. 

Craig, J.J. 2005. Introduction to robotics mechanics and control (Third Edition). 

Pearson Education, Inc., Upper Saddle River, New Jersey. 

Dinh, T.X., Thien, T.D., Anh, T.H., and Ahn, K.K. 2018. Disturbance observer based 

finite time tracking control for a 3 DOF hydraulic manipulator including actuator 

dynamics. IEEE Access, 6: 36798-36809. doi:10.1109/ACCESS.2018.2848240. 

Page 19 of 29

https://mc06.manuscriptcentral.com/tcsme-pubs

Transactions of the Canadian Society for Mechanical Engineering

http://dx.doi.org/10.1016/j


Draft

 

 

 

20 

Dunnigan, M.W., and Russell, G.T. 1998. Evaluation and reduction of the dynamic 

coupling between a manipulator and an underwater vehicle. IEEE J. Oceanic Eng. 

23(3): 260-273. doi:10.1109/48.701201. 

Feng, Y., Han, F.L., and Yu, X.H. 2014. Chattering free full-order sliding-mode control. 

Automatica, 50(4): 1310-1314. doi:10.1016/j.automatica.2014.01.004. 

Huang, J., Ma, X., Che, H.C., and Han, Z.Z. 2019. Further Result on Interval Observer 

Design for Discrete-time Switched Systems and Application to Circuit Systems. 

IEEE Transactions on Circuits and Systems II: Express Briefs, 7747(1): 1-1. doi: 

10.1109/TCSII.2019.2957945. 

Huang, J., Ma, X., Zhao, X., Che, H., and  Chen, L. 2020. An interval observer design 

method for asynchronous switched systems, IET Control Theory Appl. 

doi:10.1049/iet-cta.2019.0750.  

Hussian, A., Zhao, X.D., and Zong, G.D. 2017. Finite-time exact tracking control for a 

class of non-linear dynamical systems. IET Control Theory Appl. 11(12): 2020-

2027. doi:10.1049/iet-cta.2017.0093. 

Lee, M., and Choi, H.S. 2000. A robust neural controller for underwater robot 

manipulators. IEEE Trans. Neural Netw. 11(6): 1465-1470. doi: 10.1109/72.883478. 

Liang, C.H., and Li, Y.C. 2014. Attitude tracking control based on adaptive sliding 

mode technique with double closed loop for spacecraft near small body. In 

Proceedings of the 17th International Conference on Computational Science and 

Engineering, Chengdu, China, 19-21 December 2014. pp. 78-82.  

Liu, H.T., and Zhang, T. 2013. Neural network-based robust finite-time control for 

robotic manipulators considering actuator dynamics. Robot. Comput. Integr. Manuf. 

29(2): 301-308. doi:10.1016/j.rcim.2012.09.002. 

Page 20 of 29

https://mc06.manuscriptcentral.com/tcsme-pubs

Transactions of the Canadian Society for Mechanical Engineering

http://dx.doi.org/10.1016/j.automatica.2014.01.004
https://doi.org/10.1109/TCSII.2019.2957945


Draft

 

 

 

21 

Mobayen, S. 2015. An adaptive fast terminal sliding mode control combined with 

global sliding mode scheme for tracking control of uncertain nonlinear third-order 

systems. Nonlinear Dyn. 82 (1-2): 599-610. doi:10.1007/s11071-015-2180-4. 

Pandian, S.R., and Sakagami, N. 2010. A neuro-fuzzy controller for underwater robot 

manipulators. In Proceedings of the 11th International Conference on Control 

Automation Robotics and Vision, Singapore, Singapore, 7-10 December 2010. pp. 

2135-2140.  

Patompak, P., and Nilkhamhang, I. 2012. Adaptive backstepping sliding-mode 

controller with bound estimation for underwater robotics vehicles. In Proceedings of 

the 9th International Conference on Electrical Engineering/Electronics, Computer, 

Telecommunications and Information Technology, Phetchaburi, Thailand, 16-18 

May 2012. pp. 1-4.  

Shtessel, Y.B., Shkolnikov, I.A., and Levant, A. 2007. Smooth second-order sliding 

modes: Missile guidance application. Automatica, 43(8): 1470-1476. doi:10.1016/j. 

automatica.2007.01.008. 

Sivcev, S., Coleman, J., Omerdic, E., Dooly, G., and Toal, D. 2018. Underwater 

manipulators: A review. Ocean Eng. 163: 431-450. doi:10.1016/j.oceaneng. 

2018.06.018. 

Wang, Y.Y., Gu, L.Y., Xu, Y.H., and Cao, X.X. 2016. Practical tracking control of 

robot manipulators with continuous fractional-order nonsingular terminal sliding 

mode. IEEE Trans. Ind. Electron. 63(10): 6194-6204. doi:10.1109/TIE.2016. 

2569454.   

Page 21 of 29

https://mc06.manuscriptcentral.com/tcsme-pubs

Transactions of the Canadian Society for Mechanical Engineering

https://doi.org/10.1016/j


Draft

 

 

 

22 

Wang, Y.Y., Zhu, K.W., Chen, B., and Jin, M.L. 2019a. Model-free continuous 

nonsingular fast terminal sliding mode control for cable-driven manipulators. ISA 

Transactions, 98: 483-495. doi:10.1016/j.isatra.2019.08.046. 

Wang, Y.Y., Yan, F., Chen, J.W., Ju, F., and Chen B. 2019b. A new adaptive time-

delay control scheme for cable-driven manipulators. IEEE Trans. Ind. Informat.  

15(6): 3469-3481. doi:10.1109/TII.2018.2876605. 

Wang, Y.Y., Yan, F., Zhu, K.W., Chen, B., and Wu, H.T. 2019c. A new practical robust 

control of cable-driven manipulators using time-delay estimation. Int. J. Robust 

Nonlinear Control, 29(11): 3405-3425. doi:10.1002/rnc.4566. 

Wit, D.C.C., Diaz, E.O., and Perrier, M. 2000. Nonlinear control of an underwater 

vehicle/manipulator with composite dynamics. IEEE Trans. Control Syst. Technol. 

8(6): 948-960. doi:10.1109/87.880599. 

Xu, G.H., Xiao, Z.H., Guo, Y., and Xiang, X.B. 2007. Trajectory tracking for 

underwater manipulator using sliding mode control. In Proceedings of the IEEE 

International Conference on Robotics and Biomimetics, Sanya, China, 15-18 

December 2007. pp. 2127-2132.  

Zheng, W.C., and Chen, M. 2018. Tracking control of manipulator based on high-order 

disturbance observer. IEEE Access, 6: 26753-26764. doi:10.1109/ACCESS. 

2018.2834978. 

 

 

 

 

Page 22 of 29

https://mc06.manuscriptcentral.com/tcsme-pubs

Transactions of the Canadian Society for Mechanical Engineering



Draft

 

 

 

23 

 

 

 

 

 

 

 

 

 

Table 1. The link parameters of the 6 DOF manipulator 

Parameter Link 1 Link 2 Link 3 Link 4 Link 5 Link 6 

1( )i −   0  90  0  90  90−  90−  

1(m)ia −  0  0  5.0  0  0  0  

(m)id  1.195  0  0.7  6.4  -0.7  -0.995  

( )i   1  2  3  4  5  6  

 

Table 2．The parameters of the proposed controller 

Case 1  Case 5 

 2 7/8,7/8,7/8,7/8,7/8,7/8


=    2 7/8,7/8,7/8,7/8,7/8,7/8


=  

 2 9/8,9/8,9/8,9/8,9/8,9/8


=    2 9/8,9/8,9/8,9/8,9/8,9/8


=  

 1 diag 4,4,4,4,4,4=C    1 diag 4,4,4,4,4,4=C  

 2 diag 4,4,4,4,4,4=C    2 diag 4,4,4,4,4,4=C  

 diag 5,5,5,5,5,5p =K    diag 10,10,10,10,10,10p =K  

Page 23 of 29

https://mc06.manuscriptcentral.com/tcsme-pubs

Transactions of the Canadian Society for Mechanical Engineering



Draft

 

 

 

24 

 diag 0.1,0.1,0.1,0.1,0.1,0.1w =K    0.05,0.05,0.05,0.05,0.05,0.05w diag=K  

[0.3,0.3,0.3,0.3,0.3,0.3]=   [0.3,0.3,0.3,0.3,0.3,0.3]=  

 

Table 3. The averaged tracking errors of the system 

Cases xE /m yE /m 
zE /m tE /m dE /N 

Case 1 0.0123 0.0068 0.0236 0.0275 0.0079 

Case 2 0.0124 0.0069 0.0237 0.0276 -- 

Case 3 0.0124 0.0141 0.0227 0.0295 0.5815 

Case 4 0.0129 0.0102 0.0251 0.0300 0.0974 

Case 5 0.0123 0.0069 0.0231 0.0270 0.0949 

 

 

Table 1. The link parameters of the 6 DOF manipulator 

Table 2．The parameters of the proposed controller 

Table 3. The averaged tracking errors of the system 

Fig. 1. The configuration of the 6 DOF manipulator and its link frames 

Fig. 2. The trajectory tracking control diagram 

Fig. 3. The trajectories (case 1) 

Fig. 4. X direction position error (case 1-2) 

Fig. 5. Y direction position error (case 1-2) 

Fig. 6. Z direction position error (case 1-2) 

Fig. 7. d1-d3 and their estimates (case 1) 

Fig. 8. d4-d6 and their estimates (case 1) 

Fig. 9. Joint 1-3 input torques (case1) 

Fig. 10. Joint 4-6 input torques (case 1) 

Fig. 11. X  position error (case 3-4-5) 

Fig. 12. Y position error(case 3-4-5) 
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Fig. 13. Z position error(case 3-4-5) 

Fig. 14. d1-d3 and their estimates (case 3) 

Fig. 15. d4-d6 and their estimates (case 3) 

Fig. 16. d1-d3 and their estimates (case 4) 

Fig. 17. d4-d6 and their estimates (case 4) 

Fig. 18. d1-d3 and their estimates (case 5) 

Fig. 19. d4-d6 and their estimates (case 5) 
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Fig. 1. The configuration of the 6 DOF manipulator and its link frames

Fig. 2. The trajectory tracking control diagram
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Fig. 17. d4-d6 and their estimates (case 4)        Fig. 18. d1-d3 and their estimates (case 5) 
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Fig. 19. d4-d6 and their estimates (case 5) 
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