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In this paper we study the tracking control of Lagrangian systems subject to frictionless uni-
lateral constraints. The stability analysis incorporates the hybrid and nonsmooth dynamical
feature of the overall system. The difference between tracking control for unconstrained systems
and unilaterally constrained ones, is explained in terms of closed-loop desired trajectories and
control signals. This work provides details on the conditions of existence of controllers which
guarantee stability. It is shown that the design of a suitable transition phase desired trajectory,
is a crucial step. Some simulation results provide information on the robustness aspects. Finally
the extension towards the case of multiple impacts, is considered.
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1. Introduction

The focus of this paper is on the tracking control
of a class of nonsmooth fully actuated Lagrangian
systems subject to frictionless unilateral constraints
on the position. Let X ∈ IRn denote the vec-
tor of generalized coordinates. Roughly speaking,
trajectory tracking means that when properly ini-
tialized, all trajectories X(·) have to converge, or
remain close to, some desired trajectory Xd(·) which
is designed offline. The Lyapunov stability of the
fixed point of the transformed error system with
state vector the tracking error (X − Xd, Ẋ − Ẋd)
is often required to get a robust and implementable
scheme. The stabilization problem consists of choos-
ing Xd constant. For nonlinear mechanical sys-
tems, tracking is known to be significantly more
difficult than stabilization, even for unconstrained
systems [Lozano et al., 2000]. The stabilization
problem for a class of nonsmooth systems, including

Lagrangian systems with unilateral constraints,
has been analyzed in [Brogliato, 2004; Goeleven
et al., 2003]. Applications may be found in
manipulators performing tasks such as grinding,
deburring [Komanduri, 1993; Ramachandran et al.,
1994], filamentary brushing tools for surface fin-
ishing [Shia et al., 1998], which have considerable
importance in machining, disassembly robotic sys-
tems [Studny et al., 1999], etc. and more generally
all mechanical systems performing tasks involving
contact/impact phenomena.

The nonsmooth complementarity systems we
deal with in this paper, may a priori evolve in three
different phases of motion:

(i) A free motion phase, where the mechanical
system is not subject to any constraints (i.e.
F (X) > 0, where F (·) is some (m-vector) func-
tion representing the “distance” between the
system and the constraint).

∗This work was partially supported by the European project SICONOS IST2001-37172, http://siconos.inrialpes.fr
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(ii) A permanently constraint phase where the
dynamical system is subject to holonomic con-
straints (Fi(X) = 0 during a nonzero time
interval and for some indexes i ∈ {1, . . . ,m}).

(iii) A transition phase whose goal is to stabilize
the system on some surface ΣI =

⋂

i∈IΣi,
where I is some subset of {1, . . . ,m} and Σi =
{X|Fi(x) = 0}. In other words, a transition
control has to assure that Fi(X(t)) = 0 and
∇Fi(t)Ẋ(t+) = 0 for all i ∈ I (1), where t is a
finite time for obvious practical reasons.

In the first phase, the system is described by
a set of ordinary differential equations (ODE).
The tracking control problem has been solved by
several feedback controllers assuring the global
asymptotic stability (feedback linearization, adap-
tive control, robust control, passivity-based control,
etc. [Lozano et al., 2000]). The second phase con-
cerns the control of a differential-algebraic equation
(DAE) by so-called force/position controllers, and
has been solved in [McClamroch & Wang, 1988] and
[Yoshikawa, 1987]. It reduces to a motion control
problem plus an algebraic equality for contact force
equilibrium when suitable coordinates are chosen.
During the transition phase the system is subject to
unilateral constraints, and collisions occur. These
collisions will generate rebounds, which are gener-
ally seen as disturbances. On the contrary, in the
control framework that is studied in this paper (fol-
lowing [Brogliato et al., 1997] and [Brogliato et al.,
2000]) impacts are provoked intentionally to dissi-
pate energy and contribute towards stabilizing the
system.

The aim of this paper is to study a control
scheme which guarantees some stability properties
of the closed-loop system during general motions
involving the three above phases. It provides an
interpretation of the specific feature of tracking con-
trol for unilaterally constrained systems in terms
of some invariant closed-loop trajectories and some
signals entering the control input (usually known as
the desired trajectory). With respect to the results
in [Brogliato et al., 1997; Brogliato et al., 2000]
we give accurate conditions under which various
types of stability are assured, which were missing
in these references. For instance, the n-degree-of-
freedom case with n ≥ 2 is solved in [Brogliato
et al., 1997] only if a certain matrix is a Jaco-
bian, which is quite restrictive as simple examples

show [Brogliato, 1999, Sec. 8.6]. In [Brogliato et al.,
2000] the existence of a specific transition phase
closed-loop trajectory is assumed, without proof.
These two points are addressed in this paper, as
well as the transition between permanent constraint
phases and free-motion phases. We also study the
robustness of this control scheme with respect to
the knowledge of constraints’ position.

Finally we extend this work to the case of non-
scalar frictionless unilateral constraints, which may
generate so-called multiple impacts.

Glossary

ODE: Ordinary Differential Equation, DAE: Dif-
ferential Algebraic Equation, LCP: Linear Comple-
mentarity Problem, DES: Discrete Event System.

For an m-vector X, X ≥ 0 means that Xi ≥ 0
for all components of X, 1 ≤ i ≤ m. The max-
imum and minimum eigenvalues of a matrix M
are denoted as λmax(M) and λmin(M), respectively.
If a function F (·) has a simple discontinuity at
t, the right and left-limits are denoted as F (t+)
and F (t−), respectively. The jump is denoted as
σF (t) = F (t+) − F (t−). The Lebesgue measure of
an interval [a, b] is denoted as λ[a, b].

1.1. Dynamics

The systems we study in this paper belong to
the complementarity hybrid dynamical systems
[van der Schaft & Schumacher, 2000], a class
of systems that generalize nonsmooth mechanical
systems [Moreau, 1983]. They are complementar-
ity Lagrangian systems, with Lagrangian function
L = (1/2)ẊTM(X)Ẋ − U(X), where T (X, Ẋ) =
(1/2)ẊTM(X)Ẋ is the kinetic energy, U(X) is the
differentiable potential energy. The dynamics may
be written as






M(X)Ẍ + C(X, Ẋ)Ẋ + G(X) = u + ∇F (X)λX

F (X)≥ 0, F (X)T λX = 0, λX ≥ 0

Collision rule

(1)

where X ∈ IRn is a vector of generalized coordi-
nates, M(X) = MT (X) ∈ IRn×n is the positive
definite inertia matrix, F (X) ∈ IRm represent
the distance to the constraints, λX ∈ IRm are
the Lagrangian multipliers associated to the con-
straints, u ∈ IRn is the vector of generalized

1The reason why the right limit of velocity is indicated will be made clear later when solutions are given a precise meaning.
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torque inputs, C(X, Ẋ) is the matrix of Corio-
lis and centripetal forces, G(X) contains conser-
vative forces. ∇ denotes the Euclidean gradient,
i.e. ∇Fi(X) = (∂Fi/∂x1, . . . , ∂Fi/∂xn)T ∈ IRn

and ∇F (X) = (∇F1(X), . . . ,∇Fm(X)) ∈ IRn×m.
The impact times will be denoted generically as
tk in the following. We assume that the func-
tions Fi(·) are continuously differentiable and that
∇Fi(X(tk)) �= 0 for all tk.

A major discrepancy of complementarity sys-
tems compared to systems with switching vector
fields, is that their state may be discontinuous, and
that they may live on lower-dimensional spaces.
This creates serious difficulties in their study
[Brogliato, 2003; Heemels & Brogliato, 2003].

The Lagrangian system in (1) is fully actuated,
i.e. dim(u) = dim(X). This excludes, for instance,
lumped joint flexibilities. In case dim(u) < dim(X)
the system is said to be underactuated and the con-
trol problem is much harder to solve. The first
instance in the Control and Robotics literature
where such a complementarity model has been used,
is in [Huang & McClamroch, 1988]. A very spe-
cific feature of systems as in (1) is their intrinsic
nonsmoothness, which hampers one to tangentially
linearize them in the neighborhood of trajectories.
Consequently, linear controllers generally fail to sta-
bilize such complementarity systems, and nonlinear
feedback controllers have to be designed.

1.2. Admissible domain

The admissible domain Φ is a closed domain in the
configuration space where the system can evolve, i.e.

Φ = {X|F (X) ≥ 0} =
⋂

1≤i≤m

Φi,

Φi = {X|Fi(X) ≥ 0}
For obvious reasons it is assumed that Φ �= ∅,

and even more: it contains a closed ball of positive
radius. This allows us to get rid of meaningless mod-
els. A motion like the one in items (i)–(iii) can then
be defined. The boundary of Φ is denoted as ∂Φ.

Definition 1. A singularity of ∂Φ is the intersec-
tion of two (or more) surfaces Σi = {X|Fi(X) = 0}.

As alluded to above, the goal of the control
problem during transition phases is to stabilize the
system on the boundary ∂Φ. When m ≥ 2 this may
be a singularity (i.e. a codimension α ≥ 2 surface)
of the boundary. In this study, we restrict ourselves

(a) Convex (b) Nonconvex

Fig. 1. Nondifferentiable points.

to domains which have nondifferentiable boundaries
but which are convex around such nondifferentiable
points (like on Fig. 1(a)). The unilateral constraints
are expressed by the relation F (X) ≥ 0, which can
be translated locally into: CX + D ≥ 0 for some
matrices C and D. Clearly the nonconvex exam-
ple of Fig. 1(b) cannot be expressed as the inter-
section of convex domains Φi. This case is named
a reintrant corner in the literature, and model-
ing issues are not yet fixed for reintrant corners
[Glocker, 2001; Frémond, 2002]. This restriction
on singular nonconvex points does not mean that
the whole space must be convex. For example, the
domain of Fig. 2 is nonconvex but can be described
as Φ above. Such sets are called regular [Clarke,
1990]. For regular sets, convexity holds locally and
can be recovered by a suitable generalized coordi-
nates change (diffeomorphic hence preserving the
Lagrangian structure).

1.3. Impact model

A collision rule is needed to integrate the system in
(1) and to render the set Φ invariant. A collision
rule is a relation between the post-impact veloci-
ties and the pre-impact velocities. In this work, it
is chosen as in [Moreau, 1988]

Ẋ(t+k ) = −enẊ(t−k )

+ (1 + en) arg min
z∈TΦ(X(tk))

1

2
[z − Ẋ(t−k )]T

×M(X(tk))[z − Ẋ(t−k )] (2)

where Ẋ(t+k ) is the post-impact velocity, Ẋ(t−k ) is
the pre-impact velocity, TΦ(X(t)) the tangent cone
to the set Φ at X(t) (see Figs. 1 and 2 where the sets
X, TΦ(X) are depicted) and en is the restitution
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Fig. 2. Example of a regular nonconvex domain.

coefficient, en ∈ [0, 1]. Notice that if the angle
̂(Σ1,Σ2) ≤ π then in the neighborhood of X one has

Φ ≈ TΦ(X) when X ∈ Σ1 ∩ Σ2. The tangent cone
is defined as the cone which is polar to the normal
cone NΦ(X(t)), see [Clarke, 1990; Hiriart-Urruty &
Lemaréchal, 1996; Moreau, 1988]. Both are always
convex sets. They generalize the tangent and nor-
mal subspaces to the configuration space to which
velocities and contact forces belong, in bilaterally
constrained systems. When m = 1, the rule in (2) is
the Newton’s law Ẋn(t+k ) = −enẊn(t−k ), where Ẋn

is the normal component of the velocity. The resti-
tution mapping in (2) can be equivalently rewritten
as [Mabrouk, 1998]

Ẋ(t+k ) = Ẋ(t−k ) − (1 + en)

× prox
M(X(tk))

[M−1(X(tk))NΦ(X(tk)); Ẋ(t−k )]

(3)

where the proxM(X(tk)) means the proximation in
the metric defined by the kinetic energy at time
tk, and NΦ(X(tk)) is the normal cone to Φ at
X(tk). The form in (3) will be useful for some
calculations in stability proofs. It can also be
written using a suitable generalized momentum
transformation [Brogliato, 1999, Chap. 6]. See also
[Glocker, 2002] for a nice geometrical interpretation
of this rule. The restitution mapping in (2) yields
a kinetic energy loss at the impact times given by
[Mabrouk, 1998]

TL(tk) = −1

2

1 − en

1 + en
[Ẋ(t+k ) − Ẋ(t−k )]T M(q(tk))

× [Ẋ(t+k ) − Ẋ(t−k )] ≤ 0 (4)

Clearly this particular choice is arbitrary, and
other models exist in the literature. However

Moreau’s collision rule is chosen here because
it is mathematically sound, numerically tractable
because it relies on Gauss’ principle of Mechanics
[Brogliato et al., 2002], and is a direct extension of
Newton’s law (which is quite valid as long as friction
is not considered). Moreover, it lends itself very well
to possible extensions towards more complex colli-
sion rules as the ones developed in [Frémond, 2002],
which are based on the use of super-potentials of
dissipation [Moreau, 1968].

1.4. Model well-posedness

The most general result on existence and unique-
ness of solutions for mechanical systems as in (1)
can be found in [Ballard, 2000, 2001]. Under the
condition that all data entering (1) are piecewise
real analytic, then existence and uniqueness of a
solution to (1) with X(·) absolutely continuous
and Ẋ(·) right-continuous of local bounded varia-
tion, is assured. Then the acceleration is a mea-
sure and so is the multiplier λX . We shall always
assume that the required conditions are fulfilled
in this paper. Multiple impacts (see Definitions
1 and 5) generally render solutions discontinuous
with respect to the initial conditions (X(0), Ẋ(0+)),
except in particular cases (plastic impacts and
kinetic angle between the constraint surfaces less
or equal to (π/2) [Paoli, 2002], or kinetic angle
equal to (π/2) [Ballard, 2000]). When m = 1
then continuity holds whatever en [Schatzman,
1998].

Due to the fact that velocities may be time dis-
continuous, but that their right-limit (and left-limit
as well) exist everywhere, models as in (1) may be
named prospective, because during the integration
one looks for Ẋ(t+) [Moreau, 2003].
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1.5. Cyclic task

In this paper, we restrict ourselves to a specific task,
or trajectory: a succession of free and constrained
phases Ωk. During the transition between a free
and a constrained phase, the dynamic system passes
into a transition phase Ik. As we shall see, transi-
tions between constrained and free motion are mon-
itored by a Linear Complementarity Problem (see
Appendix C for a definition).

Ω2k →
Ik

Ω2k+1 −−−−−→
LCP(λ)

Ω2k+2

In the time domain one gets a representation as

IR+ = Ω0 ∪ I0 ∪ Ω1
︸ ︷︷ ︸

cycle 0

∪ Ω2 ∪ I1 ∪ · · · ∪ Ω2k−1

∪Ω2k ∪ Ik ∪ Ω2k+1
︸ ︷︷ ︸

cycle k

∪ · · · (5)

where Ω2k denotes the time intervals associated to
free-motion phases and Ω2k+1 those for constrained-
motion phases. The transition Ω2k+1 → Ω2k+2, does
not define a specific phase (or DES mode) because
it does not give rise to a new type of dynamical
system, as we shall see in Sec. 3.3. The order of
the phases is important but the initial phase may
be Ω0 or I0 or Ω1, see Remark 2. Before passing to
the description of the stability framework which will
enable us to design a feedback controller for track-
ing, let us investigate more deeply how (5) may be
seen as a consequence of the basic control objectives
(i)–(iii) listed in the introduction.

First of all, let us notice that despite the prob-
lem involves contact and consequently generalized
forces in the control objectives (during phases Ω2k+1

the contact force should have some desired value),
the control problem remains primarily a motion
control problem. Indeed the contact force, i.e. the
Lagrange multiplier λX in (1), is not part of the sys-
tem’s state (X, Ẋ). Its value is only a consequence
of the motion (in fact, its value has to be calcu-
lated with a LCP, which is assured to always pos-
sess at least one solution for frictionless constraints,
see [Brogliato, 1999, Theorem 5.4]). For instance in
a one degree-of-freedom system the contact force
control simply reduces to an algebraic equation
λ = λd for some signal λd (possibly time-varying).
However this is not a stabilization problem, this is
a static equilibrium. Therefore the force/position
control problem should rather be called a motion-
control/force-equilibrium problem in such a case.
During such a static equilibrium phase, motion
tracking drastically simplifies to triviality. This is

going to be the same in higher dimensions, in the
normal direction to ∂Φ.

More precisely, the items (i) and (ii) in the
introduction imply that the trajectory of the
unconstrained system that has to be tracked,
denoted as Xi,nc(·) possesses the generic form
shown in Fig. 3. More exactly the orbit of this
trajectory in the configuration space is depicted in
Fig. 3. It is clear that in particular item (ii) implies
that F (Xi,nc(t)) < 0 for some t (∈ Ω2k+1), oth-
erwise there would be a zero contact force when
the system perfectly tracks the desired motion.
Roughly speaking, the system has to have the ten-
dency to violate the constraints to assure a nonzero
contact force. In the same spirit item (i) implies
that F (Xi,nc(t)) > 0 for some t (∈ Ω2k). Conse-
quently there exists a point A in the configuration
space, at which contact is made with ∂Φ. This gives
rise to a transition phase whose role is as in item
(iii). In the same way there is a point B at which
F (Xi,nc(t)) = 0 and detachment is monitored by a
LCP. The central issue in the present control prob-
lem, is the design of such transition phases. A first
idea is to impose a tangential contact, i.e. with
∇F (X∗

d )T Ẋ∗
d = 0, where X∗

d (·) is a signal enter-
ing the control input and playing the role of the
desired trajectory during some parts of the motion
(the difference between X∗

d (·), and Xi,nc(·) will be
made clear below). However

(α) Due to nonzero initial tracking errors X(0) −
X∗

d (0) �= 0, Ẋ(0) − Ẋ∗
d (0) �= 0, impacts may

occur.
(β) This is not a robust strategy since a bad esti-

mation of the constraint position, may result in
no stabilization at all on ∂Φ. Consequently, it

Fig. 3. Unconstrained trajectory.
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is a much better strategy to impose collisions
for stabilization on ∂Φ.

(γ) In any case, collisions have to be incorporated
into the stability analysis.

(δ) The best strategy for stabilization on ∂Φ is to
impose closed-loop dynamics which mimics the
bouncing-ball dynamics Ẍ = −g, X ≥ 0:

(δ1) This is very robust with respect to the con-
straint position uncertainties.

(δ2) As we will see, it lends itself very well
to Lyapunov stability of some closed-loop
Poincaré map.

Secondly, we will see in the next section that
the type of stability we desire is based on a single
Lyapunov-like function V (X, Ẋ, t). Then difficulties
arise due to the following:

(a) There are nonzero couplings between “tangen-
tial” and “normal” coordinates in the inertia
matrix M(X) (this will be formulated more rig-
orously later).

(b) This unique function V (X, Ẋ, t) has to work for
all phases, i.e. for Ω2k (ODE), Ω2k+1 (DAE),
and Ik (the dynamics may then be seen as
a Measure Differential Equation [Brogliato,
1999]).

(c) If V ≡ 0 then any velocity jump q̇(t+k ) �= q̇(t−k )
implies a positive jump V (t+k ) − V (t−k ) > 0
in the Lyapunov function. This means that
impacts will generally preclude asymptotic sta-
bility,2 except in very particular cases of no
inertia couplings, in which case things greatly
simplify.

(d) The function V has to satisfy V = 0 when the
desired trajectory of the closed-loop system is
perfectly tracked, according to the definition
of a Lyapunov function. This implies that the
desired set of the complete (constrained) sys-
tem must be used in the definition of V .

One therefore realizes that the control problem
is itself subject to many constraints. The proposed
strategy has to cope with these various and some-
time antagonist facts (like (β) and (c)). Item (c)
hampers the use as time goes to infinity of any
controller that would switch at time ts between a
free-motion feedback input with F (X∗

d (t−s )) > 0
to a transition phase controller with a “bouncing-
ball” dynamics (i.e. such that F (Xi,nc(t+s )) < 0).

However, such a discontinuous input can be used
during the transient period. The idea of using a
desired motion that would mimic the impacts so
that V (t+k ) − V (t−k ) = 0 even when V (0) = 0 is not
a good one. First of all items (β) and (δ) are in force,
and such a strategy requires also a perfect knowl-
edge of en in (2). Secondly, proving the stability of
such a trajectory is a hard task. We therefore disre-
gard this sort of signals X∗

d (·) for transition phases
Ik. In order to clarify these various notions let us
consider a one degree-of-freedom system







(Ẍ − Ẍ∗
d ) + γ2(Ẋ − Ẋ∗

d ) + γ1(X − X∗
d ) = λ

0 ≤ X ⊥ λ ≥ 0

Ẋ(t+k ) = −enẊ(t−k )

(6)

where X∗
d (·) is some twice differentiable function,

γ2 > 0, γ1 > 0. The “⊥” means that X and λ are
orthogonal, i.e. Xλ = 0. It is clear that Xi,nc ≡ X∗

d .
If X∗

d (t) < 0 on some interval of time I, then the
desired trajectory of the constrained system cannot
be X∗

d (·). Rather, this is going to be simply 0 on I.
Item (d) means that the function V used for stabil-
ity purpose (e.g. a quadratic function of the tracking
error) is zero on Ω2k+1 (constrained-motion phases).
Therefore, the Lyapunov function will be defined
such that on Ik and on Ω2k+1 one has V (X, Ẋ, t) =
0. Since this is a tracking control problem and
since the desired trajectory is equal to 0 on such
phases (even the rebound phase), we conclude that
the tracking error X̃(·) entering V (·) has to satisfy

X̃(·) = 0, so that V (X̃ = 0, ˙̃X = 0) = 0. Thus X̃(·)
cannot be defined from X∗

d (·) neither from Xi,nc but
from a third signal which we shall denote as Xd(·).
Let us again clarify the difference between X∗

d (·)
and Xd(·). Let us take a constant X∗

d < 0 in (6).
Then Xi,nc = X∗

d but since the fixed point of the

complementarity system is (X, Ẋ) = (0, 0), we must
have V (X = 0, Ẋ = 0) = 0 so that the restriction of
V to the Poincaré section Σ+ = {X|X = 0, Ẋ > 0}
is a Lyapunov function for the corresponding
Poincaré impact mapping PΣ. Consequently we
shall define Xd = 0 during these periods of time.
In the following we shall denote X̃ = X − Xd and
X = X−X∗

d . Finally in general Xi,nc �= X∗
d because

X∗
d may be chosen to evolve from one transition

phase Ik to the next one Ik+1 whereas Xi,nc(·) does
not depend on the cycle index k.

2This is mainly due to the fact that the controllers used on phases Ωk assure asymptotic convergence of the tracking errors
towards zero, but do not possess any finite-time convergence properties.
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Such conditions appear quite stringent. Actu-
ally, we are looking for the most direct extension
of Lyapunov’s second method for complementarity
systems as in (1) evolving as in (5). If the task is less
complex than (5) and/or the dynamics possess some
strong properties (see [Brogliato, 1999, Chap. 8])
then the stability analysis may simplify.

The control strategy which is developed in the
sequel, takes all these features into account and
especially imposes a desired trajectory Xi,nc as
depicted in Fig. 4. The orbits of the trajectories
are depicted. Tangential contact is made at A′′

when force control starts so that Xi,nc jumps at
B. In addition item (β) is taken into account by
imposing a “bouncing-ball” dynamics only during
the transient period, i.e. Ik with k < +∞. In
other words, the trajectory Xi,nc(t) makes a tan-
gential contact with ∂Φ because if initial data sat-
isfy X(0) − X∗

d (0) = 0 and Ẋ(0) − Ẋ∗
d (0) = 0

on Ω2k, then X(t) ≡ Xi,nc(t) for t ∈ Ω2k, but
during the transient period the controller assures
the existence of collisions on phases Ik. Therefore
between points A and B in Fig. 4, one may have
X∗

d (·) which violates the constraint during the tran-
sient period, and converges towards a tangential
approach trajectory after a finite or infinite number
of transition phases (or cycles Ω2k ∪ Ik ∪ Ω2k+1).
Between B and C the phase Ω2k+1 occurs during
which objective (ii) is fulfilled. The dashed orbit
AA′B′ in Fig. 4 represents X∗

d (·) during a transition
phase with impacts. The system stabilizes on ∂Φ
between A and B′ when the controller is switched
to a force control so that Xi,nc(·) and X∗

d (·) may

Fig. 4. The closed-loop desired trajectories and control
signals.

jump to B. In the control scheme described later,
the point B′ will converge (in a finite or infinite
number of cycles) towards A′′. We finally define
the closed-loop desired trajectory of the comple-
mentarity system as Xi,c(·). In Fig. 4, Xi,c(·) is the
curve (CAA′′C) and Xi,c(·) ∈ ∂Φ on (A′′C). It is an
impactless trajectory. Let us assume that a periodic
motion is desired. Then in Fig. 4 only the orbits of
Xi,nc(·) (i.e. AA′′BCA) and Xi,c(·) (i.e. AA′′CA) are
fixed. The other two orbits may vary with the cycle
index k. But on a single phase Ik the fixed point of
the closed-loop error system may indeed be a signal
Xd ∈ ∂Φ (A′A′′) which differs from X∗

d �∈ Φ (A′B′).
The orbits (AA′B′) and the point A′ generally vary
from one cycle Ω2k ∪ Ik ∪ Ω2k+1 to the next cycle
Ω2k+2 ∪ Ik+1 ∪ Ω2k+3. One can also interpret this
as defining a desired trajectory X∗

d (·) on each cycle
Ω2k ∪ Ik ∪ Ω2k+1, which is iterated from cycle k to
cycle k+1 so that it converges towards Xi,c(·). The
mixture between the DES and continuous dynamics
clearly appears.

In summary the control strategy and stabil-
ity analysis are led with four different trajectories:
X∗

d (·) in the control input, Xd(·) in the Lyapunov
function, Xi,c(·) and Xi,nc(·). Still referring to
Fig. 4: when the system is initialized on Xi,c(·)
between C and A (i.e. on Ω0), then Xd(t) = Xi,c(t)
on (CA′′) and Xd(t) ∈ ∂Φ on (A′′C). If initially
X(0) �= Xi,c(0) and/or Ẋ(0) �= Ẋi,c(0), then Xd(·)
differs and is set to zero in the Lyapunov function
at a time corresponding to the first impact. This is
the major discrepancy compared to unconstrained
motion control in which all four trajectories are the
same, usually denoted as Xd(·) (see Remark 3).

2. Stability Framework

The stability criterion used in this paper is an exten-
sion of the Lyapunov second method adapted to
closed loop mechanical system with unilateral con-
straints and has been proposed in [Brogliato et al.,
1997] and [Brogliato et al., 2000]. Let x(·) denote
the state of the closed-loop system in (1) with some
feedback controller u(X, Ẋ, t).

Definition 2 (Ω-Weakly Stable System). The
closed-loop system is Ω-weakly stable if for each
ǫ > 0, there exists δ(ǫ) > 0 such that ‖x(0)‖ ≤
δ(ǫ) ⇒ ‖x(t)‖ ≤ ǫ for all t ≥ 0, t ∈ Ω =
⋃

k≥0Ωk. Asymptotic weak stability holds if in addi-
tion x(t) → 0 as t → +∞, t ∈ Ω. Practical Ω-weak
stability holds if there is a ball centered at x = 0,
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with radius R > 0, and such that x(t) ∈ B(0, R) for
all t ≥ T ; T < +∞, t ∈ Ω, R < +∞.

Let us define the closed-loop impact Poincaré
map that corresponds to the section Σ−

I = {x|
Fi(X) = 0, ẊT∇Fi(X) < 0, i ∈ I}, which is a
hypersurface of codimension α = card(I). The pre-
impact velocities are chosen to define PΣI

for a rea-
son given after Claim 3. We define

PΣI
: Σ−

I → Σ−
I xΣI

(k) �→ xΣI
(k + 1) (7)

where xΣI
is the state of PΣI

. Let us introduce the
positive function V (·) that will serve in the subse-
quent analysis. Let VΣI

denote the restriction of V
to ΣI .

Definition 3 (Strongly Stable System). The sys-
tem is said to be strongly stable if: (i) it is Ω-weakly
stable, (ii) on phases Ik, PΣI

is Lyapunov stable
with Lyapunov function VΣI

, and (iii) the sequence
{tk}k∈N has a finite accumulation point t∞ < +∞.

Clearly PΣI
has a fixed point x∗

ΣI
∈ ∂Φ.

Let V (·) satisfy β(‖x‖) ≥ V (x, t) ≥ α(‖x‖),
α(0) = 0, β(0) = 0, α(·) and β(·) strictly increasing.
Let Ik = [τk

0 , tkf ].

Claim 1 (Ω-Weak Stability [Brogliato et al., 1997]).
Assume that the task is as in (5), and that

(a) λ[Ω] = +∞,
(b) for each k ∈ N, λ[Ik] < +∞,
(c) V (x(tkf ), tkf ) ≤ V (x(τk

0 ), τk
0 ),

(d) V (x(·), ·) uniformly bounded on each Ik.

If on Ω, V̇ (x(t), t) ≤ 0 and σV (tk) ≤ 0 for all
k ≥ 0, then the closed-loop system is Ω-weakly
stable. If V̇ (x(t), t) ≤ −γ(‖X‖), γ(0) = 0, γ(·)
strictly increasing, then the system is asymptotically
Ω-weakly stable.

This accomodates for types of motions other
than in (5), see [Brogliato et al., 1997]. Let us
assume that t∞ < +∞. It is noteworthy that
from [Ballard, 2001, Proposition 4.11] this implies
en < 1 (because if en = 1 impact times satisfy
tk+1 − tk ≥ βk > 0 with

∑

k≥0 βk unbounded, so
that t∞ = +∞).

Claim 2 (Ω-Weak Stability). Let us assume that
(a) and (b) in Claim (1) hold, and that

(a) outside impact accumulation phases [t0, t∞] one
has V̇ (t) ≤ −γV (t) for some γ > 0,

(b) inside phases Ik one has V (t−k+1) − V (t+k ) ≤ 0,
for all k ≥ 0,

(c) the system is initialized on Ω0 with V (τ0
0 ) ≤ 1,

(d)
∑

k≥0 σV (tk) ≤ KV κ(τk
0 ) + ǫ for some κ ≥ 0,

K ≥ 0 and ǫ ≥ 0.

Then there exists a constant N < +∞ such that
λ[tk∞, tkf ] = N, for all k ≥ 0 (the cycle index), and
such that:

(i) If κ ≥ 1, ǫ = 0 and N = (1/γ)ln((1 + K)/δ)
for some 0 < δ < 1, then V (τk+1

0 ) ≤ δV (τk
0 ).

The system is asymptotically weakly stable.
(ii) If κ < 1, then V (τk

0 ) ≤ δ(γ), where δ(γ) is a
function which can be made arbitrarily small by
increasing γ. The system is practically Ω-weakly
stable with R = α−1(δ(γ)).

Let us notice that the upperbound in (d) is the
key point of the analysis. It characterizes the uncer-
tainty that is allowed in the variation of the func-
tion V (·)

Proof. From assumption (a) of Claim 2, one has

V (tkf ) ≤ V (t∞)e−γ(tk
f
−t∞) (8)

From assumptions (b) and (d) of Claim 2, one has

V (t∞) ≤ V (τk
0 ) +

∞∑

k=0

σV (tk) +

∞∑

k=0

V (t−k+1) − V (t+k )

≤ V (τk
0 ) + KV κ(τk

0 ) + ǫ (9)

Inequalities (9) and (8) give

V (tkf ) ≤ e−γ(tk
f
−t∞)[V (τk

0 ) + KV κ(τk
0 ) + ǫ] (10)

Let us now analyze two cases:

(i) If κ ≥ 1, then V (τk
0 ) ≥ V κ(τk

0 ). If ǫ = 0, Eq. (10)
becomes

V (tkf ) ≤ e−γ(tk
f
−t∞)(1 + K)V (τk

0 ) (11)

If we want to have V (tkf ) ≤ δV (τk
0 ), we must choose

λ[tkf − t∞] such that:

e−γ(tk
f
−t∞)(1 + K) ≤ δ (12)

This is assured by choosing λ[tkf − t∞] = N with

N =
1

γ
ln

(
1 + K

δ

)

(13)

Clearly if δ > 0, then N < +∞, which proves the
first item.



Tracking Control of Complementarity Lagrangian Systems 1847

(ii) If κ ≤ 1 then V (τk
0 ) ≤ V κ(τk

0 ) ≤ 1. Inequality
(10) becomes

V (tkf ) ≤ e−γ(tk
f
−t∞)(1 + K + ǫ) = δ(γ) (14)

The term δ(γ) can be made as small as desired
by increasing γ (or increasing λ[tkf − t∞]). The

proof is complete since α(‖x‖) ≤ V (x, t) for all x
and t. �

Claim 3 (Strong Stability). The system is strongly
stable if in addition to the conditions in Claim 1
one has

• V (t−k+1) ≤ V (t−k );
• V is uniformly bounded and time continuous on

Ik −⋃k{tk}.

Then the system is strongly stable in the sense of
Definition 3.

Sufficient conditions for strong stability are
that σV (tk) ≤ 0 and V (t−k+1) ≤ V (t+k ), but this

framework permits σV (tk) ≥ 0 provided V (t−k+1) <

V (t+k ) − δ for some large enough δ > 0. Notice also

that V̇ (t) need not be ≤ 0 along the system’s tra-
jectories on the whole of (tk, tk+1). The reason why
we have chosen Σ−

I and not Σ+
I in (7) is that it

allows us to take into account the value V (t−0 ) in
the stability analysis. Notice that q̇(t+∞) = q̇(t−∞).

In order to summarize the consequences of what
is stated in Secs. 1 and 2, let us propose the
following:

Proposition 1. Let the Lagrangian complementar-
ity system as in (1) perform a motion as in (5),
with the closed-loop requirements as in (i)–(iii). Let
us assume that asymptotic tracking controllers are
used on phases Ωk. Then the asymptotic stability in
the sense of Definitions 2 and 3 implies that

• The asymptotically stable closed-loop desired tra-
jectory Xi,c(·) is impactless.

• During the transient period the feedback controller
has to guarantee the existence of collisions with
∂Φ and a finite-time stabilization on ∂Φ.

• Contrary to the unscontrained motion case (Φ =
IRn), the signals Xd(·) entering the Lyapunov
function, X∗

d (·) in the controller, and Xi,c(·), are
not equal to a single so-called desired trajectory.

This proposition is a consequence of items (i)–
(iii), (α) through (δ), (a) through (d), as well as of
Definitions 2 and 3.

3. Tracking Controller Framework

3.1. Controller structure

To make the controller design easier the dynami-
cal equations (1) are considered in the generalized
coordinates introduced in [McClamroch & Wang,
1988]. After transformation in the new coordinates

q =
[

q1
q2

–

, q1 =





q1
1

...
qm
1



, q = Q(X) ∈ IRn, the

dynamic system is as follows







M11(q)q̈1 + M12(q)q̈2 + C1(q, q̇)q̇ + g1(q)

= T1(q)u + λ

M21(q)q̈1 + M22(q)q̈2 + C2(q, q̇)q̇ + g2(q)

= T2(q)u

qi
1 ≥ 0, qi

1λi = 0, λi ≥ 0, 1 ≤ i ≤ m

Collision rule

(15)

where the set of complementarity relations can be
written more compactly as 0 ≤ λ ⊥ Dq ≥ 0 with

D = [Im
...0] ∈ IRm×n, Im is the identity matrix.

Clearly M21(q) = MT
12(q) ∈ IR(n−m)×m, M11(q) ∈

IRm×m, M22(q) ∈ IR(n−m)×(n−m). In the new coor-
dinates q one therefore has Φ = {q|Dq ≥ 0}.
The tangent cone TΦ(q1 = 0) = {v|Dv ≥ 0} is
the space of admissible velocities on the boundary
of Φ. The polar cone to TΦ(·) is the normal cone
NΦ(q) = {v|∀z ∈ TΦ, zT v ≤ 0 }. In case q ∈ ∂Φ,
one gets NΦ(q) = {v|v = DT λ, λ ≤ 0} [Hiriart-
Urruty & Lemaréchal, 1996]. Obviously from (15)
the generalized contact force Pq = DT λ ∈ −NΦ(q).
The controller developed in this paper uses three
different low-level control laws for each phase Ω2k,
Ω2k+1 and Ik

3

T (q)u =







Unc for t ∈ Ω2k

Ut for t ∈ Ik

Uc for t ∈ Ω2k+1

where T (q) =
„

T1(q)
T2(q)

«

∈ IRn×n. A supervisor

switches between these three control laws, and is
described below (see Fig. 8). The stability of this

3With some abuse of notations we assimilate the time domains to the modes that correspond to the three phases in (5).
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controller is analyzed by using the criteria proposed
in Sec. 2. The asymptotic stability of this scheme
makes the system land on the constraint surfaces
tangentially after enough cycles of constraints/free
motions (one cycle = Ω2k ∪ Ik ∪Ω2k+1). Asymptot-
ically the transitions between free motion phases
and permanently constraint phases are done with-
out any collision.

Remark 1 (Dynamic Coupling Effects). From (15)
it follows that σq̇2(tk) = M−1

22 M21σq̇1(tk). Apply, for
instance, a feedback linearizing input u in (15) so
as to get the dynamics

{
q̈1 = v1 + λ

q̈2 = v2

(16)

where v1 and v2 are the new inputs. One is then
tempted to mimic the one degree-of-freedom case,
see [Brogliato et al., 1997]. However, except if
V(t) = T (t) (the kinetic energy) at time t =
tk, there is limited possibility to get σV(tk) ≤ 0
(because the controller does not decouple the
dynamics at impact times!). This precludes the use
of any controller with Lyapunov function not resem-
bling the system’s mechanical energy. In the sequel,
we will use a Lyapunov function which is very close
to the global energy of the system. This will help
us a lot in the stability analysis.

Let us choose

V (t, q̃, ˙̃q) =
1

2
˙̃q
T
M(q) ˙̃q +

1

2
γ1q̃

Tq̃ (17)

with q̃(·) = q(·) − qd(·). The control law used in
this scheme is based on the controller presented
in [Paden & Panja, 1988], originally designed for
free-motion position and velocity global asymptotic
tracking. Let us propose

T (q)u =







Unc = M(q)q̈∗d + C(q, q̇)q̇∗d + g(q)

− γ1(q − q∗d) − γ2(q̇ − q̇∗d)

Ut = Unc before the first impact

Ut = g(q) − γ1(q − q∗d) − γ2q̇

after the first impact

Uc = Unc − Pd + Kf (Pq − Pd)

(18)

where γ1 > 0, γ2 > 0, Kf > 0, Pd = DTλd

is the desired force we want for the permanently
constraint motion. The signals q∗d and qd will be
defined later, as well as the switching conditions
between the controllers in (18). The overall struc-
ture of the controller is depicted in Fig. 5. One sees
that the controller structure is constant. Disconti-
nuities are a consequence of the feedforward part
only. The switchings may be event-based, or open-
loop, see Fig. 8 which depicts how the supervisor is
designed. The interest for choosing this controller
is that the function V (t, q̃, ˙̃q) in (17) is very close
to the total energy of the system. Notice that u in
(18) is independent of the restitution coefficient en.
From (18) the third condition in Claim 1 can be
replaced by V (tkf ) ≤ V (t−0 ) since V (t−0 ) ≤ V (τk

0 ).

Fig. 5. Structure of the controller.
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Remark 2.. It is noteworthy that in order for the sys-
tem to track a sequence of modes as in (5), some
conditions on the initial state and the selected input
are required. This is called synchronicity of the high-
level controller and the system’s modes defined in
(5) in [Brogliato et al., 2000].

As observed in the introduction, a control strat-
egy which consists of attaining the surface ∂Φ tan-
gentially and without incorporating impacts in the
stability analysis, cannot work in practice due to its
lack of robustness. In view of this, the control law
for the transition phase is defined in order

• to make the system hit the constraint surface
(and then dissipate energy during impacts) if the
tracking error is not zero;

• to make the system approach the constraint sur-
face tangentially (without rebound) if the track-
ing is perfect.

These two situations are conflicting. On the
other hand, the coupling between q1 and q2 in (15),
and the stability framework in Claims 1 and 3, make
the asymptotic stability quite difficult to obtain if
velocities are subject to discontinuities. Indeed as
indicated in item (c) in Sec. 1.5, any velocity jump
at tk implies σV (tk) > 0 when V ≡ 0. Hence if the
transition phase is constructed with impacts, one
has to find a manner to get V (tkf ) = 0 in order to
force the system to remain on the desired trajectory
Xd(·) (here qd(·)). This is not obvious in general (see
Remark 1) and defining q∗d(·) as done below is a way
to get the result.

Remark 3.. If the system is unconstrained (i.e.
Φ = IRn) then motion control is assured by set-
ting T (q)u ≡ Unc and the trajectory q∗d(·) is the
unique closed-loop invariant. It is globally uni-
formly asymptotically stable in this case, see [Paden
& Panja, 1988]. As indicated in the introduction,
many other controllers can be used in this case
which all guarantee the same tracking properties.

3.2. Design of the desired trajectory

on phases Ik

During the transition phase q∗d(t) is defined as fol-
lows (see Fig. 6 for q∗1d(·), where A,A′, B′, B and C
correspond to Fig. 4):

Fig. 6. Trajectory q∗
1d

(t).

Let us note that the indices k for the phases Ωk

and Ik and for the impact times tk, are not related.
They are dummy variables. To avoid possible confu-
sion, all superscripts (·)k will refer to cycle k in (5).
Let us define

• τk
0 is the chosen by the designer as the start of

the transition phase Ik,
• tk0 is the time corresponding to q∗1d(t

k
0) = 0,

• t0 is the first impact,
• t∞ is the finite accumulation point of the

sequence {tk}k≥0,
• tkf is the end of the transition phase Ik,

• τk
1 is such that q∗1d(τ

k
1 ) = −αV (τk

0 ) and q̇∗1d
(τk

1 ) = 0,4

• Ω2k+1 = [tkf , tkd], tkd will be defined in Sec. 3.3 (see

Fig. 7).

One has Ik = [τk
0 , tkf ], Ω2k+1 = [tkf , tkd]. On [τk

0 ,

t0), we impose that q∗d(t) is twice differentiable, and
q∗1d(t) decreases towards −αV (τk

0 ) on [τk
0 , τk

1 ]. In
order to cope with the coupling between q1 and

4In [Brogliato, 1999; Brogliato et al., 2000] it is implicitly assumed in the stability proofs that τk
1 < t0, which is a shortcoming

that we avoid in this paper.
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Fig. 7. Trajectory λd(t).

q2, the signal q∗2d(t) ∈ C2(IR+) is frozen during the
transition phase, i.e.

• q∗2d(t) = q∗2d, q̇∗2d(t) = 0 on [τk
0 , t∞];

• q∗2d(t) is defined on [τk
0 , tk0 ] such that q̇∗2d(t

k
0) = 0.

On (t0, t
k
f ], we define qd and q∗d as follows:

qd =

(

0
q∗2d

)

, q∗d =

(

−αV (τk
o )

q∗2d

)

(19)

On [tkf , tkd] we set qd =
(

0

q2d(t)

«

and q∗1d = 0.

Therefore on (tkf , tkd) one has qd(t) = q∗d(t). The pur-
pose of q∗d is to create a “virtual” potential force
which stabilizes the system on ∂Φ even if the posi-
tion of the constraint is uncertain. Consequently,
the fixed point (qd, q̇d) of the complementarity sys-
tem is used in the expression of the Lyapunov fonc-
tion (q̃ = q − qd), whereas the unreachable fixed
point q∗d is used in the control law (q = q − q∗d with
q∗d as in (19)). In Unc in (18) we have q∗d(·) = qd(·)
since q∗d(t) = qd(t) for t ∈ Ω2k ∪ [τk

0 , t0]. In sum-
mary, after the first impact at t0, q1d(·) is set to
zero while in case τk

1 > t0, q∗1d(·) is set to −αV (τk
0 )

(in other words, Ut switches as indicated in (18)) .
Since q̇1d(t

−
0 ) �= 0 and q1d(t

−
0 ) �= 0 in general, the

trajectory q1d(·) behaves like in a sort of plastic col-
lision (en = 0). With respect to Fig. 4, one has τk

0 at
A, t∞ at B′, tk0 at A′, tkd at C, and B at tkf (the term

−Pd − KfPd defines the signal X∗
d (·) between B

and C in Fig. 4). If V (τk
0 ) = 0 then A′′ corresponds

to the time τk
1 .

The piece of curve AA′ in Fig. 4 is normal to
∂Φ (which in coordinates q is the codimension-m
plane q1 = 0). The closed-loop desired trajec-
tory Xi,c(·) is defined as qi,c(t) = q∗d(t) on Ω2k,

qi,c(t) = q∗d(t) with α = 0 on Ik, and qi,c
1 (t) = 0

on Ω2k+1, qi,c
2 (t) = q∗2d(t) on IR+. It is impactless.

The choice for q∗d(·) is done essentially to
get σV (tk) ≤ 0 on Ik.

Remark 4.. It is noteworthy that the proposed strat-
egy implies that Uc is switched only after stabiliza-
tion on ∂Φ is achieved. This implies that the period
at which a cycle Ω2k ∪ Ik ∪ Ω2k+1 is performed, is
lower-bounded by |t∞ − t0|. If impacts are plastic
(en = 0) then the speed of a cycle can be increased
while if en is close to 1 the programmed speed must
be smaller. This is logical from an intuitive point of
view since this is a consequence of how much kinetic
energy impacts dissipate.

Remark 5.. Due to the fact that we want VΣI
to act

as a Lyapunov function for PΣI
in (7) and since the

Poincaré mapping fixed point satisfies q∗
ΣI,1 = 0,

we have to set q1d to zero and q2d constant on the
transition phase. However, the approach trajectory
(AA′) in Fig. 4 is not so easy to design. This is what
Claim 5 below solves.

3.3. Conditions for take-off

In the previous subsection we designed the tra-
jectory q∗d(·) to stabilize the system on ∂Φ. We
now deal with the conditions on the control signal
Uc(qd, q̇d, q̈d, Pd) for take-off at the end of Ω2k+1. On
[tkf , tkd), the dynamics of the system is defined by

M(q)q̈ + F (q, q̇) = Uc + DTλ (20a)

0 ≤ q1 ⊥ λ ≥ 0 (20b)

with F (q, q̇) = C(q, q̇)q̇ + G(q). On [tkf , tkd), the sys-

tem is permanently constrained, i.e. q1(·) = 0 and
q̇1(·) = 0. Then (20b) implies [Glocker, 2001]

0 ≤ q̈1 ⊥ λ ≥ 0 (22)

There is take-off at tkd if q̈1(t
k+
d ) > 0. From (22)

a necessary condition to have q̈1(t
k+
d ) > 0 is that

λ(tk−d ) = 0.

Claim 4. Consider the closed-loop system (20)
(18), during the permanently constraint phase
[tkf , tkd]. Detachment is assured if

b(q, q̇, Unc, λd) > 0

with b(q, q̇, Unc, λd) = DM−1(q)[−F (q, q̇) + Unc −
DT (1 + Kf )λd].
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Proof. Let us detail the expression of the Linear
Complementarity Problem (LCP) in (22). With the
notation of Sec. 3.1, (22) can be rewritten as

0 ≤ Dq̈ ⊥ λ ≥ 0 (23)

From (20a) and (18), one has

q̈ = M−1(q)[−F (q, q̇) + Uc + DT λ]

= M−1(q)[−F (q, q̇) + Unc + (1 + Kf )(DT λ − Pd)].

(24)

By inserting (24) in (23), one obtains the fol-
lowing LCP:

0 ≤ DM−1(q)[−F (q, q̇) + Unc − (1 + Kf )DTλd]
︸ ︷︷ ︸

b(q,q̇,U,λd)

+ (1 + Kf )DM−1(q)DT

︸ ︷︷ ︸

A(q)

λ ⊥ λ ≥ 0 (25)

which we rewrite more compactly as

0 ≤ b(q, q̇, Unc, λd) + A(q)λ ⊥ λ ≥ 0. (26)

Let us study the LCP in (26). Since A(q) > 0
there is a unique solution:

• If b(·) > 0, then b(·) + A(q)λ > 0 and the orthog-
onality condition b(·) + A(q)λ ⊥ λ implies λ = 0,

• If b(·) < 0 then the condition 0 ≤ b(·) +
A(q)λ1 and the orthogonality imply λ = −A−1(q)
b(·) > 0,

• If b(·) = 0 then (26) becomes 0 ≤ A(q)λ ⊥ λ ≥ 0
and λ = 0.

In conclusion, λ = 0 if and only if b(q, q̇, Unc, λd)
≥ 0. From (24) and (25)

q̈1(t) = b(q, q̇, Unc, λd) + A(q)λ

If λ = 0, then q̈1(t) = b(q, q̇, Unc, λd), and a suffi-
cient condition for detachment is:

b(q, q̇, Unc, λd) > 0 �

3.4. Control strategy to assure

detachment

The only parameter we can tune to force take-off
without influencing the variation of the Lyapunov
function V (·) is λd(t). By inserting (18) in the
expression of b(q, q̇, Unc, λd), one gets

b(q, q̇, Unc, λd) = DM−1(q)[M(q)q̈d

−C(q, q̇) ˙̃q − γ1q̃ − γ2
˙̃q

−DT (1 + Kf )λd] (27)

After some computation, (27) and the result of
Claim 4 provide a sufficient condition for take-off
(time argument is dropped in (28))

q̈1 = ([M−1
(q) ]11C11(q, q̇) + [M−1

(q) ]12C21(q, q̇))q̇1d

+ γ2[M
−1
(q) ]11q̇1d + γ1[M

−1
(q) ]11q1d

−([M−1
(q) ]21C11(q, q̇) + [M−1

(q) ]22C21(q, q̇)) ˙̃q2

− γ2[M
−1
(q) ]21 ˙̃q2 − γ1[M

−1
(q) ]21q̃2

− [M−1
(q) ]11(1 + Kf )λd + q̈1d > 0 (28)

with the decomposition of matrix M−1(q) and
C(q, q̇) as

M−1(q) =






[

M−1
(q)

]

11

[

M−1
(q)

]

12
[

M−1
(q)

]

21

[

M−1
(q)

]

22




 and

C(q, q̇) =

(
C11(q, q̇) C12(q, q̇)

C21(q, q̇) C22(q, q̇)

)

Depending of the sign of q̃2 and ˙̃q2, b(·) is not
necessarily positive with λd = 0. Therefore we have
to choose a profile for λd(t) which is continuously
decreasing until b(q, q̇, Unc, λd) > 0, even if a neg-
ative desired force is meaningless because it is not
reachable (see Fig. 7). The time tkd is defined as
the first instant such that q̈1(t

k
d) > 0. Since all

signals are bounded, from (28) tkd is garanteed to
be bounded as well.

Now we have to assure that the system does
not make contact again with ∂Φ when the control
law switches from Uc(t

k−
d ) to Unc(t

k+
d ) at the take-

off. Then Unc(t
k+
d ) has to be chosen to garantee

q̈1(t
k+
d ) > 0.

At tk−d , the control law is Uc and q1d(t
k−
d ) = 0,

q̇1d(t
k−
d ) = 0 and q̈1d(t

k−
d ) = 0. Therefore (28) is

simplified to

q̈1(t
k−
d ) = b(q, q̇, Unc, λd)

= −([M−1
(q) ]21C11(q, q̇) + [M−1

(q) ]22C21(q, q̇)) ˙̃q2

− γ2[M
−1
(q) ]21 ˙̃q2 − γ1[M

−1
(q) ]21q̃2

− [M−1
(q) ]11(1 + Kf )λd(t

k−
d ) > 0 (29)

At tk+
d , the control law is Unc so that λd

(tk+
d ) = 0 in b(q, q̇, Unc, λd) evaluated at tkd. Since

the desired trajectory has to be twice differentiable,
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let us choose q1d(t
k+
d ) = 0 and q̇1d(t

k+
d ) = 0. We

obtain

q̈1(t
k+
d ) = b(q, q̇, Unc, 0)

= −([M−1
(q) ]21C11(q, q̇) + [M−1

(q) ]22C21(q, q̇)) ˙̃q2

− γ2[M
−1
(q) ]21 ˙̃q2 − γ1[M

−1
(q) ]21q̃2 + q̈1d(t

k+
d )

(30)

Finally, the condition to guarantee q1(t) > 0
on (tkd, t

k
d + ǫ), for some ǫ > 0, is that the term

q̈1d(t
k+
d ) in (30) compensates the loss of the term

−[M−1
(q) ]11(1 + Kf )λd in (29) due to the switching

from Uc to Unc. The condition on the desired tra-
jectories at the begining of the free-motion phase
Ω2k+2 is

q̈1d(t
k+
d ) ≥ max(0,−

[

M−1
(q(tk

d
))

]

11
(1 + Kf )λd(t

k−
d ))

(31)

Remark 6.. It is interesting to notice that the two
transitions Ω2k → Ω2k+1 and Ω2k+1 → Ω2k+2, are
monitored by desired signals q∗1d and λd which vio-
late the complementarity conditions, as shown in
Fig. 7.

3.5. Closed-loop stability analysis

The closed-loop dynamical system is now com-
pletely defined. It consists of a somewhat complex
dynamical system, with complementarity condi-
tions, impact law, and switching torque input.

Ω2k −−−−−→ Ik −−−−−→ Ω2k+1 −−−−−→ Ω2k+2

(Unc) ↑ (Ut) ↑ (Uc) ↑ (Unc)
time−based state−based state−based

(τk
0 ) (tk

f
≥t∞) (tk

d
= detachment).

The aim is now to prove that this dynamical sys-
tem, seen as an error system with state vector (q̃, ˙̃q),
is stable in the sense of Definitions 2 and 3. As seen,
this means that asymptotically the trajectory qi,c(·)
is attained. The closed-loop state can be chosen as
x = (q̃, ˙̃q), according to Definition 2 which concerns
only phases Ωk.

Definition 4. {CI} is the subspace of initial con-
ditions x(0) which assure t0 ≥ τk

1 uniformly along a
motion as in (5).

The foregoing developments hold indepen-
dently of m. Let us assume that m = 1 now. We will

come back to the case m ≥ 2 later on. {CI} con-
tains the initial data guaranteeing that no impact
occurs before the signal q∗d(·) is frozen. This is very
useful because it can then be proved that the con-
ditions for asymptotic strong stability are fullfilled.
However in general x(0) �∈ {CI}, so that an impact
occurs before q∗d(·) is frozen (i.e. q̇∗d(t

−
0 ) �= 0, see

Fig. 6). A specific analysis (completing the one in
[Brogliato et al., 2000]) has to be done.

Assumption 1. The controller Ut in (18) assures
that a sequence {tk}k≥0 of impact times exists, with
limk→+∞tk = t∞ < +∞.

One difficulty in the stability analysis along a
cycle like in (5), is to assure that initial tracking
errors do not increase from one cycle Ω2k ∪ Ik ∪
Ω2k+1 to the next, due to the impacts. As we shall
see next, one key point in the stability is the value
of the first jump in V (·), i.e. σV (t0). Let us calculate
the value of the jumps in V (·) at tk

σV(tk) = TL(tk) −
1

2
γ1q1d

2(t−k )

− 1

2
q̇d(t

−
k )TM(q(tk))q̇d(t

−
k )

+ q̇(t−k )TM(q(tk))q̇d(t
−
k ) (32)

where TL(tk) is the loss of kinetic energy at impact
tk, and we used the fact that q̇d(t

+
k ) = 0, q̇2d

(t−k ) = 0, q2d(t
+
k ) = q2d(t

−
k ) = q∗2d and q1d(t

+
k ) = 0.

For k ≥ 1, one has q1d(t
+
k ) = 0 and q̇d(t

−
k ) = 0.

From the above definition of qd(·), it is assumed that
tk0 < t0, so that q̇2d(t0) = 0. If this is not the case
then q2d(·) can be frozen earlier in the process to
assure that at the first impact q̇2d(t0) = 0. Then
one has






σV (tk) = TL(tk) ≤ 0

σV (t0) = TL(t0) −
1

2
γ1q1d

2(t−0 )

− 1

2
q̇d(t

−
0 )TM(q(t0))q̇d(t

−
0 )

+ M11(q(t0))q̇1(t
−
0 )q̇1d(t

−
0 )

+ q̇2(t
−
0 )TM21(q(t0))q̇1d(t

−
0 )

(33)

It is noteworthy that the equalities in (33) hold
independently of the chosen impact rule. The only
assumption is that impacts dissipate kinetic energy.
The above choice for q∗d(·) and switching strategy,
is done in order to possibly obtain σV (t0) ≤ 0
and σV (tk) ≤ 0 for k ≥ 1. Let us now state the
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following:

Claim 5. Let Assumption (1) hold. The system
defined by (1) in closed-loop with the controller in
(18) and qd(·), q∗d(·) as defined above, is

(i) Asymptotically strongly stable if x(0) ∈ {CI}.
(ii) Asymptotically strongly stable if q∗d(·) is

designed such that at the first impact time
of each phase Ik we have [M11(q(t0))q̇1(t

−
0 ) +

q̇2(t
−
0 )T M21(q(t0))]q̇1d(t

−
0 ) ≤ 0.

(iii) Asymptotically strongly stable if M12 = 0 and
en = 0.

(iv) Asymptotically weakly stable if M12 = 0 and
0 ≤ en < 1.

Proof

(i) The proof of the first item can be found in
[Brogliato et al., 2000]. Instances for which {CI} �=
∅ can be calculated in simple cases like one degree-
of-freedom systems. They occur under somewhat
stringent conditions.

(ii) It follows immediately from (33) that if
[M11(q(t0))q̇1(t

−
0 ) + q̇2(t

−
0 )TM21(q(t0))]q̇1d(t

−
0 ) ≤ 0

then σV (t0) ≤ 0. And then we can use the proof
done in [Brogliato et al., 2000].

(iii) The proof of the third item follows the same
line but in this case σV (t0) has to be shown to be
non-negative because it is not equal to the kinetic
energy loss. Let us consider Moreau’s collision rule
as written in (3). Notice that since m = 1

prox
M(q(t0))

[M−1(q(t0))NΦ(q(t0)); q̇(t
−
0 )]

= q̇(t−0 )TM(q(t0))nqnq (34)

where nq = (M−1(q(t0))D
T )/(
√

DM(q(t0))DT ) ∈
IRn×1 is the normal vector in the kinetic metric
[Brogliato, 1999, Chap. 6] and D = [1 0 · · · 0] ∈
IRn×1. One gets from (34) and using for instance the
Schur complement to calculate M−1(q(t0)) [Horn &
Johnson, 1999, p. 472]

prox
M(q(t0))

[M−1(q(t0))NΦ(q(t0)); q̇(t
−
0 )]

= q̇1(t
−
0 )

(

1

M−1
22 (q(t0))M

T
12(q(t0))

)

(35)

Therefore from (3) one gets
{

σq̇1(tk) = −(1 + en)q̇1(t
−
k )

σq̇2(tk) = (1 + en)M−1
22 (q(tk))M

T
12(q(tk))q̇1(t

−
k )

(36)

From (36) and (33), after some manipulations
we arrive at the following:







σV (t0) =
e2
n − 1

2
[M11(q(t0)) − M12(q(t0))

×M−1
22 (q(t0))M

T
12(q(t0))]q̇

2
1(t

−
0 )

− 1

2
M11(q(t0))q̇

2
1d(t

−
0 )

+ M11(q(t0))q̇1(t
−
0 )q̇1d(t

−
0 )

+ q̇2(t
−
0 )TM21(q(t0))q̇1d(t

−
0 )

− 1

2
γ1q

2
1d(t

−
0 ).

(37)

It follows immediately from (37) that if en = 0
and M21 = 0 then

σV (t0) = −1

2
M11(q(t0)) ˙̃q

2
1(t

−
0 ) − 1

2
γ1q

2
1d(t

−
0 )

≤ 0 (38)

Hence, strong stability is assured and the third item
is proved.

(iv) If M12 = 0 and 0 ≤ en < 1, one has

V (t) = V1(t) + V2(t)

=
1

2
M11(q(t0)) ˙̃q

2
1(t) +

1

2
˙̃q2(t)

T M22(q(t0)) ˙̃q2(t)

+
1

2
γ1q̃

2
1(t)

︸ ︷︷ ︸

V1(t)

+
1

2
γ1q̃2(t)

T q̃2(t)
︸ ︷︷ ︸

V2(t)

(39)

From (39), V2(t) and V1(t) are decoupled, then
V2(t) is a smooth function and V̇2(t) ≤ 0 for all t.
Therefore V2(t∞) ≤ V2(τ

k
0 ). Since V1(t∞) = 0 ≤

V1(τ
k
0 ) one has

V (t∞) ≤ V (τk
0 ) (40)

Then item (iv) of Claim 5 3.5 is proved. �

4. A Weakly-Stable Scheme

It is of some interest to design a feedback control
strategy whose closed-loop stability can be analyzed
with Claim 2. The control law used in this section
has the same global structure as in Figs. 5–8. How-
ever the nonlinear controller block is based on the
scheme presented in [Slotine & Li, 1988]. Let us
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Fig. 8. Supervisor evolution.

propose the following:

T (q)u =







Unc = M(q)q̈r + C(q, q̇)q̇r + g(q) − γ1s

Ut = Unc before the first impact

Ut = M(q)q̈r + C(q, q̇)q̇r + g(q) − γ1s

after the first impact

Uc = Unc − Pd + Kf (Pq − Pd)

(41)

where s = ˙̃q + γ2q̃, s = q̇ + γ2q, q̇r = q̇d − γ2q̃,
γ2 > 0 and γ1 > 0 are two scalar gains, Kf > 0,
Pd = DT λd is the desired contact force during per-
manently constraint motion.

Assumption 2. The controller Ut in (41) assures
that a sequence {tk}k≥0 of impact times exists, with
limk→+∞tk = t∞ < +∞.

Let us consider the following positive functions

V1(t, s) =
1

2
s(t)TM(q)s(t)

V2(t, s) =
1

2
s(t)TM(q)s(t) + γ2γ1q̃(t)

T q̃(t)

(42)

In case Φ = IRn, any of the two functions V1(·)
and V2(·) can be used in order to prove the stability

of the closed-loop system (15), (41) [Lozano et al.,
2000, Sec. 6.2.5; Spong et al., 1990]. In the case of
interest here Φ ⊂ IRn, it becomes complicated and
as we shall see, both functions are needed for the
stability analysis. In particular, one has V̇1(t) ≤ 0
and V̇2(t) ≤ 0 along the closed-loop system as long
as T (q)u = Unc in (41), see [Lozano et al., 2000;
Slotine & Li, 1988]. It is noteworthy that Claim 6
is proved with V2(·), while Claim 7 is based on
V1(·) and the choice of the closed-loop state vector
x(t) = s(t).

Claim 6 (Upper-Bounds). Consider the closed-
loop system (15), (41) on the time interval [τk

0 , t0],
and with the particular choice of q∗1d(·) given in
(55)–(57 ) in Appendix A. One has

(i) |q∗1d(t0)| ≤
√

V2(τ
k
0 )

γ2γ1

(ii) |q̇∗1d(t
−
0 )| ≤ K0V

1/4
2 (τk

0 )

where K0 ≥ 0.

Proof. The proof of Claim 6 is provided in
Appendix A. �
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Claim 7. Let Assumption 2 hold, en ∈ (0, 1) and
q∗1d be defined as in (55)–(57 ). Consider the sys-
tem defined by (15) in closed-loop with the controller
in (41).

(i) If the controller T (q)u in (41) assures that
‖q̃(τk

0 )‖ < ǫ, ǫ > 0 for all k over the cycles, then
the system initialized on Ω0 with V2(τ

0
0 ) ≤ 1

satisfies the requirements of Claim 2 and is
therefore pratically Ω-weakly stable with closed-
loop state x(·) = s(·).

(ii) If the controller T (q)u in (41) assures that
‖q̃2(tk+1)‖ ≤ ‖q̃2(tk)‖, for all tk on [t0, t∞),
then the system initialized on Ω0 with V2(τ

0
0 )

≤ 1 satisfies the requirements of Claim 2 and is
therefore pratically Ω-weakly stable with closed-
loop state x(·) = [s(·), q̃(·)].

Notice that ǫ in (i) need not be small, it is how-
ever important that it does not depend on the cycle
index in (5). Note also that V1(t) ≤ V2(t) for all
t ≥ 0 so that V1(τ

0
0 ) ≤ V2(τ

0
0 ) ≤ 1 in (i).

Proof. The proof of Claim 7 is provided in
Appendix B. �

Claim 8. Assume that the conditions of Claim 7
hold. Consider the closed-loop system (15), (41).
The tracking errors satisfy ‖q̃(t)‖ ≤ 2R and
‖ ˙̃q(t)‖ ≤ (1+2γ)R for all t ∈ Ω, and ‖s(t)‖ ≤ R for

all t ∈ Ω, with R = (2/λmin(M(q)))e−γ(tk
f
−t∞)(1 +

K + ǫ′))1/2.

Proof. From the definition of s(t) one has q̃ =
(1/(p + 1))s where p ∈ C is the Laplace variable.
Then on [tkf , t) with t ∈ Ω, q̃(t) is the response of a

linear filter with input s(·). One obtains

q̃(t) = e−(t−tk
f
)s(tkf ) +

∫

(tk
f
,t)

e−(t−τ)s(τ)dτ (43)

Equality (43) implies the following inequality:

‖q̃(t)‖ ≤ ‖s(tkf )‖ + e−t(t − tkf )‖s‖∞ (44)

where ‖x‖∞ = supt≥tk
f
|x(t)| is the L∞ norm. From

Claim 7, one has ‖s‖ ≤ R so (44) becomes

‖q̃(t)‖ ≤ [1 + e−t(t − tkf )]R

≤ 2R
(45)

From the definition of s(t) one has ˙̃q(t) =
s(t) − γ2q̃(t) then

‖ ˙̃q(t)‖ ≤ ‖s(t)‖ + γ2‖q̃(t)‖ (46)

By inserting (45) in (46), and using the fact
that ‖s‖ ≤ R, one obtains

‖ ˙̃q(t)‖ ≤ [1 + 2γ2]R (47)

�

Claim 9 (Plastic Impact). Let Assumption 2
hold, en = 0 and q∗1d be defined as in (55)–(57 ).
The system defined by (15) in closed-loop with the
controller in (41) initialized on Ω0 with V2(τ

0
0 ) ≤ 1

satisfies the requirements of Claim 2 and is there-
fore pratically Ω-weakly stable with closed-loop state
x(·) = [s(·), q̃(·)].

Proof. As en = 0, there is only one impact per
phase Ik, and then the item (b) of Claim 2 is use-
less. Items (a) and (d) are proved in the proof of
Claim 7(ii).

Then the system (15) with the controller (41)
satisfies all the requirements of Claim 2 with ǫ �= 0.
Consequently, it is pratically Ω-weakly stable with
x(·) = [s(·), q̃(·)]. �

5. Simulation Examples

The control scheme in (18) is tested in simulation
on a two-link planar manipulator for the simplest
case of a scalar constraint. The constraint surface
corresponds to the ground (y = 0). The natural gen-
eralized coordinates so that the dynamics fits with
(15), with m = 1, are the work-space coordinates
(x, y). We take

q =

[
q1

q2

]

=

[
y

x

]

, y > 0, en = 0.7

5.1. Asymptotic convergence

Figure 10 shows the evolution of q1(t) and q2(t)
during cyclic tasks as in (5). On the graph of
q1, the asymptotic convergence of the controller is

Fig. 9. Two-link planar manipulator.
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Fig. 10. Asymptotic convergence.

exhibited as the value of αV (τk
0 ) decreases exponen-

tially. The graph of q2 shows the coupling between
q1 and q2. At each impact time a jump in q̇2 occurs.
The periodic step on q2d corresponds to the transi-
tion phase during which q2d needs to be frozen.

5.2. Robustness

In this subsection, we study the robustness of
the controller with respect to the uncertainty
on the constraint position. The robustness of
closed-loop systems is a crucial step towards their

implementation. The work that is performed here is
essentially numerical, but may provide useful infor-
mation on the controller robustness and its perfor-
mance in practice. The location of the constraint
surface is not known accurately. As seen in Fig. 11,
two situations may be considered.

• If c < 0, the estimated position of the constraint
is lower than the real position. In this case, the
desired trajectories decrease toward q1d(τ

k
1 ) =

−αV (τ0
k )−|c| instead of q1d(τ

k
1 ) = −αV (τ0

k ). The
error c can be incorporated in the term −αV (τ0

k )
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Fig. 11. Estimated position q̂1c.

and the stability of the transition phase is not
changed. During the constraint phase the con-
troller is

Uc = U ideal
nc −

(

Pd + γ1

[ |c|
0

])

+ Kf (Pq − Pd)

The error term γ1|c| is added to the desired force
Pd and contributes to keep the contact with the
surface during the constrained phase.

The system remains stable but it loses its
asymptotic stability: If the tracking is perfect
V (τ0

k ) = 0 and q∗1d = −|c|, so that the sys-
tem does not approach the surface tangentially
and rebounds occur. Due to item (c) in Sec. 1.5,
asymptotic stability is not preserved. An example
is depicted in Fig. 12.

• If c > 0, the estimated position of the constraint
is above the real position. If the tracking is per-
fect V (τ0

k ) = 0, the desired trajectory decreases
toward q1d = c and the system never reaches the
constraint. There is no convergence (see Fig. 13).

Fig. 12. Stability if c < 0.

Fig. 13. Nonconvergence if c > 0.
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Fig. 14. Auto-adjustment of q̂1c.

This problem can be solved by monitoring the
time of stabilization. If there is no stabilization after
an estimated time t̂∞, the estimated position of the
constraint is refreshed as q̂new

1c = q̂old
1c − ǫ. After a

finite number of iterations, one gets q̂1c < 0. The
system is in the previous situation c < 0 and the
stability is preserved. Figure 14 shows an example
of self-adjustment of the estimated position of the
constraint.

When tracking is not perfect and αV (τ0
k ) > c,

the transition phase is able to stabilize the system
on the surface ∂Φ. But during the constraint phase,
the control law is

Uc = U ideal
nc −

(

Pd − γ1

[
c

0

])

+ Kf (Pq − Pd)

Pd must be chosen large enough compared to γ1c to
be sure that the system keeps the contact with the
surface during the whole constraint phase.

6. Mutiple Impacts

This section extends the previous controller frame-
work to the case of multiple impact.

Definition 5 (Multiple Impact). A multiple impact
is an impact into a singularity as in Definition 1.

If the singularity has codimension α, the multiple
impact is named an α-impact. We also denote the
singularity as Σα.

The difficulty created by stabilization at sin-
gularities of ∂Φ, is that the way the system
attains the singularity, may vary: the system may
hit the singularity directly, or hit one or sev-
eral surfaces Σi (through a finite or infinite num-
ber of impacts) before attaining the singularity,

as depicted in Fig. 15. Let us define θij
kin as the

kinetic angle between two surfaces Σi and Σj, i.e.
the angle in the kinetic metric defined as xT M(q)y
for n-vectors x and y. In the following, we shall
restrict ourselves to m = 2 (two constraints) and
θ12
kin ≤ π/2. The reasons for this choice are the

following:

• Let us further assume that en = 0 in (2). As
shown in [Paoli, 2002], the conditions θ12

kin ≤
(π/2) and en = 0 imply that trajectories (i.e.
solutions of the closed-loop system) are contin-
uous with respect to the initial conditions.

• Let us take en ∈ [0, 1] and assume that the sys-
tem performs a constrained motion phase on Σ1

before hitting ∂Φ at q. Then q̇(t−k ) ∈ NΦ(q) so
that from (3) q̇(t+k ) = −enq̇(t−k ). This means that
after the shock the velocity is again tangent to

(a) (b) (c)

Fig. 15. Multiple impact (two-impact).
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Σ1, and the state at t+k is consistent with the con-
straint q1

1 = 0.

The goal is to stabilize the system on the sin-
gularity Σ2 = Σ1 ∩ Σ2 during the transition phase.
Several cases are examined next, and the controller
in (18) is used.

6.1. Stabilization with a two-impact

In this case, the two surfaces are reached simultane-
ously. This means that at each impact time tk, one
has q1

1(tk) = q2
1(tk) = 0, and the closed-loop analy-

sis made in [Brogliato et al., 2000] for a one-impact
can be adapted immediately to such a two-impact.
If en = 0 the continuity of solutions with respect
to initial data allows us to further conclude that
this strategy possesses some robustness properties.
Indeed even if the system does not strike right at
the singularity Σ2, but in a neighborhood of it, then
stabilization still occurs with the same controller as
depicted in Fig. 15(b). If en > 0 then such a strat-
egy does not seem amenable in practice due to its
lack of robustness (because trajectories impacting
in a neighborhood of Σ2 may drastically differ from
those impacting on Σ2).

6.2. Impact on one surface before a

two-impact

In this case the transition phase is decomposed into
two main steps: a first subphase during which the
system is stabilized on Σ1 (without impact on Σ2).
And a second subphase during which the system is
stabilized on Σ2. The property in the second item
just above, assures that the system remains on Σ1

during this second subphase. The proof of stabil-
ity for the first phase is similar to the one-impact

case if we take q1 = [q1
1 ] and q2 =

[

q2
1

q2

#

. During the

second phase, the system is in a constraint motion,
and the closed-loop dynamics is

M(q)q̈ = −C(q, q̇)q̇ − γ1q − γ2q̇

+ (1 + Kf1)(λq1 − λd1)∇qq
1
1. (48)

The system is stabilized on Σ2 using the sig-

nal q∗1d =

[
0

q2∗

1d

#

, where q2∗
1d has the same form as

q1∗
1d in the previous phase and decreases towards
−α2V (τk

0 ).

With the same proof as before, we need to show
that the inequality:

V (x(t−k+1), t
−
k+1) − V (x(t+k ), t+k ) ≤ 0 (49)

holds. One obtains

V (x(t−k+1), t
−
k+1) − V (x(t+k ), t+k )

=

∫

(tk ,tk+1)
V̇ (t) dt

=

∫

(tk ,tk+1)
q̇T Mq̈ + q̇T Ṁ

2
q̇ + γ1q̃

T q̃ dt

=

∫

(tk ,tk+1)

(

q̇T [−Cq̇ − γ1q − γ2q̇

+ (1 + kf1)(λq1 − λd1)∇qq
1
1]

+ q̇T Ṁ

2
q̇ + γ1q̃

T q̃

)

dt

=

∫

(tk ,tk+1)
− γ2q̇

T q̇dt + γ1

∫

(tk ,tk+1)
q̇T
1 q∗1ddt

+

∫

(tk ,tk+1)
q̇T (1 + kf1)(λq1 − λd1)∇qq

1
1 dt

=

∫

(tk ,tk+1)
− γ2q̇

T q̇dt ≤ 0

The last but one equality is deduced from the
preceeding one using the property that the matrix
2C(q, q̇)−Ṁ (q, q̇) is skew-symmetric [Lozano et al.,

2000], and ˙̃q
T
q̃ − q̇T q = q̇T q∗1d. The last inequal-

ity is deduced from the preceding equality since

q̇T (1 + kf1)(λq1 − λd1)∇qq
1
1 = 0 and [qT

1 q∗1d]
tk+1
tk

= 0
since q1(tk) = 0 during the two-impact. A proof sim-
ilar to the one-impact case allows one to conclude
on asymptotic stability of this two-impact tracking
problem. However we have supposed that there is
no impact on the second surface during the first
transition subphase. This may not always be real-
izable in practice, and may also be seen as a lack
of robustness for stabilization in a neighborhood of
singularities.

6.3. Case (c): General case

In this case the system can collide indifferently on
the two surfaces. There are several one-impacts on
both surfaces before the two-impact occurs. In this
situation we do not have q1(tk) = 0 for all impacts
(this true only during the two-impact). The weak
stability of the transition phase can be obtained
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by studying the variation of V (q(t), q̇(t), t) between
two impacts on the same surface (Σ1 or Σ2).

Let us choose the following notations: t2k is for
impacts on Σ2, and t2k+1 is for impacts on Σ1. Let

us also choose q∗1d =

[
q1∗

1d

q2∗

1d

#

=

[
−α1V (x(τk

0 ), τk
0 )

−α2V (x(τk
0 ), τk

0 )

#

. Let

us now calculate the following variation

V (t−2(k+1)) − V (t+2k)

=

∫

(t2k ,t2k+1)
V̇ (t)dt + σV (t2k+1)

+

∫

(t2k+1,t2(k+1))
V̇ (t)dt

= σV (t2k+1) − γ2

∫

(t2k ,t2k+1)
q̇T q̇dt

− γ2

∫

(t2k+1,t2(k+1)
q̇T q̇ dt

+ γ1q
∗
1d

T [q1]
t2k+1
t2k

+ γ1q
∗
1d

T [q1]
t2(k+1)

t2k+1
(50)

= ∆ + γ1q
∗
1d

T(q1(t2(k+1)) − q1(t2k)) (51)

= ∆ + γ1q
1∗
1d

T(q1
1(t2(k+1)) − q1

1(t2k)) (52)

where ∆ is the sum of all negative terms in (50).
Equality (51) is deduced from (50) since q2

1(t2k) = 0
for all k. With α1 = 0, we have q1∗

1d = 0 and
then

V (t−2(k+1)) − V (t+2k) < 0

The strategy is to take α1 = 0 (target A, see
Fig. 16) at the beginning of the transition phase
to stabilize the system on Σ2, and to switch to
α2 = 0, α1 > 0 (target B, see Fig. 16) when
the system is on Σ2 (or to switch to the previous
case).

Fig. 16. General case.

7. Conclusion

This paper deals with the tracking control of fully
actuated Lagrangian systems subject to friction-
less unilateral constraints. These dynamical sys-
tems are named complementarity systems because
they involve complementarity conditions. They
are nonsmooth because the velocity may possess
discontinuities (at impact times), so that the accel-
eration and the contact force are measures. They
may be seen as a complex mixture of ordinary dif-
ferential equations, differential-algebraic equations,
and measure differential equations. The extension
of the tracking control of unconstrained (or per-
sistently constrained) Lagrangian systems, towards
complementarity Lagrangian systems, is not triv-
ial. The aim of this paper is to study the design
of a feedback controller for these specific nons-
mooth systems, supposed to perform a general
cyclic impacting task. First the stability frame-
work dedicated to study these systems is recalled,
and some definitions and claims are given. Then
we focus on the condition of existence of closed-
loop trajectories (usually called desired trajectories
in unconstrained motion tracking control) which
assure the asymptotic stability in closed-loop, i.e.
the asymptotic convergence of the generalized coor-
dinates towards some closed-loop invariant trajec-
tory. The second part of this paper is devoted
to numerically study an example: a two-link pla-
nar manipulator subject to a single unilateral con-
straint. This example allows us to exhibit some
results on the robustness of this control framework
in terms of uncertainty of the constraint surface
position. The effect of measurement noise is also
studied. It is shown that the proposed scheme pos-
sesses some interesting robustness properties. The
last part of this paper is devoted to the case of so-
called multiple impacts (an accurate definition is
provided). Some specific difficulties related to the
constraint boundary geometry, are highlighted, and
some possible manners to extend the single con-
straint case are indicated.
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et chocs inélastiques,” C.R. Acad. Sci. Paris 296,
1473–1476.

Moreau, J. [1988] “Unilateral contact and dry friction
in finite freedom dynamics,” in Nonsmooth Mechan-
ics and Applications , CISM Courses and Lectures,
Vol. 302 (Springer-Verlag).

Moreau, J. [2003] “An introduction to unilateral dynam-
ics,” in Novel Approaches in Civil Engineering,
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Appendix A

Proof of Claim 6

(i) On [τk
0 , t0), one has V̇2(t) ≤ 0, so that V2(t

−
0 ) ≤

V2(τ
k
0 ). Therefore from (17)

V2(τ
k
0 ) ≥ V2(t

−
0 ) ≥ γ2γ1q̃(t

−
0 )T q̃(t−0 )

≥ γ2γ1q̃1
2(t−0 ) (A.1)

so that

v

u

u

t

V2(τ
k
0 )

γ2γ1
≥ |q1(t0) − q∗1d(t

−
0 )| = |q∗1d(t

−
0 )| (A.2)

because q1(t0) = 0. The desired trajectory q∗1d(·)
is chosen as a decreasing function, and from
inequation (A.2) we have tmin ≤ t0 ≤ tmax,

where q∗1d(tmin) =
q

(V2(τ
k
0 )/γ2γ1) and q∗1d(tmax) =

−
q

(V2(τ
k
0 )/γ2γ1) (see Fig. 17).

Remark 7. From the value of tmax, it follows that

if αV1(τ
k
0 ) >

q

(V2(τ
k
0 )/γ2γ1), then t0 ≤ τk

1 on the
cycle k.

(ii) The signal q∗1d(t) is a function decreasing toward
−αV1(τ

k
0 ). Let us use a degree 3 polynomia with

limit conditions (tini = τk
0 and tend = τk

1 ). After
some manipulations we will exhibit an upper-bound
of q̇∗1d(t) on [tmin, tmax]. Since t0 ∈ [tmin, tmax] then

q∗1d(t) = a3t
3 + a2t

2 + a1t + a0

q̇∗1d(t) = 3a3t
2 + 2a2t + a1

at tini = τk
0 : q∗1d(tini) = q1d(τ

k
0 ) and

q̇∗1d(tini) = 0

at tend = τk
1 : q∗1d(tend) = −αV1(τ

k
0 ) and

q̇∗1d(tend) = 0

(A.3)

To compute maxt∈[tmin;tmax] | ˙q1d(t)|, let us make
a time scaling transformation t′ = t′(t), such that
t′(τk

0 ) = 0 and t′(τk
1 ) = 1, as t′(t) = ((t − τk

0 )/
(τk

1 − τk
0 )). We obtain

a3 = 2[q1d(τ
k
0 ) + αV1(τ

k
0 )]

a2 = −3[q1d(τ
k
0 ) + αV1(τ

k
0 )]

a1 = 0

a0 = q∗1d(τ
k
0 )

(A.4)

and the signal q∗1d(t) is

q∗1d(t
′) = [q∗1d(τ

k
0 ) + αV1(τ

k
0 )](2t′3 − 3t′2)

+ q∗1d(τ
k
0 )

q̇∗1d(t
′) = −6[q∗1d(τ

k
0 ) + αV1(τ

k
0 )](1 − t′)t′

(A.5)

From (A.5), we see that q∗1d(t
′) is decreasing on

t′ ∈ [0, 1]. Consequently

q∗1d(t
′
0) ≤ q∗1d(t

′
min) ≤

v

u

u

t

V2(τ
k
0 )

γ2γ1
(A.6)

Fig. 17. q∗
1d

(t).
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By inserting (A.5) in (A.6), one obtains

[q∗1d(τ
k
0 ) + αV1(τ

k
0 )](2t′30 − 3t′20 ) + q∗1d(τ

k
0 )

≤
v

u

u

t

V2(τ
k
0 )

γ2γ1
(A.7)

Then,

t′20 (3 − 2t′0) ≥
q∗1d(τ

k
0 ) −

v

u

u

t

V2(τ
k
0 )

γ2γ1

q∗1d(τ
k
0 ) + αV1(τ

k
0 )

(A.8)

For t ≥ 0, one has t(2 − t) ≥ t2(3 − 2t), therefore:

t′0(2 − t′0) ≥
q∗1d(τ

k
0 ) −

v

u

u

t

V2(τ
k
0 )

γ2γ1

q∗1d(τ
k
0 ) + αV1(τk

0 )
(A.9)

The root of t(2 − t) = a is t = 1 −
√

1 − a, from
which it follows that

t′0 ≥ 1 −

v

u

u

u

u

u

u

t1 −
q∗1d(τ

k
0 ) −

v

u

u

t

V2(τ
k
0 )

γ2γ1

q∗1d(τ
k
0 ) + αV1(τ

k
0 )

≥ 1 −

v

u

u

u

u

u

u

t

αV1(τ
k
0 ) +

v

u

u

t

V2(τ
k
0 )

γ2γ1

αV1(τk
0 ) + q∗1d(τ

k
0 )

= t′min (A.10)

On [tmin, tmax], one has |q̇∗1d(t
′)| ≤ |q̇∗1d(t

′
min)|. Thus:

|q̇∗1d(t
′
0)|

≤ −6(q∗1d(τ
k
0 ) + αV1(τ

k
0 ))(1 − t′min)t

′
min

≤ 6(q∗1d(τ
k
0 ) + αV1(τ

k
0 ))

v

u

u

u

u

u

u

t

αV1(τ
k
0 ) +

v

u

u

t

V2(τ
k
0 )

γ2γ1

αV1(τk
0 ) + q∗1d(τ

k
0 )

≤ 6

v

u

u

u

u

t

(q∗1d(τ
k
0 ) + αV1(τ

k
0 ))

(

αV1(τ
k
0 ) +

v

u

u

t

V2(τ
k
0 )

γ2γ1

)

(A.11)

Now we change back the time variable t′ to t.

|q̇∗1d(t0)|

≤ 6

τk
1 − τk

0

×

v

u

u

u

u

t

(q∗1d(τ
k
0 ) + αV1(τ

k
0 ))

(

αV1(τ
k
0 ) +

v

u

u

t

V2(τ
k
0 )

γ2γ1

)

(A.12)

From (42) one has V2(t) ≥ V1(t). Thus Eq. (A.12)
becomes

|q̇∗1d(t0)|

≤ 6

τk
1 − τk

0

×

v

u

u

u

u

t

(q∗1d(τ
k
0 ) + αV2(τ

k
0 ))

(

αV2(τ
k
0 ) +

v

u

u

t

V2(τ
k
0 )

γ2γ1

)

(A.13)

Let us define the parameter

K0 =
6

τk
1 − τk

0

×
v

u

u

tαq∗1d(τ
k
0 ) + q∗1d(τ

k
0 )

√
1

γ1γ2
+ α2 + α

√
1

γ2γ1

(A.14)

If the system is initialized with V2(τ
0
0 ) ≤ 1, then

V
1/4
2 ≥ V

1/2
2 ≥ V2 and inequality (A.13) becomes:

|q̇∗1d(t
−
0 )| ≤ K0V

1/4
2 (τk

0 ) (A.15)

Then item (ii) of Claim 6 is proved. �

Appendix B

Proof of Claim 7

(i) Proof of the first result of Claim 7. Let us show
that conditions (a), (b) and (d) in Claim 2 are
satisfied.

(a) Outside phase Ik it can be computed that
V̇1(t) = −γ1s(t)

T s(t) [Slotine & Li, 1988], then
from (42) one has

‖s(t)‖2 ≥ 2

λmax(M(q))
V1(t) (B.1)

where λmin(·) and λmax(·) denote the minimum
and maximum eigenvalues, respectively. It fol-
lows that:

V̇1(t) ≤ − 2γ1

λmax(M(q))
V1(t) (B.2)

Therefore condition (a) of Claim 2 is satisfied
with γ = 2γ1/λmax(M(q)).

(b) After the first impact the closed-loop equation of
the system defined by (41) and (15) is

M(q)ṡ(t) + Cs(t) + γ1s(t) = 0 (B.3)
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Let us calculate V̇1(t) along trajectories of (B.3)

V̇1(t) =
1

2
s(t)T Ṁ(t)s(t) + s(t)T M(q)ṡ(t) (B.4)

where Ṁ(t) = (d/dt)[M(q(t))]. By introducing
(B.3) in (B.4) and using the fact that Ṁ(t) −
2C(q, q̇) is a skew-symmetric matrix [Lozano
et al., 2000, Lemma 5.4] one obtains:

V̇1(t) = −γ1s(t)
T s(t). (B.5)

After the first impact q∗d is constant, q̃ and q

are defined from (19) as q̃(t) =
“ q1(t)

q2(t) − q∗
2d

”

and

q(t) =
“ q1(t) − q∗

1d

q2(t) − q∗
2d

”

. Then q̇(t) = ˙̃q(t) and one

has

s(t) = q̇(t) + γ2q(t)

= ˙̃q(t) + γ2q̃(t) − γ2

( q∗1d

0

)

= s(t) − γ2

( q∗1d

0

)

.

(B.6)

Introducing (B.6) into (B.5) one obtains

V̇1(t) = −γ1s(t)
T s(t) + γ1γ2s(t)

T
(q∗1d

0

)

= −γ1s(t)
T s(t) + γ1γ2s1(t)q

∗
1d

= −γ1s(t)
T s(t) + γ1γ2q̇1(t)q

∗
1d

+ γ1γ
2
2q1(t)q

∗
1d

= −γ1s(t)
T s(t) + γ1γ2q̇1(t)q

∗
1d

− γ1γ
2
2q1(t)|q∗1d|. (B.7)

Using the fact that q1(t) ≥ 0, q1(tk) = 0 and that
q∗1d = −αV (τk

0 ) ≤ 0, then between two impacts
one has for all k ≥ 0

V1(t
−
k+1) − V1(t

+
k ) =

∫

(tk ,tk+1)
V̇1(t)dt

= −
∫

(tk ,tk+1)
γ1s(t)

Ts(t)dt

−
∫

(tk ,tk+1)
γ1γ

2
2q1(t)|q∗1d|dt

+ γ1γ2q
∗
1d[q1(t)]

tk+1
tk

= −
∫

(tk ,tk+1)
γ1s(t)

T s(t)dt

−
∫

(tk ,tk+1)
γ1γ

2
2q1(t)|q∗1d| dt

≤ 0. (B.8)

Therefore condition (b) of Claim 2 is satisfied.

(d) Let us start with the computation of σV (tk). For
k ≥ 1, qd(t

+
k ) = qd(t

−
k ) and q̇d(t

+
k ) = q̇d(t

−
k ) = 0

see (19). Consequently one has:

σV1(tk)

= V1(t
+
k ) − V1(t

−
k )

=
1

2
[( ˙̃q(t+k ) + γ2q̃(t

+
k ))TMk( ˙̃q(t

+
k ) + γ2q̃(t

+
k ))

− ( ˙̃q(t−k )+ γ2q̃(t
−
k ))TMk( ˙̃q(t

−
k ) + γ2q̃(t

−
k ))]

=
1

2
q̇(t+k )TMk q̇(t

+
k ) − 1

2
q̇(t−k )TMk q̇(t

−
k )

+ γ2[q̇(t
+
k )TMk q̃(t

+
k ) − q̇(t−k )TMk q̃(t

−
k )]

= TL(tk) + γ2[q̇(t
+
k ) − q̇(t−k )]TMk q̃(tk)

(B.9)

where Mk � M(q(tk)). Using the fact that
q1(tk) = 0 and q1d(t) = 0 after the first impact
see (19), one gets from (B.9)

σV1(tk) = TL(tk) + γ2q̃2(tk)
T [M21σq̇1(tk)

+ M22σq̇2(tk)] (B.10)

Introducing (36) in (B.10) one obtains for all
k ≥ 1

σV1(tk) = TL(tk) ≤ 0 (B.11)

For k = 0, two cases have to be examined.

• If t0 > τk
1 then one has also qd(t

+
0 ) = qd(t

−
0 )

and q̇d(t
+
0 ) = q̇d(t

−
0 ) = 0, and one can use the

result of Eq. (B.11) to obtain

σV1(t0) = TL(t0) ≤ 0 (B.12)

• If t0 < τk
1 then one has q1d(t

−
k ) �= q1d(t

+
k ) = 0

and q̇1d(t
−
k ) �= q̇1d(t

+
k ) = 0. One calculates the

initial jump as follows

σV1(t0) = TL(t0) −
1

2
q̇d(t

−
0 )T M(q(t0))q̇d(t

−
0 )

− 1

2
γ2
2q1d(t

−
0 )M11(q(t0))q1d(t

−
0 )

+ γ2[( ˙̃q1(t
−
0 )M11(q(t0))

+ ˙̃q2(t
−
0 )T M21(q(t0)))q1d(t

−
0 )

+ q̇1d(t
−
0 )M12(q(t0))q̃2(t

−
0 )]

+ γ2
2q1d(t

−
0 )M12(q(t0))q̃2(t

−
0 )

(B.13)
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From (B.12), (B.13) and (B.11) one has
∞∑

k=0

σV1(tk)

≤ γ2‖ ˙̃q(t−0 )‖‖q1d(t
−
0 )‖‖M1(q(t0))‖

+ γ2‖q̇1d(t
−
0 )‖‖M12(q(t0))‖‖q̃(t−0 )2‖

+ γ2
2‖q1d(t

−
0 )‖‖M12(q(t0))‖‖q̃2(t

−
0 )‖
(B.14)

where M1 = [M11
... M12]

T . Let us now prove that
∞∑

k=0

σV1(tk) ≤ KV κ
2 (τk

0 ) (B.15)

where K > 0. Let us calculate upper-bounds on
q1d(t

−
0 ), q̇1d(t

−
0 ), ˙̃q(t−0 ) and q̃2(t

−
0 ). On [τk

0 , t0),

one has V̇2(t) ≤ 0, so that V2(t0) ≤ V2(τ
k
0 ).

Therefore from (42) we get

V2(τ
k
0 ) ≥ V2(t

−
0 ) ≥ γ2γ1q̃(t

−
0 )T q̃(t−0 )

≥ γ2γ1‖q̃2(t
−
0 )‖2 (B.16)

so that

‖q̃2(t
−
0 )‖ ≤ ‖q̃(t−0 )‖ ≤

v

u

u

t

V2(τ
k
0 )

γ2γ1
(B.17)

From (42) one has V2(t) ≥ (1/2)s(t)T M(q)s(t).
Consequently

‖s(t−0 )‖ ≤
v

u

u

t

2V2(τ
k
0 )

λmin(M)
(B.18)

From (B.17), (B.18) and the definition of s(t)
one concludes that

‖ ˙̃q(t−0 )‖ ≤ ‖s(t−0 )‖ + γ2‖q̃(t−0 )‖

≤
[v

u

u

t

2

λmin(M(q))
+ γ2

√
1

γ2γ1

]

V
1
2

2 (τk
0 )

(B.19)

From (B.17), (B.19), the result of Claim 4 and
the fact that V2(τ

k
0 ) ≤ 1 and the fact that

qd(t
−
0 ) = q∗d(t

−
0 ) and q̇d(t

−
0 ) = q̇∗d(t

−
0 ), inequation

(B.14) becomes
∞∑

k=0

σV1(tk) ≤ KV
3
4

2 (τk
0 ) (B.20)

with

K =

[v

u

u

t

2γ2

γ1λmin(M(q))
+

γ2

γ1

]

‖M11(q(t0))‖

+

[

K0

√
γ2

γ1
+

γ2

γ1

]

‖M12(q(t0))‖ (B.21)

By inserting (42) in (B.20), one gets

∞∑

k=0

σV1(tk) ≤ KV
3
4

1 (τk
0 ) + K(γ2γ1)

3
4 ‖q̃(τk

0 )‖ 3
2

(B.22)

Therefore one has
∞∑

k=0

σV1(tk) ≤ KV
3
4

1 (τk
0 ) + ǫ′ (B.23)

for some ǫ′ > 0. Therefore condition (d) of
Claim 2 is satisfied. The system (15) with the
controller (41) satisfies all the requirements of
Claim 2 with ǫ �= 0. Consequently it is prat-
ically Ω-weakly stable with x(·) = s(·), and

R = (2/(λmin(M(q)))e−γ(tk
f
−t∞)(1 + K + ǫ′))

1
2 ,

γ = 2γ1/(λmax(M(q))). �

(ii) Proof of the second result of Claim 7: Let us
show that conditions (a) and (d) in Claim 2 are
satisfied.

(a) Outside phase Ik it can be computed that
[Spong et al., 1990]

V̇2(t) = −γ1
˙̃q
T ˙̃q − γ1γ

2
2 q̃T q̃ (B.24)

Let us upper bound V2(t). From (42) one has

V2(t) ≤
λmax(M(q))

2
‖ ˙̃q‖2 +

λmax(M(q))

2
γ2
2‖q̃‖2

+ γ2λmax(M(q))‖ ˙̃q‖‖q̃‖ + γ1γ2‖q̃‖2

(B.25)

Since ‖ ˙̃q‖‖q̃‖ ≤ ‖q̃‖2 + ‖ ˙̃q‖2 inequality (B.25) is
rewritten

V2(t) ≤ λmax(M(q))
1 + 2γ2

2γ1
γ1‖ ˙̃q‖2

+
λmax(M(q))(γ2 + 2) + 2γ1

2γ1γ2
γ1γ

2
2‖q̃‖2

(B.26)

With

γ−1 = max
[

λmax(M(q))
1 + 2γ2

2γ1
;

λmax(M(q))(γ2 + 2) + 2γ1

2γ1γ2

]

> 0 (B.27)

inequality (B.26) becomes

V2(t) ≤ γ−1[γ1‖ ˙̃q‖2 + γ1γ
2
2‖q̃‖2] (B.28)
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Inserting (B.24) in (B.28) yields

V2(t) ≤ −γ−1V̇2(t) (B.29)

Then V̇2(t) ≤ −γV2(t), and condition (a) of
Claim 2 is satisfied.

(d) As V2(t) = V1(t) + γ1γ2q̃
T q̃ then

σV2(tk) = σV1(tk) + γ1γ2σ‖q̃‖2(tk) (B.30)

For k ≥ 1, one has qd(t
+
k ) = qd(t

−
k ), the position

q(t) is continuous, so that σ‖q̃‖2(tk) = 0 and

σV2(tk) = σV1(tk) = TL(tk) ≤ 0 (B.31)

For k = 0, one has qd(t
+
0 ) �= qd(t

−
0 ). Let us

upper bound σ‖q̃‖2(t0). One has

σ‖q̃‖2(t0) = ‖q̃1(t
+
0 )‖2 + ‖q̃2(t

+
0 )‖2

−‖q̃1(t
−
0 )‖2 − ‖q̃2(t

−
0 )‖2 (B.32)

As q2d(t
−
0 ) = q2d(t

+
0 ), q1d(t

+
0 ) = 0 and q1(t0) =

0 one obtains

σ‖q̃‖2(t0) = −‖q1d(t
−
0 )‖2 ≤ 0 (B.33)

From (B.30), (B.31), (B.33) and (B.20) one has
that

∞∑

k=0

σV2(tk) ≤
∞∑

k=0

σV1(tk) ≤ KV
3
4

2 (τk
0 ) (B.34)

Therefore condition (d) of Claim 2 is satisfied.
The system (15) with the controller (41) sat-
isfies all the requirements of claim 2(ii). Con-
sequently it is pratically Ω-weakly stable with
x(·) = [s(·), q̃(·)]. �

Appendix C

Linear Complementarity Problem

A LCP is a system of the form [Murty, 1997]






λ ≥ 0

Aλ + b ≥ 0

λT (Aλ + b) = 0

(C.1)

which can also be written as

0 ≤ λ ⊥ Aλ + b ≥ 0 (C.2)

Such a LCP possesses a unique solution for all
b, if and only if A is a P-matrix (positive-definite
matrices are P-matrices).


