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Abstract

Background: Accurate identification of crop cultivars is crucial in assessing the impact of crop improvement research

outputs. Two commonly used identification approaches, elicitation of variety names from farmer interviews and

morphological plant descriptors, have inherent uncertainty levels. Genotyping-by-sequencing (GBS) was used in a case

study as an alternative method to track released varieties in farmers’ fields, using cassava, a clonally propagated root

crop widely grown in the tropics, and often disseminated through extension services and informal seed systems. A

total of 917 accessions collected from 495 farming households across Ghana were genotyped at 56,489 SNP loci along

with a “reference library” of 64 accessions of released varieties and popular landraces.

Results: Accurate cultivar identification and ancestry estimation was accomplished through two complementary

clustering methods: (i) distance-based hierarchical clustering; and (ii) model-based maximum likelihood admixture

analysis. Subsequently, 30 % of the identified accessions from farmers’ fields were matched to specific released varieties

represented in the reference library. ADMIXTURE analysis revealed that the optimum number of major varieties was 11

and matched the hierarchical clustering results. The majority of the accessions (69 %) belonged purely to one of the 11

groups, while the remaining accessions showed two or more ancestries. Further analysis using subsets of SNP markers

reproduced results obtained from the full-set of markers, suggesting that GBS can be done at higher DNA multiplexing,

thereby reducing the costs of variety fingerprinting. A large proportion of discrepancy between genetically unique

cultivars as identified by markers and variety names as elicited from farmers were observed. Clustering results from

ADMIXTURE analysis was validated using the assumption-free Discriminant Analysis of Principal Components (DAPC)

method.

Conclusion: We show that genome-wide SNP markers from increasingly affordable GBS methods coupled with

complementary cluster analysis is a powerful tool for fine-scale population structure analysis and variety identification.

Moreover, the ancestry estimation provides a framework for quantifying the contribution of exotic germplasm or older

improved varieties to the genetic background of contemporary improved cultivars.
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Background
Agricultural productivity in developing countries is af-

fected by limited access to improved varieties, in

addition to biotic, abiotic constraints and sub-optimal

agronomic practices [1, 2]. Successful dissemination and

adoption of improved varieties from both private and

public breeding programs is expected to contribute posi-

tively to farm-level productivity and income generation.

It is the role of household level impact assessment stud-

ies, particularly collection of variety specific adoption

data, to determine whether this is happening [3, 4].

Traditionally, estimation of improved variety adoption

in socio-economic impact studies relies mostly on: ex-

pert opinion of breeders, extension services and other

experts; elicited responses from farmers in farmer-level

surveys; and morphological descriptors. However, such

methods have several inherent uncertainty levels. For ex-

ample, variety naming systems in the absence of formal

seed systems can be quite temporally and spatially vari-

able leading to inconsistencies in the names of a particu-

lar variety. Also, environmental conditions and different

stages of plant development influence morphological de-

scriptors [5, 6]. Finally, the number of descriptors can be

quite limited as varieties are developed to conform to

desired ideotypes, thus greatly reducing the power to

distinguish consanguineous varieties [7].

These challenges can be overcome by using molecular

markers which are not only unaffected by the environ-

mental factors and crop developmental stages but are

also ubiquitous throughout plant genomes. Genome-

wide markers, like single nucleotide polymorphisms

(SNP), not only facilitate germplasm classification using

genetic distance estimates but can also be used to quan-

tify the relative proportion of ancestries derived from

various founder genotypes of currently grown cultivars

[8]. Such inferences of ancestries are useful in under-

standing and/or reconstructing the evolution of success-

ful varieties, either landraces or products of formal

breeding programs that lack breeding pedigree records

or where the varieties are derived from open-pollinated

breeding methods [9]. In the context of impact assess-

ment of a specific breeding program, ancestry inferences

can be useful in estimating the benefits resulting from

the usage of its improved germplasm by other programs

[10]. This is because improved germplasm often moves

easily throughout the network of plant breeding systems,

resulting in research spill-over benefits.

In the past, simple sequence repeats and anonymous

markers such as amplified fragment length polymor-

phisms and randomly amplified DNA polymorphisms

have been used in DNA-based fingerprinting applica-

tions [11]. However, due to inadequacies of these

markers, including limited multiplexing ability, high

genotyping costs and low frequency in the genome, they

are increasingly being displaced by SNP markers gener-

ated from next-generation sequencing using reduced

representation library (RRLs) methods. These recent

methods rely on restriction enzymes to target a specific

and reproducible subset of the genome for sequencing,

thus allowing for simultaneous discovery and scoring of

large numbers of markers. Genotyping-by-sequencing

[12] is an RRL method that is relatively simple and inex-

pensive, making it feasible to genotype large populations

of individuals. GBS has therefore become very popular,

particularly for researchers working on non-model spe-

cies with limited genomic resources [13].

Here, we report the use of GBS markers for cultivar

identification with the objective of tracking released var-

ieties in farmers’ fields, using cassava (Manihot esculenta

Crantz) as a case study. Cassava is a highly heterozygous,

clonally propagated species that originates from Latin

America [14]. Its starchy storage roots are the main

source of calories for over 500 million people in the tro-

pics [15]. Africa is currently the leading producer of the

crop accounting for more than 50 % of global produc-

tion [16]. Its ability to produce reasonable yields in mar-

ginal environments, its tolerance to drought and poor

soils, and its ability for in-ground storage to allow piece-

meal harvesting makes cassava one of the most import-

ant food-security crops in the continent [17]. Despite its

importance, planting materials are predominantly

sourced from the informal seed system often from the

farmer’s own harvest or exchange between farmers [18].

Dissemination of new varieties has often been limited to

efforts by the extension services connected to national

programs and informal diffusion through farmer-to-

farmer exchanges. This situation contributes to the chal-

lenge of tracking the spread of such varieties.

Methods
This study was conducted in three regions of Ghana

covering the largest cassava producing area accounting

for 61 % of cassava production in the country in 2010

[16, 19]. The three study regions included Brong Ahafo,

Ashanti and Eastern (Fig. 1). A total of 495 households

were selected using a multi-stage cluster sampling

method. These households were distributed across 100

villages from 20 districts in the three study regions. For

each of the 495 households surveyed, field sample col-

lection entailed visiting one cassava field for each house-

hold with the largest number of varieties. A consent

statement was read to the main decision maker of the

household to inform him/her about the purpose of the

study and to seek his/her permission to visit the cassava

field to collect the leaf samples. Data and sample collec-

tion proceeded only if the farmer gave the consent. The

GPS coordinates of the field were taken and farmers

were asked to identify plants representing each of the
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varieties grown. Apical leaf samples were collected from

one plant representing each variety and preserved in sil-

ica gel for transportation to a central laboratory at IITA

in Ibadan, Nigeria for DNA extraction. Since a major ob-

jective of the present study was to identify specific culti-

vars in farmers’ fields, a “reference library” consisting of

64 clones representing released varieties (n = 16) and key

landraces (n = 48) maintained by the Council for Science

and Industrial Research-Crops Research Institute (CSIR-

CRI) of Ghana were genotyped alongside the accessions

from farmers’ fields. It should be noted that many of the

released varieties in Ghana are landraces with superior

agronomic traits (resistance to cassava mosaic disease,

high yield and dry-matter content) and culinary qualities

(root friability after boiling). These landraces were offi-

cially released as varieties following multi-year and -lo-

cational testing (Prof. S. Kantanka and Prof. J. P. Tetteh,

personal communication).
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Fig. 1 Geographical distribution of the cassava cultivars (landraces and released varieties) analyzed in this study. The color scheme matches that

of ancestry assignment in Fig. 3a. Twenty-nine accessions that lacked latitude and longitude information are not shown on the map. Left inset is

the overview map of Africa showing the location of Ghana (dark shade) and the right inset shaded grey highlights the three study regions
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DNA extraction and GBS

DNA was isolated from 1045 genotypes, representing

917 accessions collected from farmer’s fields and a li-

brary of 64 clones genotyped in duplicate (Additional file

1: Table S1). The Dellaporta method [20] with modifica-

tions described in [21] was used for high throughput

DNA extraction. For genotyping-by-sequencing library

preparation, we chose the ApekI restriction enzyme (rec-

ognition site: G|CWCG) that produces less variable dis-

tributions of read depth and therefore a larger number of

scorable SNPs in cassava [22]. Eleven 96-plex GBS librar-

ies were constructed as described in [12] and sequenced

at the Institute of Genomic Diversity at Cornell University

using the Illumina HiSeq2500. Raw read sequences were

processed through cassava GBS production pipelines de-

veloped using TASSEL 5.0 initially generated with about

2500 cassava clones under the NextGen Cassava project

(www.nextgencassava.org) [13]; http://www.maizegen-

etics.net/#!tassel/c17q9). Resulting hapmap files (SNPs)

were filtered with minor allele frequency (MAF) of 0.001

and coverage of 10x. SNPs were further processed by re-

moving those with MAF of less than 0.01 and loci with

more than 40 % missing data. The remaining missing SNP

data-points were then imputed using GLMNET [23].

Cluster analysis

Identification of the cassava varieties was performed

using three complementary clustering approaches: (i)

pairwise distance-based hierarchical clustering; (ii)

model-based maximum likelihood estimation of individ-

ual ancestries from multi-locus SNP genotype datasets

using ADMIXTURE [24]; and (iii) Discriminant Analysis

of Principal Components (DAPC) [25].

In the first approach, a pairwise genetic distance (iden-

tity-by-state, IBS) matrix was calculated from 56,489

SNP markers in PLINK [26]. A Ward’s minimum vari-

ance hierarchical cluster dendrogram was then built

from the IBS matrix using the Analyses of Phylogenetics

and Evolution (ape) package [27] implemented in R [28].

The critical distance threshold to declare whether two

genotypes are identical was empirically determined from

the distribution of pairwise distances between duplicated

DNAs from 64 samples. This “calibration principle” ap-

proach [29] was taken because of the possibility of SNP

genotype errors resulting from miscalling some hetero-

zygous SNPs with low sequencing read depth as homo-

zygotes [22].

In the second approach, ADMIXTURE analysis using

the same set of 56,489 SNP markers was used to identify

ancestries of the sampled cassava accessions. The num-

ber of sub-populations, K, was varied from 2 to 18 (K, in

this case are considered founders of the currently culti-

vated varieties in the study regions). The most appropri-

ate K value was selected after considering (i) 10-fold

cross-validations whereby the best K exhibits low cross-

validation error compared to other K values [30] and (ii)

good correspondence with the clustering pattern ob-

tained by the hierarchical tree.

To develop smaller sets of ancestry informative

markers (AIMs) for follow-up studies using lower dens-

ity genotyping, further ADMIXTURE–based ancestry es-

timation was carried out using decreasing subsets of

SNP markers. These were selected based on Weir and

Cockerham [31] FST, a measure of differences in allele

frequencies among the subpopulations detected by AD-

MIXTURE. For comparative purposes, equivalent num-

bers of markers were randomly selected, each twenty

times with replacement. The objective here was to see

how much we can reduce the number of markers while

still obtaining cluster assignment results that is close to

that obtained from the full set of markers. We used the

‘supervised’ ADMIXTURE method assuming K = 11 [32].

Accuracies of ancestry estimates was determined

through correlations between the subsets and the

complete set of 56,489 markers.

The model-based clustering approach implemented in

ADMIXTURE assumes linkage equilibrium among loci

and Hardy-Weinberg equilibrium within ancestral popu-

lations [33]. However, such assumptions may be violated

in vegetatively propagated species like cassava due to

presence of clonal duplicates in germplasm collections.

To validate the clustering pattern obtained from AD-

MIXTURE and the hierarchical clustering algorithms, we

carried out Discriminant Analysis of Principal Compo-

nents (DAPC), an assumption-free multivariate cluster-

ing method [25] using the R package ‘adegenet’ [34] in a

two-step process. Firstly, the optimal number of clusters

was inferred using k-means analysis [35] of PCA-

transformed genome-wide SNP data. After varying pos-

sible number of clusters from 2 to 40, Bayesian Informa-

tion Criterion (BIC) was used to assess the best

supported model i.e. the number and nature of clusters.

Secondly, DAPC [25] was carried out on the clusters

identified through k-means using the first 70 principal

components. Membership probabilities of each individ-

ual for the different groups, akin to the sub-population

membership coefficients from ADMIXTURE was ob-

tained from DAPC. The results of DAPC analysis was

then compared with those achieved from ADMIXTURE.

Results
Field sampling

Field surveys found that farmers cultivated between one

and five different varieties of cassava in their fields, but

majority of them (>80 %) grow only one or two varieties

(Fig. 2). A large number of unique farmer-elicited variety

names (180) were associated with the 917 accessions col-

lected from the three study regions of Ghana. Most of
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these names occurred five or less instances in the survey.

The two most frequent names were “Debor” and

“Ankra”, each recorded 90 and 87 times, respectively.

Variety identification

An average genetic distance between repeat genotyping

of the 64 accessions in the “reference library” was below

0.05 (Ward’s distance, Additional file 2: Figure S1). We

therefore chose 0.05 as the distance threshold below

which we can declare that two accessions represent the

same clone. The residual distance between same DNA is

most likely due to miss-calling of heterozygotes as ho-

mozygotes from low sequencing read-depth, as is typical

in high-multiplexing, sequence-based genotyping

methods [22].

Genetic relationships among the 1045 genotyped ac-

cessions is described using a hierarchical clustering

dendrogram (Fig. 3a) while the estimated ancestries (Q)

obtained from ADMIXTURE are presented as a barplot

(Fig. 3b). Major as well as minor clusters of genetically

identical genotypes with genetic distances below the em-

pirically determined distance threshold are clearly dis-

cernible. The two most dominant varieties (Cluster I and

II) belong to the same branch of the dendrogram, and

are therefore likely to share some common farmer-

preferred characteristics. According to farmers’ naming

system, the first variety which is associated with the

most commonly recorded cultivar names (‘Debor’, ‘Ankra’

and ‘Bankye Kokoo’), is quite popular because of its ex-

cellent culinary traits, two of which are mealiness after

boiling and relatively sweet taste. The remaining clones

form a second large cluster that further subdivides into

about nine clusters.

After elucidation of these groupings through hierarch-

ical clustering, we turned to the STRUCTURE-like ana-

lysis [36] using the ADMIXTURE program [24] to assign

individuals proportionally to hypothetical founder popu-

lations. After varying the number of sub-populations (K)

from 2 to 18, the most appropriate number was found

to be K = 11, which produced the lowest 10-fold cross-

validation error compared to other K values (Fig. 4).

These groupings corresponded to the hierarchical clus-

tering dendrogram: each of the major branches of the

dendrogram formed a distinct ancestry group.

Groups of clones with predominant ancestry member-

ship to one of each of the identified ADMIXTURE sub-

populations (>90 %) were discernible with the exception

of group IX that had small admixture from groups II

and III (Fig. 3b). The results of ADMIXTURE-based

clustering is strongly supported by the topology of the

distance-based dendrogram, with most of these geno-

types also having very low IBS distance within their re-

spective clusters (Fig. 3a). A large number of individual
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Fig. 2 Histogram showing the distribution of the number of varieties
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Fig. 3 Population structure of cassava accessions from three major cassava producing regions of Ghana. a Hierarchical clustering (Ward’s minimum

variance method) dendrogram. The red dashed line represents the empirically determined distance threshold developed from comparison of duplicated

library samples. A distance of 0.05 below which two individuals can be declared identical. b Individual ancestry estimated from ADMIXTURE analysis.

Individuals are represented as thin vertical lines partitioned into segments corresponding to the inferred membership in K = 11 genetic clusters as

indicated by the colors. The roman numerals show groups of clonal individuals with predominant ancestry membership in each of the 11 clusters
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cassava genotypes (n = 277) that share ancestry between

two or more of the identified varieties were also de-

tected. Of these, about 157 had at least 50 % of their an-

cestry coming from one of the eleven sub-populations,

while 120 accessions have multiple ancestries (Table 1).

Moreover, the proportions of ancestries in these varieties

appear to be consistent with simple crossing or back-

crossing to produce F1 hybrids or backcross hybrids that

may have occurred either in farmer’s fields or in formal

plant breeding programs. Other genotypes show more

complex multi-parent ancestries.

Following clustering of accessions into groups of

genetically identical clones, actual variety identities

were determined by matching each accession to the

samples in the CSIR-CRI library. The library con-

tained a total of 64 accessions but based on genetic

similarity, these were collapsed into 34 unique culti-

vars (Additional file 2: Figure S1) of which 16 are re-

leased varieties. Using this library, we successfully

classified a total of 282 accessions from the farmers’

fields as released varieties, representing about 30 % of

the sampled 917 accessions (Table 1). These acces-

sions matched only 8 of the 16 released varieties in

CSIR-CRI reference library. Of the identified varieties,

the most common was “IFAD”, also known as “UCC”

and found in 158 households. The next most com-

mon variety was “Nkabom” (n = 65), followed by less

common varieties of “Afisiafi”, “Tek Bankye”, “Bankye

Broni” and “Doku Duade”, which occurred in 17, 12,

21 and 4 households, respectively. Although “Nka-

bom” is a released variety in the CSIR-CRI library, it

was found to correspond to a superior landrace from

Nigeria (TMEB3), one of the first clones discovered

to harbor dominant resistance to cassava mosaic dis-

ease [37]. It is therefore likely to have been intro-

duced to Ghana through formal germplasm exchange

between public breeding programs of the two coun-

tries. The least common of the released varieties was

“Sika Bankye” found in only two of the surveyed

households.

Besides the released varieties, a total of 315 accessions

belonging to five different landraces with corresponding

clones in the CSIR-CRI library were identified (Table 1).

However, we could not match a total of 202 accessions

from farmers’ fields to any of the genotypes in the refer-

ence library. These belonged to groups VII, X and XI as

well as the various hybrid groups (Table 1).

Geographical distribution of the identified varieties

To further place the results from cluster analyses in a

geographical context, we projected individual acces-

sions on the map of Ghana (Fig. 1) using the associ-

ated GPS co-ordinates. Each accession is represented

by a barplot that is colored according to the inferred

membership in the K = 11 genetic clusters. The two

most common varieties (I and II) are equally well dis-

tributed across the three study regions suggesting

they are highly preferred by most farmers and have

broad adaptation. On the other extreme, varieties VII

and X are geographically restricted and found only in

one geographic area.

Variation in the geographic distribution of the released

varieties was observed in the three study regions. The

most common released variety (Variety II in Fig. 1) is

well distributed across the three study regions; Variety

III was found mostly in the Brong Ahafo region and a

few places in the Eastern Region; Variety IV and VIII oc-

curred mostly in the Eastern Region and in small

patches of the other regions (Fig. 1). Potential reasons

for the geographic clustering of varieties include region

specific uses and adaptation as well as being newly

evolved or introduced varieties with limited dissemin-

ation opportunities. The location and limited number of

industrial processing facilities may also restrict distribu-

tion of high yielding varieties suitable for processing.

Fig. 4 Determination of the optimal number of clusters using ADMIXTURE and DAPC. a Ten-fold cross-validation error rates for K = 2 to K = 18,

showing the least error rate was produced by K = 11. b Bayesian Information Criterion (BIC) estimates for k-means clusters (K = 1 to K = 40) in the

same dataset
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Correspondence between local names and each of the

identified cultivars

While many farmer given variety names correspond to

specific clones, there are often differences between gen-

etically unique cultivars as identified by 56,489 SNPs

and variety names as elicited from farmers (Fig. 5). For

example, the most common clone (Variety I) was vari-

ously named as “Debor”, “Bankye Kokoo” and “Ankra”,

as well as other less common names not shown in Fig. 5.

Spatial distribution analysis revealed that these three

most commonly used names are geographically struc-

tured by regions (Additional file 3: Figure S2) suggesting

there are regional differences in the name of the same

variety. The naming system was similarly complex for

the eight released varieties cultivated by farmers. For in-

stance, the two most common released varieties (IFAD/

UCC and Nkabom) were associated with 33 and 25 dif-

ferent names, respectively (Additional file 1: Table S1).

Such discrepencies resulting from synonymy and hom-

onymy in clones names is expected to confound tracking

of released varieties when relying on use of names alone.

Performance of reduced numbers of SNP markers in

cultivar identification

Accuracy of ancestry estimates (mean R2 and SD) ob-

tained with subsets of SNP markers, selected according

to increasing FST (0.1, 0.2,…, 0.9, and 0.95), the corre-

sponding equivalent numbers of randomly sampled

SNPs, and the full set of 56,489 SNPs are presented in

Fig. 6. Markers passing the predetermined FST thresh-

olds were the complete set of SNPs, 43007, 37900,

30962, 24560, 14426, 5359, 2755, 1392, 570 and 324, re-

spectively. We found that the randomly drawn SNP

panels slightly but consistently outperformed the SNP

panels selected according to FST (average R2 = 0.97 for

FST and R2 = 0.99 for the random SNPs). In addition,

each of the 20 independently drawn samples for each

subset produced very similar results, as indicated by the

small standard deviation. A very high correlation with

the full SNP data was obtained using SNPs with FST
below 0.6 (5359 SNP) and both random and FST-

based subsets performed similarly. Using 2755 SNPs

(FST > 0.70) resulted in (0.05 units) lower correlations.

Table 1 Summary of the results of variety identification efforts in the present study

Varieties* Number of accessions ** Variety Status Common local names or released variety name
(according to CSIR-CRI library)***

Variety I 208 Landrace Ankra, Bankye kokoo, Debor

Variety II 158 Released variety IFAD, UCC

Variety III 65 Released variety Nkabom

Variety IV 17 Released variety Afisiafi

Variety V 57 Landrace Akosua tumtum, Bankye tumtum, Tuaka

Variety VI 37 Landrace Bankye kakaduro, Navrongo

Variety VII 20 Not in library Ampenkyene

Variety VIII 21 Released variety Bankye broni

Variety IX 13 Landrace Gbezeh

Variety X 33 Not in library Kotee

Variety XI 11 Not in library Amapomaa

50 % ancestry from Variety I 17 Not in library Many (12 different names)

50 % ancestry from Variety II 11 Not in library Many (7 different names)

50 % ancestry from Variety III 19 Released variety Tek bankye and Dokuduade (12 and 4 accessions, respectively)

50 % ancestry from Variety IV 10 Most not in library Many (12 different names)

50 % ancestry from Variety V 12 Not in library Many (10 different names)

50 % ancestry from Variety VI 33 Not in library Many (25 different names)

50 % ancestry from Variety VIII 21 Not in library Many (19 different names)

50 % ancestry from Variety IX 29 Not in library Many (17 different names)

50 % ancestry from Variety XI 5 Not in library Many (6 different names)

Multi-ancestry clones 120 Most not in library Sikabankye (Only 2 accessions)

*Admixture analysis-based ancestry estimates show there were 11 major varieties as well as hybrids derived from these varieties. We grouped these as (i) those

that have at least 50 % ancestry from each of the major 11 groups and (ii) those that have multiple ancestries with none meeting the 50 % threshold

**For the admixed clones (i.e. hybrids), the numbers designate the totality of the accessions that have at least 50 % of their ancestries coming from a

specific genotype

***Because of the multiplicity of names associated with each unique landrace, we only attempt to provide most common ones where applicable
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The accuracy of 324 SNPs with FST > 0.95 was sub-

stantially lower (R2 = 0.90), even much less than that

obtained from a similar number but randomly drawn

SNPs (R2 = 0.96). Our results suggest there is loss of

information in predicting admixture when going for

markers with larger FST while random samples of

SNPs give higher accuracies, though the actual differ-

ences are small. New SNPs-based variety identification

studies for cassava would therefore require at least

300 informative SNP markers in order to have

sufficient power to not only identify varieties but also

estimate ancestries of these accessions.

Cluster analysis using DAPC and validation of ADMIXTURE

results

We validated maximum likelihood-based clustering re-

sults from ADMIXTURE analysis using DAPC method

that is considered free of Hardy-Weinberg and linkage

disequilibrium assumptions. Model selection using BIC

revealed the presence of hierarchical structure in the

population, with steep decline from K = 2 up to around

K = 10 followed by a more gentle decrease. The lowest

BIC value which corresponded to optimal cluster

number was obtained at K = 21 (Fig. 4b). Although

this number was larger than that found by ADMIX-

TURE (K = 11), DAPC clustering recapitulated the

groupings uncovered by both the distance-based hier-

archical clustering topology as well as ancestry esti-

mates achieved by ADMIXTURE. Comparison of the

cluster membership results from the DAPC and AD-

MIXTURE analyses are summarized in Additional file

4: Table S2. A major difference between the results of

the two clustering methods was the propensity of the

DAPC analysis to assigned entire individuals to a sin-

gle cluster compared to ADMIXTURE, which was able

to assign admixed individuals to multiple clusters. In-

deed, whereas a total of 277 genotypes (or 339 when

including the CSIR-CRI library accessions) did not

meet the 90 % threshold for belonging to single

Fig. 5 Correspondence between genetically unique varieties as identified by 56,489 SNP (indicated by numbers I to XI on the left semi-circle) and

the most common variety names as elicited from farmers (indicated by A to J on the right semi-circle). Note that only variety names occurring at

least 10 times or more in the entire sample were used

Fig. 6 Average accuracy (R2) and standard deviation (error bars) of

ADMIXTURE-based estimation of individual ancestries using: i) SNP

panels selected according to increasing FST thresholds compared

with; ii) same number of randomly selected markers. The accuracy

was estimated by correlating the ancestry estimates from the various

subsets with that obtained using the entire marker data
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cluster in the ADMIXTURE, only 15 genotypes did

not to not exceed the same threshold in the DAPC

analysis. Of the accessions belonging purely to clus-

ters I to XI (i.e. ancestry > 90 %) from ADMIXTURE

analysis, we found 100 % agreement with their corre-

sponding DAPC clusters, except for cluster VI whose

members were assigned to two DAPC groups (9 and

14) in roughly equal proportions (Additional file 4:

Table S2). Large number clusters from DAPC mostly

corresponded to sets of genetically similar groups of

admixed individuals that shared same ancestries (Add-

itional file 4: Table S2).

Discussion
As a clonally propagated crop, cassava has several

special characteristics for consideration, which also

makes it an interesting crop for this case study. First,

due to its broad tropical distribution and its predom-

inantly outbreeding system, cassava carries consider-

able heterozygosity [38]. As expected in typical

subsistence farming systems, a substantial number of

cassava farmers cultivate more than one variety in

their fields to take care of diverse needs. This multiplicity

of varieties in farmers’ fields, enables cross-breeding, and

eventually some of the volunteer seedlings end-up being

selected either consciously or unconsciously as new var-

ieties that are subsequently exchanged [39]. This is the

most likely explanation for the occurrence of numerous

admixtures in the study region.

Second, as a so-called “orphan crop” [40], cassava im-

provement has been mainly implemented by public

breeding programs and lacks a formal seed system,

thereby making varietal dissemination a challenge [41].

Most farmers use their own planting materials (usually

stem cuttings from the preceding crop) or they source

stem cuttings from neighboring farmers [18]. Even re-

leased varieties may be relatively old due to the low rate

of variety turn-over [42]. This allows for spontaneous

emergence of clonal variants with different phenotypes

that may be undistinguishable by molecular markers.

Genetic distance based on use of molecular markers

has been proposed as an appropriate tool to identify pu-

tative ‘essentially derived varieties’ [11, 43–45]. The con-

cept of essential derivation is often used in relation to

protection of breeder’s rights and refers to a variety with

slight modifications from an original variety (such as a

single gene insertion through transgenic approaches,

back-crossing, or induced mutagenesis) [29]. Our study

has followed similar principles, but the objective is dif-

ferent: to assist in collecting accurate variety-specific

identification data that can be used to study rates of

adoption. However, the success of DNA-based sample

identification procedure ultimately depends on the avail-

ability of a library panel containing representatives of

known varieties. Ideally, the library should be as com-

prehensive as possible and well curated. In our study, we

found instances of accessions from farmers that did not

have corresponding genotypes in the library (i.e. Cluster

groups VII, X and XI). Moreover, several sets of differ-

ently named duplicates were found in the library. Most

of these duplicates are classified as landraces and were

perhaps independently collected from different regions

of Ghana and therefore came with different names.

Next generation sequencing-based genotyping

methods such as GBS yield thousands to hundreds of

thousands of SNP markers, depending on the genome

size, choice of restriction enzymes and the level of

sample multiplexing. In the present study, we ob-

tained more than half a million SNPs, which were re-

duced to about 56,000 markers after curation. Cluster

analysis using subsets of either randomly selected or

FST-selected SNP markers showed that smaller num-

ber of markers could produce similar results to those

obtained from complete marker data. An ideal set of

ancestry informative SNP markers should have one al-

lele that is fixed in one ancestral lineage and not

present in the other [46]. Such sets of markers are

designed to provide most of the ancestry information

using low density cost-effective SNP genotyping arrays

and will be valuable for follow-up studies. Numerous

ancestry-specific SNP markers have been developed

and used in human population studies [47–49]. How-

ever, the number of markers required for population

assignment will depend on the populations under

consideration, their respective level of genetic differ-

entiation and the desired stringency of assignment.

Use of array-based genotyping with a fixed set of pre-

selected SNPs thus requires an upfront investment

and research to determine the genetic structure of

the target study population. A more plausible alterna-

tive is to use GBS, which at a higher multiplexing

level (for instance 384 DNA samples instead of 96)

will be cost-effective enough for direct genotype iden-

tification. Although higher multiplexing of samples

will proportionately reduce the number of scorable

SNPs, it is expected that the final number will still be

more than sufficient for cultivar identification. In

other words, the increasingly affordable sequencing-

based DNA fingerprinting methods should be

employed as the primary variety identification tool in

collection of variety specific adoption data during

household level impact assessment studies.

In the present study, the distance-based approach

was successfully used to match accessions from

farmers’ fields to corresponding varieties in the ‘li-

brary’ of released varieties maintained by CSIR-CRI,

based on pairwise distance threshold determined em-

pirically from redundant genotyping of a subset of the
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collection. We then went further by unraveling the

underlying population structure of the studied germ-

plasm with the aim of determining the ancestry of in-

dividual accessions. In impact assessment studies, the

ancestry information is important since it provides a

framework for determining the contribution of spe-

cific germplasm in development of new varieties and

therefore show indirect impact of germplasm originat-

ing from a specific breeding program [50]. This was

achieved through the analysis of the populations

structure from the high-density SNP data using the

complementary model-based methods of ADMIX-

TURE and discriminant analysis of principal compo-

nents. In the absence of reliable pedigree records or

where varieties are selected from open-pollinated

seeds, ancestry analysis from DNA markers is the

only way uncovering the genetic source of varieties.

The DAPC method uncovered more clusters than

ADMIXTURE (Additional file 4: Table S2) but

whereas the latter method revealed large number of

individuals with two or more ancestries, DAPC

mostly assigned individuals to single clusters. This is

because the DAPC approach relies on discriminant

functions that seeks to maximize the diversity be-

tween clusters by while minimizes within-cluster di-

versity [25]. Such method works best with

discontinuous population structure such as in island-

model but was found to be less efficient in cassava

germplasm due to their continuous and complex

population structure [51, 52]. In clonal crop species

like cassava, varieties are often derived from complex

inter-generational crosses, resulting in clusters that

tend to dissolve into clinal patterns of genetic differ-

entiation [25]. Still, DAPC cluster assignment gener-

ally agreed with the main ADMIXTURE clusters

where >90 % ancestries were assigned to specific clus-

ters. In conclusion, this study confirms the reliability

and accuracy of high-density SNP markers from

sequencing-based genotyping methods for variety

identification and tracking adoption of crop varieties.
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