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Tracking Deforming Objects using Particle Filtering for

Geometric Active Contours

Yogesh Rathi, Namrata Vaswani, Allen Tannenbaum, Anthony Yezzi

Abstract

Tracking deforming objects involves estimating the global motion of the object and its local

deformations as a function of time. Tracking algorithms using Kalman filters or Particle filters have

been proposed for finite dimensional representations of shape, but these are dependent on the chosen

parametrization and cannot handle changes in curve topology. Geometric active contours provide a

framework which is parametrization independent and allow for changes in topology. In the present

work, we formulate a particle filtering algorithm in the geometric active contour framework that can be

used for tracking moving and deforming objects.

I. I NTRODUCTION

The problem of tracking moving and deforming objects has been a topic of substantial research

in the field of controlled active vision; see [1], [2] and the references therein. In this paper, we

propose a scheme which combines the advantages of particle filtering and geometric active

contours realized via level set models for dynamic tracking.

In order to appreciate this methodology, we briefly review some previous related work. First

of all, a number of different representations of shape have been proposed in literature together

with algorithms for tracking using such representations. In particular, the notion ofshapehas

been found to be very useful in this enterprize. For example, the shape of a set ofN discrete

points (calledlandmarks) in RM is defined as the equivalence class ofRMN under the Euclidean

similarity group inRM . The dynamics of the similarity group defines the global motion while

the dynamics of the equivalence class defines the deformation. In [3], the authors define a prior
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dynamical model on the deformation and on the similarity group parameters. A particle filter

[4] is then used to track the deformation and the global motion over time.

The possible parameterizations of shape are of course very important. We should note that

various finite dimensional parameterizations of continuous curves have been proposed, perhaps

most prominently the B-spline representation used for a “snake model” as in [2]. Isard and Blake

(see [1] and references therein) apply the B-spline representation for contours of objects and

propose the Condensation algorithm [5] which treats the affine group parameters as the state

vector, learns a prior dynamical model for them and uses a particle filter [4] to estimate them

from the noisy observations. Since this approach only tracks the affine parameters it cannot

handle local deformations of the deforming object (see e.g., the fish example in Section IV-A).

Another approach for representing contours is via the level set technique [6], [7] which is

an implicit representation of contours. For segmenting a shape using level sets, an initial guess

of the contour is deformed until it minimizes an image-based energy functional. Some previous

work on tracking using level set methods is given in [8], [9], [10], [11].

The work in this paper extends the ideas presented in [10], [11]. More precisely, in [10], the

authors propose a definition for motion and shape deformation for a deforming object. Motion

is parameterized by a finite dimensional group action (e.g. Euclidean or Affine) while shape

deformation is the total deformation of the object contour (infinite dimensional group) modulo

the finite dimensional motion group. This is calleddeformotion. Tracking is then defined as a

trajectory on the finite dimensional motion group. This approach relies only on the observed

images for tracking and does not use any prior information on the dynamics of the group action

or of the deformation. As a result it fails if there is an outlier observation or if there is occlusion.

To address this problem, [11] proposes a generic local observer to incorporate prior information

about the system dynamics in the “deformotion” framework. They impose a constant velocity

prior on the group action and a zero velocity prior on the contour. The observed value of the

group action and the contour is obtained by a joint minimization of the energy. This is linearly

combined with the value predicted by the system dynamics using an observer matrix.

This approach suffers from two problems. First, as in [10], they must perform a joint mini-

mization over the group action and the contour at each time step which is computationally very

intensive. Second, for nonlinear systems such as the one used in [11], there is no systematic

way to choose the observer matrix to guarantee stability. The present paper addresses the above
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limitations. We formalize the incorporation of a prior system model along with an observation

model. A particle filter is used to estimate the conditional probability distribution of the group

action and the contour at timet, conditioned on all observations up to timet.

Other approaches closely related to our work are given in [2], [12]. Here the authors use a

Kalman filter in conjunction with active contours to track nonrigid objects. The Kalman filter

was used for predicting possible movements of the object, while the active contours allowed for

tracking deformations in the object. The literature discussed above is by no means exhaustive.

Due to paucity of space, we have discussed only a few related works here.

This note is organized as follows: In Section 2 we describe the state space model and Section

3 discusses the algorithm in detail. Experimental results are given in Section 4. Limitations and

future work are discussed in Section 5.

II. T HE SYSTEM AND OBSERVATION MODEL AND IMPORTANCESAMPLING

Let Ct denote the contour at timet. The basic idea of the level set approach is to embed the

contourCt as the zero level set of a graph of a higher dimensional functionΦ : R2 −→ R

and then evolve the graph so that this level set moves according to the given curve evolution

equation. Level sets have the advantage of being parameter independent (i.e. they are implicit

representation of the curve) and can handle topological changes naturally. The particle filter [4],

[13] is a sequential Monte Carlo method which produces at each timet, a cloud ofN particles,

{X(i)
t }N

i=1, whose empirical measure closely “follows”p(Xt|Y1:t), the posterior distribution of

the state given past observations. It was first introduced in [4] as the Bayesian Bootstrap filter

and its first application to tracking in computer vision was the Condensation algorithm [5].

Let At denote a 6-dimensional affine parameter vector with the first 4 parameters representing

rotation, skew and scale and the last 2 parameters representing translation. We propose to use

the affine parameters (At) and the contour (Ct) as the state, i.e.Xt = [At, Ct] and treat the

image at timet as the observation, i.e.Yt = Image(t). The prediction step forXt consists of

predicting the affine motion of the object followed by predicting the deformation. The affine

motion prediction is done by using a first or second order (constant velocity or acceleration)

autoregressive (AR) model on the affine parameters. So we have,

At = fAR(At−1, ut), µt = At(Ct−1) , (1)

DRAFT



4

whereut is a 6-dim Gaussian noise vector andfAR is the AR model explained in Section III-A.

When the image at timet (Yt) is available,µt is deformed by doing gradient descent (com-

monly referred to as “curve evolution”) on the image energyEimage (any image dependent energy

functional, see Section III-C) at timet, followed by addition of random Gaussian noise. Thus

we have

Ct = fL
CE(µt, Yt) + uC,t (2)

whereuC,t is ann-dimensional1 noise vector with distributionN (0, Σ) andfL
CE(µ, Y ) is given by

L iterations of gradient descent. Doing curve evolution accounts for using the latest observation

Yt to obtain local shape deformation and position of the object. This step can be interpreted as

importance sampling from a proposal distribution dependent on the current observation (discussed

below).

Now fL
CE(µ, Y ) is given by

µk = µk−1 − α∇µEimage(µ
k−1, Y ), k = 1, 2, 3, .., L

where µ0 = µ and fL
CE(µ, Y ) = µL .

Note that we fixedL = 4 in our experiments. Ifµt is evolved until convergence, one would reach

a local minimum of the energyEimage. This is not desirable since the local minimum would be

independent of all starting contours in its domain of attraction and would only depend on the

observation,Yt. Thus the state at timet would loose its dependence on the state at timet − 1

and this may cause loss of track in cases where the observation is bad. But ifµt is evolved only

a fixed number of times, it will deviate the contour only a little (in a direction which decreases

the energyEimage as fast as possible using only local information) so that particles are moved

to regions of high likelihood.

The “likelihood” i.e., probability of observationYt = Image(t) given stateXt, is given by:

p(Yt|Xt) ∝ e−Eimage(Yt,Ct) . (3)

We now explainimportance sampling[13] and how we use it in our particle filtering algorithm

(described in the next section). Supposep(x) is a probability density from which it is difficult to

draw samples andq(x) is a density which is easy to sample from and has a heavier tail thanp(x)

1n is the number of points representing the deformed contourfL
CE(µt, Yt) on a discrete grid and it varies with time.
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(i.e. there exists a bounded regionR such that for all points outsideR, q(x) > p(x)). q(x) is

known as theproposal densityor the importance density. Let xi ∼ q(x), i = 1, ..., N be samples

generated fromq(.). Then, an approximation top(.) is given byp(x) ≈ ∑N
i=1 wiδ(x−xi), where

wi ∝ p(xi)
q(xi)

is the normalized weight of the i-th particle. So, if the samples,X
(i)
t , were drawn

from an importance density,q(Xt|X1:t−1, Y1:t), and weighted byw(i)
t ∝ p(X

(i)
t |Y1:t)

q(X
(i)
t |X(i)

1:t−1,Y1:t)
, then

∑N
i=1 w

(i)
t δ(X

(i)
t −Xt) approximatesp(Xt|Y1:t).

In our case, the state process is a Markov process andp(Yt|X0:t, Y0:t−1) = p(Yt|Xt) (sometimes

referred to as the “memoryless channel assumption”) and since we take the importance sampling

densityq(Xt|X0:t−1, Y1:t) = q(Xt|Xt−1, Yt), we get the following recursion for the weights [13]:

w
(i)
t ∝ w

(i)
t−1

p(Yt|X(i)
t )p(X

(i)
t |X(i)

t−1)

q(X
(i)
t |X(i)

t−1, Yt)
. (4)

The importance density can be written as2

q(Xt|Xt−1, Yt) = q(At, Ct|At−1, Ct−1, Yt) = q(At|At−1)q(Ct|At(Ct−1), Yt) = p(At|At−1)q(Ct|µt, Yt),

since we sampleAt from p(At|At−1), we haveq(At|At−1) = p(At|At−1).

The prior densityp(Xt|Xt−1) can be written as:

p(Xt|Xt−1) = p(At, Ct|At−1, Ct−1) = p(At|At−1)p(Ct|At(Ct−1)) = p(At|At−1)p(Ct|µt)

Thus, (4) can be written as:

w
(i)
t ∝ w

(i)
t−1

p(Yt|X(i)
t ) p(C

(i)
t |µ(i)

t )

q(C
(i)
t |µ(i)

t , Yt)
. (5)

The probabilityp(Ct|µt) can be calculated using any suitable measure of similarity between

shapes. One such measure is to takep(Ct|µt) ∝ e−d2(Ct,µt) whered2 is the dissimilarity measure

given by equation (14) in Section III-E.

The choice of the importance density is a critical design issue for implementing a successful

particle filter. As described in [14], the proposal distributionq should be such that particles

generated by it lie in the regions of high observation likelihood. One way of doing this is to use

a proposal density which depends on the current observation. This idea has been used in many

past works such as the unscented particle filter [14] where the proposal density is a Gaussian

2Note that the curve obtained after doing curve evolution is denoted byCt, while the curve obtained by applying the affine

transformation is denoted byµt, i.e., µt = At(Ct−1).

DRAFT



6

density with a mean that depends on the current observation. Our update step described in

equation (2) can be interpreted as importance sampling from the densityq(Ct|µt, Yt) given by

N (fCE(µt, Yt), Σ) whereΣ is ann× n (n is the number of points representing the contourCt

on a discrete grid and hence varies with time) covariance matrix. The covariance of the noise

should be large enough so thatq has a heavier tail thanp(Yt|Xt)p(Xt|Xt−1) (in the sense defined

above). Note that, in practice it is not possible to evaluateΣ satisfying this condition.

III. T HE PARTICLE FILTERING ALGORITHM

Based on the description above, the proposed algorithm can be written as follows:

1) Importance Sampling:

a) Generate samples{A(i)
t , µ

(i)
t }N

i=1 using:

A
(i)
t = fAR(A

(i)
t−1, u

(i)
t ), µt

(i) = A
(i)
t (C

(i)
t−1) .

b) Perform L steps of curve evolution on eachµ
(i)
t and add noise:

C
(i)
t = fL

CE(µ
(i)
t , Yt) + u

(i)
C,t, u

(i)
C,t ∼ N (0, Σ) . (6)

2) Weighting and Resampling:

a) Calculate weights and normalize:

w̃
(i)
t =

e−Eimage(Yt,C
(i)
t ) e−d2(C

(i)
t ,µ

(i)
t )

q(C
(i)
t |µ(i)

t , Yt)
, w

(i)
t =

w̃
(i)
t∑N

j=1 w̃
(j)
t

.

whered is defined in (14) in Section III-E andEimage is defined in Section III-C.

b) Resample to generateN particles{A(i)
t , C

(i)
t } distributed according top(At, Ct|Y1:t),

p(At, Ct|Y1:t) ≈
N∑

i=1

1

N
δ
A

(i)
t ,C

(i)
t

(At, Ct) ,

3) Go back to the importance sampling step fort + 1.

The resampling step improves sampling efficiency by eliminating particles with very low

weights. Other details of the above algorithm are discussed in the following subsections.
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A. The AR model

In the above algorithmfAR could be any suitable prediction function which can model the

dynamics of motion of the moving object. Rather than conjuring up a model that is merely

plausible, one can learn the dynamics of motion from a training set. This can be done using

an autoregressive (AR) model. A second-order AR process in which the affine parameters at a

given time depend on two previous time-steps is given by:

At+1 − Ā = B1(At − Ā) + B2(At−1 − Ā) + B0ut+1 , (7)

whereAt is the 6-dimensional affine parameter vector (10),B1, B2, B0 are6×6 matrices learned

a priori, ut+1 is a vector of 6 independent randomN (0, 1) variables andĀ is the steady state

mean of the model. We refer the interested reader to [1] for further details on how to learn

these parameter matrices and the advantages of using the second-order model (AR-2) versus the

first-order model (AR-1).

B. Learning Affine Motion

Many approaches [15] have been reported in the literature for finding the affine parameters that

relate one image to the other. Most of these methods require a set of feature points to be known

before one can find the affine parameters that relate them. In [16] the author proposes a method

to find the affine parameters using only the source and target images. The affine transformation

that relates the curveC(t) andC(t− 1) is given by:

C(x, y, t) = C(m1x + m2y + m5,m3x + m4y + m6, t− 1) ,

where,mi are the affine parameters. In order to estimate these parameters, the following quadratic

error is to be minimized:

E(~m) =
∑

x,y∈ω

[C(x, y, t)− C(m1x + m2y + m5,m3x + m4y + m6, t− 1)]2 ,

which is linearized and then minimized to give

~m =

[ ∑
x,y∈ω

~d ~dT

]−1[ ∑
x,y∈ω

~d k

]
, (8)
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where the scalar k and the vectors~d , ~m are given as3:

k = Ct + xCx + yCy and ~dT = (xCx yCx xCy yCy Cx Cy) (9)

~m = (m1 m2 m3 m4 m5 m6)
T . (10)

Derivation details are available in [16]. Once the affine parameter vector~m is known for the

training set, the AR model parameter matrices can be learned as given in [1].

C. The Model of Chan and Vese

Many methods [8], [17], [18] which incorporate geometric and/or photometric (color, texture,

intensity) information have been shown to segment images robustly in presence of noise and

clutter. In the prediction step above,fCE could be any edge based or region based (or a

combination of both) curve evolution equation. In our numerical experiments we have used

the Mumford-Shah functional [19] as modelled by Chan and Vese [20] to obtain the curve

evolution equation, which we describe briefly. We seek to minimize the following energy:

Eimage = Ecv(c1, c2, Φ) =

∫

Ω

(f − c1)
2H(Φ)dx dy +

∫

Ω

(f − c2)
2(1−H(Φ)) dx dy

+ ν

∫

Ω

|∇H(Φ)|dx dy ,

(11)

wherec1 andc2 are defined as:

c1 =

∫
f(x, y)H(Φ)dx dy∫

H(Φ)dx dy
, c2 =

∫
f(x, y)(1−H(Φ))dx dy∫

(1−H(Φ))dx dy
,

andH(Φ) is the Heaviside function defined as:

H(Φ) =





1 Φ ≥ 0 ,

0 else ,
(12)

and finallyf(x, y) is the image andΦ is the level set function as defined in Section II before.

The Euler-Lagrange equation for this functional can be implemented by the following gradient

descent [20], [19]:

∂Φ

∂t
= δε(Φ)

[
ν div

( ∇Φ

|∇Φ|
)
− (f − c1)

2 + (f − c2)
2

]
where δε(s) =

ε

π(ε2 + s2)
.

3The subscripts in this equation denote partial derivatives.
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D. Dealing with Multiple Objects

In principle, the Condensation filter [1] could be used for tracking multiple objects. The

posterior distribution will be multi-modal with each mode corresponding to one object. However,

in practice it is very likely that a peak corresponding to the dominant likelihood value will

increasingly dominate over all other peaks when the estimation progresses over time. In other

words, a dominant peak is established if some objects obtain larger likelihood values more

frequently. So, if the posterior is propagated with fixed number of samples, eventually, all samples

will be around the dominant peak. This problem becomes more pronounced in cases where the

objects being tracked do not have similar photometric or geometric properties. We deal with this

issue as given in [21] by first finding the clusters within the state density to construct a Voronoi

tessalation [22] and then resampling within each Voronoi cell separately as follows: 1) Every

step, build an importance function which results in equal number of samples being taken in each

Voronoi cell. 2) Every N steps, rescale the weights in each cell so that the peak weight is 1.

Other solutions proposed by [23], [24] could also be used in tackling this problem of sample

impoverishment.

E. Coping with Occlusions

Many active contour models [18], [17], [25] which use shape information have been reported

in the literature. Prior shape knowledge is necessary when dealing with occlusions. In particular,

in [8], the authors incorporate “shape energy” in the curve evolution equation to deal with

occlusions. Any such energy term can be used in the proposed model to deal with occlusions. In

numerical experiments we have dealt with this issue in a slightly different way by incorporating

the shape information in the weighting step instead of the curve evolution step, i.e. we calculate

the likelihood probability for each particle using the following:

p(Yt|X(i)
t ) = λ1(

e−E
(i)
cv

∑N
j=1 e−E

(j)
cv

) + λ2(1− d2(Φ(s), Φ(i))∑N
j=1 d2(Φ(s), Φ(j))

) , (13)

whereλ1 + λ2 = 1 andd2(Φ(s), Φ(i)) is the dissimilarity measure as given in [25] by,

d2(Φ(s), Φ(i)) =

∫

Ω

(Φ(s)−Φ(i))2 h(Φ(s)) + h(Φ(i))

2
dx dy with h(Φ) =

H(Φ)∫
Ω

H(Φ) dx dy
(14)

whereΦ(s) and Φ(i) are the level set functions of a template shape and the i-th contour shape

respectively andH(Φ) is the Heaviside function as defined before in (12). The dissimilarity mea-

DRAFT



10

sure gives an estimate of how different any two given shapes (in particular, their corresponding

level sets) are. So, higher values ofd2 indicates more dissimilarity in shape. Using this strategy,

particles which are closer to the template shape are more likely to be chosen than particles with

“occluded shapes” (i.e., shapes which include the occlusion).

IV. EXPERIMENTS

In this section we describe some experiments performed to test the proposed tracking algo-

rithm. We certainly do not claim that the method proposed in this note is optimal, but only

claim that to the best of our knowledge this is the first time geometric active contours in a level

set framework have been used in conjunction with the particle filter [4] for tracking deforming

objects. Results of applying the proposed method on three image sequences are given below.

The model of Chan and Vese [20], as described earlier, was used for curve evolution. Level

set implementation was done using narrow band evolution [7]. Learning [1] was performed on

images without the background clutter, i.e. on the outlines of the object. In numerical experiments,

there was no noticeable difference between results obtained by adding noise to the contourCt

(see equation (6)) versus those obtained without adding noise. The results shown in this paper

were obtained without adding noise to the contour.

A. Fish Sequence

In the fish video, the shape of the fish undergoes sudden deformation as the fish turns or

gets partially occluded (see Figure 3, Frames 167, 181). This local shape deformation cannot

be modelled using an affine motion model. Hence, such motion is difficult to track using the

standard Condensation filter [1]. As can been seen in the images, (Figure 3) the proposed method

can robustly track nonrigid deformations in the shape of the fish. Note that,no shape information

either in curve evolution or in the weighting step was used in tracking this sequence, i.e. we did

not use the dissimilarity term specified in Section III-E. For this test sequence, an AR-1 model

[1] was used for affine motion prediction.

B. Car Sequence

In this sequence, the car is occluded as it passes through the lamp post. Trying to track such a

sequence using geometric active contours (for example, (13)) without any “shape energy” gives
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(a) Frame 35 (b) Frame 47 (c) Frame 59

Fig. 1. Tracking using equation (13) without particle filter

very poor results as shown in Figure 1. However, using the proposed method and a weighting

strategy as described in Section III-E the car can be successfully tracked (Figure 2). Note that we

used equation (13) for the curve evolution which does not contain any shape term. A second-order

autoregressive model (7) was used forfAR.

C. Couple Sequence

The walking couple sequence demonstrates multiple object tracking. In general, tracking such

a sequence by the standard Condensation method [1] can give erroneous results when the couple

come very close to each other or touch each other, since the measurements made for the person

on the right can be interpreted by the algorithm as coming from the left. One solution has

been proposed in [23]. Our method naturally avoids this problem since it uses “region based”

energyEcv (11) and weighting as given in Section III-E to find the observation probabilities.

To track multiple objects, we used the method described in Section III-D. Since the number of

frames in the video is less (about 22) no dynamical motion model was learnt, resulting in the

state transition equation:At = At−1 + But whereut is white Gaussian noise and B is a known

covariance matrix which is assumed to be constant through the state evolution process. This

video demonstrates the fact that, the proposed algorithm can track robustly (see Figure 4) even

when the learnt model is completely absent.

V. L IMITATIONS AND FUTURE WORK

In this paper, we proposed a particle filtering algorithm for geometric active contours which

can be used for tracking moving and deforming objects. The proposed method can deal with

partial occlusions and can track robustly even in the absence of a learnt model.
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(a) Frame 16 (b) Frame 39 (c) Frame 48 (d) Frame 64

Fig. 2. Car Sequence

(a) Frame 34 (b) Frame 167 (c) Frame 181 (d) Frame 215

Fig. 3. Fish Sequence

The above framework has several limitations which we intend to overcome in our future work.

First, we have to include some kind of shape information when we track objects which undergo

major occlusions. This restricts our ability to track highly deformable objects in such situations.

Secondly, the algorithm might perform poorly if the object being tracked iscompletely occluded

for many frames. In [26], the authors have performed PCA on a set of signed distance functions

of training shapes to obtain principal directions of variation of the signed distance function. We

can adopt a similar idea and add noise in the principal variation directions to obtain contour

prediction. This approach can also provide a shape prior.

VI. A CKNOWLEDGEMENTS

We thank Marc Niethammer and Oleg Michailovich for fruitful discussions.

REFERENCES

[1] A. Blake and M. Isard, Eds.,Active Contours. Springer, 1998.

[2] D. Terzopoulos and R. Szeliski,Active Vision. MIT Press, 1992, ch. Tracking with Kalman Snakes, pp. 3–20.

DRAFT



13

(a) Frame 2 (b) Frame 9 (c) Frame 15 (d) Frame 18

Fig. 4. Couple Sequence

[3] N. Vaswani, A. RoyChowdhury, and R. Chellappa, “Activity recognition using the dynamics of the configuration of

interacting objects,” inIEEE Conference on Computer Vision and Pattern Recognition (CVPR), Madison, WI, June 2003.

[4] N. Gordon, D. Salmond, and A. Smith, “Novel approach to nonlinear/nongaussian bayesian state estimation,”IEE

Proceedings-F (Radar and Signal Processing), pp. 140(2):107–113, 1993.

[5] M. Isard and A. Blake, “Condensation – conditional density propagation for visual tracking,”International Journal of

Computer Vision, vol. 29, no. 1, pp. 5–28, 1998.

[6] S. J. Osher and J. A. Sethian, “Fronts propagation with curvature dependent speed: Algorithms based on hamilton-jacobi

formulations,”Journal of Computational Physics, vol. 79, pp. 12–49, 1988.

[7] J. A. Sethian,Level Set Methods and Fast Marching Methods, 2nd ed. Cambridge University Press, 1999.

[8] T. Zhang and D. Freedman, “Tracking objects using density matching and shape priors,” inProceedings of the Ninth

International Conference on Computer Vision. IEEE, 2003, pp. 1950–1954.

[9] N. Paragois and R. Deriche, “Geodesic active contorus and level sets for the detection and tracking of moving objects,”

Transactions on Pattern analysis and Machine Intelligence, vol. 22, no. 3, pp. 266–280, 2000.

[10] A. Yezzi and S. Soatto, “Deformotion: Deforming motion, shape average and the joint registration and approximation of

structures in images,”Internaitonal Journal of Computer Vision, vol. 53, no. 2, pp. 153–167, 2003.

[11] J. Jackson, A. Yezzi, and S. Soatto, “Tracking deformable moving objects under severe occlusions,” inConf. decision and

control, Dec, 2004.

[12] N. Peterfreund, “Robust tracking of position and velocity with Kalman snakes,”IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 21, no. 6, pp. 564–569, 1999.

[13] A. Doucet, N. deFreitas, and N. Gordon,Sequential Monte Carlo Methods in Practice. Springer, 2001.

[14] R. van der Merwe, N. de Freitas, A. Doucet, and E. Wan, “The unscented particel filter,” inAdvances in Neural Information

Processing Systems 13, Nov 2001. [Online]. Available: citeseer.ist.psu.edu/article/vandermerwe00unscented.html

[15] Z. Yand and F. Cohen, “Cross-weighted moments and affine invariants for image registration and matching,”IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 21, no. 8, 1999.

[16] S. Periaswamy and H. Farid, “Elastic registration in the presence of intensity variations,”IEEE Transactions on Medical

Imaging, 2003.

[17] M. Rousson and N. Paragois, “Shape priors for level set representations,” inProceedings of European Conference on

Computer Vision, 2002, pp. 78–92.

DRAFT



14

[18] M. Leventon, W. L. Grimson, and O. Faugeras, “Statistical shape influence in geodesic active contours,” inProc. CVPR.

IEEE, 2000, pp. 1316–1324.

[19] D. Mumford and J. Shah, “Optimal approximation by piecewise smooth functions and associated variational problems,”

Commun. Pure Applied Mathematics, vol. 42, pp. 577–685, 1989.

[20] T. Chan and L. Vese, “Active contours without edges,”IEEE Trans. on Image Processing, vol. 10, pp. 266–277, 2001.

[21] D. Tweed and A. Calway, “Tracking many objects using subordinated condensation,” inThe British Machine Vision

Conference, 2002, pp. 283–292.

[22] R. Sedgewick,Algorithms. Addison-Wesley, 1992.

[23] H. Tao, H. Sawhney, and R. Kumar, “A sampling algorithm for tracking multiple objects,” inProceedings of Vision

Algorithms, ICCV, 1999.

[24] J. MacCormick and A. Blake, “A probabilistic exclusion principle for tracking multiple objects,”International Journal of

Computer Vision, vol. 39, pp. 57–71, 2000.

[25] D. Cremers and S. Soatto, “A pseudo-distance for shape priors in level set segmentation,” inIEEE Workshop on Variational,

Geometric and Level Set Methods in Computer Vision. IEEE, 2003.

[26] A. Tsai, T. Yezzi, and W. W. et.al, “A shape-based approach to the sementation of medical imagery using level sets,”IEEE

Trans. on Medical Imaging, vol. 22, no. 2, pp. 137–153, 2003.

DRAFT


