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Abstract. We present a generic framework to track shapes across large
variations by learning non-linear shape manifold as overlapping, piece-
wise linear subspaces. We use landmark based shape analysis to train a
Gaussian mixture model over the aligned shapes and learn a Point Dis-
tribution Model(PDM) for each of the mixture components. The target
shape is searched by first maximizing the mixture probability density
for the local feature intensity profiles along the normal followed by con-
straining the global shape using the most probable PDM cluster. The fea-
ture shapes are robustly tracked across multiple frames by dynamically
switching between the PDMs. Our contribution is to apply ASM to the
task of tracking shapes involving wide aspect changes and generic move-
ments. This is achieved by incorporating shape priors that are learned
over non-linear shape space and using them to learn the plausible shape
space. We demonstrate the results on tracking facial features and provide
several empirical results to validate our approach. Our framework runs
close to real time at 25 frames per second and can be extended to predict
pose angles using Mixture of Experts.

1 Introduction

Tracking deformable shapes across multiple viewpoints is an active area of re-
search and has many applications in biometrics, facial expressions analysis and
synthesis. Accurate reconstruction and tracking of 3D objects require well de-
fined delineation of the object boundaries across multiple views.

Landmark based deformable models like Active Shape Models(ASM)[1]have
proved effective for object shape interpretation in 2D images and have lead to ad-
vanced tools for statistical shape analysis. ASM detects features in the image by
combining prior shape information with the observed image data. A major lim-
itation of ASM is that it ignores the non-linear geometry of the shape manifold.
Aspect changes of 3D objects causes shapes to vary non-linearly on a hyper-
spherical manifold. During tracking, the shape change is mostly smooth but in
certain cases there may be discontinuities. For example, during a head rotation
to the full profile face, some of the facial features may get occluded causing a
drastic change in the shape. Besides the shape, the correspondences between the
local 2D structures and the 3D object structures changes for the landmark based
deformable models. The local grey level profiles at these landmarks also exhibit
dramatic variations.
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There have been several efforts in the past to represent non-linear shape vari-
ations using kernel PCA and multi-layer perceptron[2,3]. The results from non-
linear approaches largely depend on whether all the shape variations have been
adequately represented in the training data. Discontinuities in the shape space
may cause these models to generate implausible shapes. Kernel methods suffer
from a major drawback to learn pre-image function for mapping shape in the
feature space to the original space.

In this work we present a generic framework to learn non-linear shape space
as overlapping piecewise linear subspaces. Our objective is to accurately track
facial features across large head rotations. We use the Point Distribution Mod-
els(PDM) to represent the facial feature shapes and use ASM to detect them
in the 2D image. The contribution of our work is: (1) Improve the specificity
of ASM to handle large shape variations by learning non-linear shape manifold.
(2)Real time framework to track shapes, and (3) Learning non-linearities for
accurate prediction of 3D pose angles from 2D shapes. Our generic framework
enables large scale automated training of different shapes from multiple view-
points. The model can handle larger amount of variability and can be used to
learn non-linear continuous shape manifold.

Cluster 1 Cluster 2 Cluster 4 Cluster 5

Fig. 1. Shapes from 4 different clusters of the training data set. Cluster 1 contains
primarily frontal poses whereas Cluster 5 contains pose with head rotated to right.

2 Related Work

A large segment of research in the past decade focused on incorporating non-
linear statistical models for learning shape manifold. Murase et. al. [4] showed
that pose from multiple viewpoint when projected onto eigenspaces generates a
2D hypersphere manifold. Gong et. al [5] used non-linear projections onto the
eigenspace to track and estimate pose from multiple viewpoints. Romdhani et
al. [6] proposed an ASM based on Kernel PCA to learn shape variation of face
due to yaw. More recently [7] has proposed a multi-view face alignment algo-
rithm to infer visibilty of feature points across large rotations. The work stresses
more on Bayesian estimation to learn shape parameters without providing in-
sight into the shape space. Moreover their EM algorithm is impractical for real
time shape fitting applications. Several prominent work exist on facial feature
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registration and tracking use appearance based models(AAM)[8,9]. [8] uses mul-
tiple independent 2D AAM models to learn correspondences between features
of different viewpoints. We prefer ASM model over more accurate AAM model
as shape based models can be easily generalized to a specific class of objects
and is more robust to variations occurring due to changes in appearance and
illumination compared to AAM. Most notable work in improving ASM to learn
non-linearities in the training data is by Cootes et. al[3] in which large variation
is shapes is captured by parametric Gaussian mixture density, learned in the
principal subspace. In order to constrain the shape to lie within plausible shape
subspace, the probability density is increased using gradient ascent. Our work
differs from it in 2 aspects. Firstly we learn multivariate gaussian mixture den-
sity on the original shape space and not the parameteric subspace. Consequently
the shape non-linearities are preserved across the clusters. We learn PDM within
each cluster by projecting shapes of the clusters onto independent tangent spaces.
Secondly we explicitly ensure that the learned sub-spaces are overlapping. This
is required for efficient search and tracking of the shapes. In this respect our
work follows from [10,11] although they primarily focus on shape analysis and
surface learning. Unlike [8], our framework does not require explicit modeling
of head pose angles. Although we use multivariate gaussian mixture model to
learn initial clusters of the shape distribution, our subspaces are obtained by
explicitly overlapping the clusters. ASM can be easily generalized to a specific
class of objects and is more robust to variations occurring due to changes in ap-
pearance and illumination compared to Active Appearance Model(AAM). The
faster convergence of ASM gives significant advantage over other shape analysis
methods based on level sets and snakes.

Fig. 2. (Best Viewed in Color)Shape fitting results on multiple Subjects across large
head movement. The model recovers the pose irrespective of the initial cluster.

3 Learning Shape Manifold

Active Shape Model(ASM) is a landmark based model that tries to learn a sta-
tistical distribution over variations in shapes for a given class of objects. Changes
in viewpoint causes the object shapes to lie on a hyper-sphere and cannot be
accurately modeled using linear statistical tools. Face shape variation across mul-
tiple aspects is different across human subjects. A 30o head rotation will produce
more distinctive shape variation for the face with raised features(eyes and nose)
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as compared to face with flat features. Hence learning independent ASM models
and switching the models based on the learned pose, tends to generate abrupt
shape changes and inaccurate fitting. Tracking shapes across multiple aspects
requires modeling and synthesis of paths between the source and target shapes
lying on a non-linear manifold. A complex, non-linear region can be approxi-
mated as a combination of multiple smaller linear subregions. Each subregion
defines a hyper-ellipsoid within which a shape instance is constrained to lie.
The search iteratively modify the shape by searching along the normals of the
landmark points and simultaneously constraining it to lie on the shape mani-
fold. The path between the source shape and the target shape is traversed by
searching across multiple subspaces that constitute the non-linear shape surface.
Tracking of features can be successfully leveraged by taking advantage of the het-
erogeneous nature of shape variations due to pose changes thereby causing these
subregions overlap. The extent of overlap can be improved by having a fixed
minimum mahalanobis radius for each subregion and including points across the
cluster boundaries to learn the principal subspace. As a pre-requisite for shape
analysis, all the 2D planar shapes are aligned to the common co-ordinate system
using Generalized Procrustes Analysis[12]. The aligned shapes obtained from
Procrustes analysis lie on a hyper-sphere. The tangent space approximation Ts

projects the shapes on a hyper-plane normal to the mean vector and passing
through it. Tangent space is a linear approximation of the general shape space
so that the Procrustes distance can be approximated as euclidean distance be-
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Fig. 3. (Best Viewed in Color)(Left)The 9 overlapping subspaces (projected onto 2
Principal components) learned using GMM. The red cluster in the center is for the
frontal pose. The other clusters corresponds to right, left and down movement. Iterative
ASM search in fig.4 is shown as black path.(Right(Line Plot)) Increasing the number
of clusters increases the accuracy of ASM for both the frontal and left head pose images.
This is due to more accurate representation of the non-linear surface by piecewise linear
regions. Increasing the number of gaussian components for the local intensity profile
models(IPM) also improves the accuracy(red plot). (Right(Bar Plot)) The average
ASM iterations(over 4 levels of gaussian pyramid) also improves with more gaussian
components of the local intensity models but shows erratic increase for more than 10
components due to noise.
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tween the planar shapes. The cluster analysis of shape is done in the global
tangent space.

We assume a generative multivariate Gaussian mixture distribution for both
the global shapes and the intensity profile models(IPMs). The conditional density
of the shape Si belonging to an N-class model p(Si|Cluster) =

N∑
j=1

γj(2π)−( N

2
)‖Cj‖−1/2 exp{−1

2
(Si−(µj +Pjbj))

T Cj
−1(Si−(µj +Pjbj))} (1)

We assume diagonal covariance matrix Cj. γj are the cluster weights and (µj , Pj ,
bj) are the mean, eigen matrix and eigen coefficients respectively for the prin-
ciple subspace defined for each cluster. The clustering can be achieved by EM
algorithm with variance flooring to ensure sufficient overlapping between the
clusters. For each of the N clusters we learn a locally linear PDM using PCA
and using the eigenvectors to capture significant variance in the cluster(98%).
Unlike the method proposed in [3] where clustering is done in the PCA subspace,
we use clustering in the global tangent space to decide class membership of the
original shapes. Consequently the shape non-linearities are preserved across the
clusters. We learn independent PDM within each cluster. Our algorithm allows
more accurate modeling of the non-linear shape manifold using piecewise linear
hyper-ellipsoid subspaces. The intensity profiles for the landmark points also ex-
hibit large variation when trained over multiple head poses. The change in face
aspects causes the profiles to vary considerably for the feature points that are
occluded. The multivariate Gaussian mixture distribution(1) is learned for the
local intensity profiles model(IPM) in order to capture variations that cannot
be learned using a single PCA model.

Overlapping between Clusters: It is important that the adjacent clusters
overlap sufficiently to ensure switching between subspaces during image search
and tracking. The amount of overlap can be controlled by variance flooring
during EM algorithm for clustering the data set. Setting minimum variance
to a fixed value Vfloor during the Maximization step, enables clusters to have
larger expanse. Eventually the mahalanobis distance is used as a classification
cost. The number of clusters also affect the degree of overlap. We can ensure
subspace overlap by using boundary points between adjacent clusters to learn
the subspace for both the clusters. These points can be obtained as nearest to
the cluster center but not belonging to that cluster.

4 Image Search in the Clustered Shape Space

The search is done over 4 levels of Gaussian image pyramid. Conventional ASM
uses Alternating Optimization(AO) technique to fit the shape by searching for
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Fig. 4. Iterative search across multiple clusters to fit the face.The frames correspond
to iteration 1(Cluster 1), iter. 3(Cluster 5), iter. 17(Cluster 7), iter. 23(Cluster 6) and
final fit at iter. 33(Cluster 6) for level 4 of the Gaussian pyramid. The lower row shows
the shapes of the cluster centers. Cluster 5 and Cluster 7 contain smaller head rotations
while Cluster 6 contains extreme right pose. Fig. 3 shows the corresponding path of
the iterative search.

the best matched profile along the normal followed by constraining the shape to
lie within the learned subspace. The initial average shape is assumed to be in
a region near to the target object. We use robust Viola-Jones face detector to
extract a bounding box around the face and use its dimensions to initialize the
search shape. The face detector has 99% detection rate for faces with off-plane
and in-plane rotation angles ±30o. We assign the nearest Clusteri to the average
shape based on mahalanobis distance between the average shape and the cluster
centers in the global tangent space. The image search is initiated at the top
most level of the pyramid by searching IPM along normals and maximizing the
mixture probability density (1) of the intensity gradient along the profile. The
model update step shifts the shape to the current cluster subspace by truncating
the eigen coefficients to lie within the allowable variance as ±2

√
λi. The shape

is re-assigned the nearest cluster based on the mahalanobis distance and the
shape coeficients are re-computed if the current subspace is different from the
previous.

The truncation function to regularize the shapes usually generates discon-
tinuous shape estimates. Bregler et. al. [11,3] suggests a continuous constrain
function that can be maximized using gradient ascent to ensure that the shape
lies within the subspace of the nearest cluster. A major limitation of their ap-
proach is the use of thresholding to discriminate a valid shape from an invalid
shape. We use the truncation approach, due to its low computational require-
ment and faster convergence. The above steps are performed iteratively and
converges irrespective of the initial cluster of the average shape. We present the
algorithm steps below:
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————————————————————————–

ASM Train in Clustered Shape Space

1. Align all the shapes Yi to the average shape X using procrustes analysis as
Yi,a

2. Project the aligned shapes Yi,a in the common tangent space of X by scal-
ing as Y′

i,a = Yi,a/(Yi,a.X). This ensures that procrustes distance can be
approximated as euclidean distance.

3. Cluster the rescaled shapes Y′
i,a to N Clusters using EM algorithm with

minimum covariance Vfloor to ensure overlapping clusters.
4. Generate the subregions from the original shapes using the cluster member-

ship. Realign the shapes locally and project the shapes to tangent space of
the cluster mean as Yi,a,c

5. Learn locally linear PCA models within each cluster as Yi,a,c = Xc +Pcbc,i

6. Learn Gaussian mixture density for the Intensity Profile Model(IPM) for
each landmark.

ASM Search in Clustered Shape Space

1. Assign initial cluster Clusterinit to the global average shape X based on
Mahalanobis Distance.

2. Search IPM along normal for the intensity profile that maximizes the mixture
density probability (eqn. 1) to get new shape Ys

3. Constrain the shape Ys = Xinit + Pinitbinit,s by truncating binit,s within
the subspace of the current cluster to get new shape Y′

s.
4. Re-assign Clusteri by projecting the new shape Y′

s onto global tangent space
and finding the nearest cluster based on mahalanobis distance.

5. Re-estimate the parameter b′
i,s for the new cluster Clusteri by projecting

the new shape Y′
s onto cluster mean shape tangent space.

6. Iterate until convergence.

————————————————————————–

5 Tracking Framework

Running ASM at every frame is computationally expensive and causes feature
points to jitter strongly. We track the features using Sum of Squared Intensity
Difference(SSID) tracker across consecutive frames[13]. The SSID tracker is a
method for registering two images and computes the displacement of the feature
by minimizing the intensity matching cost, computed over a fixed sized win-
dow around the feature. Over a small inter-frame motion, a linear translation
model can be accurately assumed. For an intensity surface at image location
I(xi,yi, tk), the tracker estimates the displacement vector d = (δxi, δyi) from
new image I(xi + δx,yi + δy, tk+1) by minimizing the residual error over a win-
dow W around (xi,yi) [13]

∫
W

[I(xi + δx,yi + δy, tk+1) − g.d− I(xi,yi, tk)] dW (2)
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Fig. 5. (Best Viewed in Color)Tracking the shapes across right head rotation.(Top)
The cluster projections on 2D space using 2 principal modes(for visualization)and the
bounded by hyper-ellipsoid subspace. The right head rotation causes the shape to vary
across the clusters. The red circles corresponds to the frames 1, 49, 68, 76, 114, 262
and 281. The entire tracking path lies within the subspace spanned by the hyper-
ellipsoids.(Bottom) The images of the tracking result for the frames shown as red
markers in the plot.

The inter-frame image warping model assumes that for small displacements of
intensity surface of image window W , the horizontal and vertical displacement
of the surface at a point (xi,yi) is a function of gradient vector g at that point.
During tracking, some features(ASM landmarks) eventually lose track due to
blurring or illumination changes. To avoid this, at every frame we re-initialize
the points which have lost track by searching along the normal and maximiz-
ing the intensity profile mixture density1). At every frame we ensure that the
shape Yt obtained from tracking is a plausible shape by constraining the shape
to lie on the shape manifold. We align the new shape Yt to the global aver-
age shape Xinit and re-assign it to the nearest Clusteri based on mahalanobis
distance. The new shape Yt is constrained to the subspace of the assigned
Clusteri. This ensures switching between the overlapping subspaces that form
the non-linear shape manifold. Fig. 5 shows the path (projection on 2 princi-
pal components) of a shape for a tracking sequence when the subject rotates
the head from frontal to full right profile view and back. The figure also il-
lustrates the cluster switching as the person rotates the head. The entire path
remains within the plausible shape manifold spanned by the 9 hyper-ellipsoid
subspaces.
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6 Pose Angle Estimation

The proposed framework does not use head pose angles for tracking features
across large head rotations. In order to deal with discontinuities in shape space
and adapting ASM model according to pose change, it may be required to predict
pose angles. The current tracking framework can be extended to support pose
angle prediction using mixture of experts(ME).

The mapping from 2D shape to 3D pose angle is intrinsically non linear.
Inverse mappings from observations to 3D states cannot be functionally approx-
imated due to ambiguities caused by perspective projection and the lost degree
of freedom. Mixture of Experts(ME) provide a modular framework for learn-
ing non-linear mappings by clustering the dataset and simultaneously learning
function approximators locally in the cluster. The EM algorithm for training
ME decouples the optimization task into regressor fittng and multi-way classi-
fier learning. In order to learn point distribution models for the shape X, and
the corresponding pose angles A, ME formulates the problem as likelihood max-
imization. The Expectation step involves soft clustering:

P (Cluster = i|X,A) =
p(A|X,Fi(X))P (Cluster = i|X)∑N
j p(A|X,Fj(X))P (Cluster = j|X)

(3)

The density P (Cluster = i|X) is the gate distribution for classifying shapes
to the ith Cluster. The gate distribution is a multi-category classifier learned
using softmax function. The pose angle predictions is done by the function
approximators Fi(X) fitted locally to each cluster and are represented using
Gaussian distribution p(A|X,Fi(X)). The likelihood is a binomial distribution∏N

j {p(A|X,Fi(X))P (Cluster = i|X)}I(Cluster=j) where I(Cluster = j) is the
indicator function for the class to which shape X belongs. The EM iteratively
learns the parameters by independently maximizing the gate and the regressor
distributions in the log likelihood L as the Maximization step.

Log Likelihood:
∑M

i

∑N
j E[I(Cluster = j)] log(P (Cluster = j|Xi))

+ E[I(Cluster = j)] log(p(A|Xi,Fj(Xi)))
(4)

Where E denotes the expected value. In effect the EM algorithm does soft clus-
tering of the shapes X at each step and learns a pose predictor Fj locally in the
cluster. We used linear regressors with softmax gate distribution in our frame-
work. We experimented on the data set containing large shape variations due
to yaw with pose angles varying from −90o to +90o. The pose angles for the
training set were estimated within an error of ±5o by linear interpolation be-
tween the full profile ±90o and frontal 0o poses and assuming constant angular
velocity during the head rotation. The use of ME gave an average improvement
in the prediction accuracy by 8.34o over single regressor on our data set. More
number of experts usually improves the prediction accuracy. However they need
to be regularized to avoid overfitting the training dataset. Fig.6 illustrates the
ME fitting to the non-linear data. Mixture of Experts incorporates pose angles
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Fig. 6. (Best Viewed in Color)(Left) A non-linear toy dataset generated from the
inverse mapping x = y +0.3sin(2πy)+ ǫ where ǫ is zero mean Gaussian noise. Multiple
locally learned linear regressors(shown in color) gives better predictions compared to
single regressor(shown as black). (Middle) 5 Shape clusters(projected on 2 principle
components) obtained from the learned gate distribution using Mixture of Experts.
The data set contained right, frontal(blue points) and left head poses. (Right)Pose
angle prediction on test data set using 5 Experts. The plot in black indicates the most
probable expert. Notice how the most probable expert switch between different experts.
The experts predict different range of pose angles and fit well locally.

information to cluster the shapes based on similarity between the aligned shapes
and generates meaningful clusters that are based on pose variations. The gat-
ing network discriminatively classifies the data set into multiple classes. The
overlapping subspaces are learned directly from the clusters.

1.668o
, Init 17.97o

, Iter. 1 27.95o
, Iter. 20 45.29o

, Iter. 40 55.53o
, Iter. 47

Fig. 7. Iteratively fitting ASM using clusters obtained from the Mixture of Experts.
The lower row indicates the predicted angles at each of the iteration.

Full Profile and Self Occlusion: The case of full profile has been loosely han-
dled in the past. Zhou et al. [7] presents a model for handling self occlusion and
demonstrates the results only on the head poses with yaw ∼ 40o − 50o. Romd-
hani et al. [6] does not discuss about the self occlusion. Unlike appearance based
approaches, the shape undergoes drastic change during full profile head move-
ment. The correspondence between face features and landmark points changes
for the outer contour, the eyes and the eyebrows. Depending upon the targeted
application the full profile has to be handled by either turn off the visibility of
the landmark points which are occluded, or allowing the landmark points to lie
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along the boundary of the features of the face. Former approach induces discon-
tinuities in the shape space and has to be handled by discrete model switching
using stochastic methods [10]. We adopt the latter approach in our framework.
The plausible shape space remains continuous in this case. The pose angle pre-
diction enables us to identify the clusters which are full profile (clusters with pose
angle in the range 90o ± 10o). For the full profile image search, we do not match
local intensity along the normals for the occluded landmarks. Fig. 8 shows the
results obtained from our framework. Occluded landmarks are shown as points.

Fig. 8. Shape fitting results on a full profile pose initialized with the average frontal
shape. The above frames correspond to iterations 1, 16, 74, 94 and 114 of level 4 of the
gaussian pyramid. The initial average shape is in Cluster 1(cluster center shown as the
2nd image ). The cluster switch during iteration 74 to Cluster 4(cluster center shown
as the 4th image). The cluster switches to the profile cluster (cluster center shown as
the 7th image)during iteration 94.

7 Conclusion

In this work we have presented a generic real time framework for detecting and
tracking the deformable shapes across non-linear variations arising due to aspect
changes. Detailed analysis and empirical results have been presented about issues
related to modeling non-linear shape manifold using piecewise linear models. A
composite method for pose angle estimation using Mixture of Experts is also
proposed. The full profile shape is handled in a special way to ensure continuous
shape space modeling.
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