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Tracking Fish Abundance by 
Underwater Image Recognition
Simone Marini  1, Emanuela Fanelli2, Valerio Sbragaglia  3,4, Ernesto Azzurro4,5, 

Joaquin Del Rio Fernandez  6 & Jacopo Aguzzi7

Marine cabled video-observatories allow the non-destructive sampling of species at frequencies and 

durations that have never been attained before. Nevertheless, the lack of appropriate methods to 

automatically process video imagery limits this technology for the purposes of ecosystem monitoring. 

Automation is a prerequisite to deal with the huge quantities of video footage captured by cameras, 

which can then transform these devices into true autonomous sensors. In this study, we have developed 

a novel methodology that is based on genetic programming for content-based image analysis. Our 

aim was to capture the temporal dynamics of fish abundance. We processed more than 20,000 images 
that were acquired in a challenging real-world coastal scenario at the OBSEA-EMSO testing-site. The 

images were collected at 30-min. frequency, continuously for two years, over day and night. The highly 
variable environmental conditions allowed us to test the effectiveness of our approach under changing 
light radiation, water turbidity, background confusion, and bio-fouling growth on the camera housing. 

The automated recognition results were highly correlated with the manual counts and they were 

highly reliable when used to track fish variations at different hourly, daily, and monthly time scales. In 
addition, our methodology could be easily transferred to other cabled video-observatories.

Recent technological progress has rapidly advanced the exploration of the world’s oceans, opening up new pos-
sibilities to address questions related to the variety, distinctiveness and complexity of marine life. Nevertheless, 
many of the existing technologies still have to be fully transferred to marine sciences. �is is particularly needed 
to develop innovative systems for biological monitoring, to implement them, and to evaluate their performance1. 
Computer vision and machine learning methodologies are expected to o�er new tools for use in the marine 
sciences, and they will have a wide range of applications in ecology and ecosystem management, such as stock 
assessment and species conservation2. As human impacts and global climate change accelerates, one of the most 
urgent tasks for the coming decades is to develop technologies to continuously track and accurately predict bio-
logical responses, which will provide solid guidelines for their management and conservation3.

�e traditional concerns of marine research and applications have been in quantifying the abundance of species 
through space and time, and also in understanding patterns of �sh behaviour4, such as the �sheries management5 
and aquaculture6. Changes in �sh communities, especially regarding commercial species, are also considered 
under relevant international management policy actions, such as in the case of the EC Marine Strategy Framework 
Directive (2008/56/EC). In this management e�ort, cameras are increasingly being considered as one of the most 
promising approaches for biodiversity monitoring7,8. Video-information coupled to concomitant environmental 
monitoring is particularly needed because some species can rapidly shi� their distribution according to environ-
mental drivers9,10 with complex alterations of the associated ecosystem services11,12. With respect to the traditional 
sampling approaches, video-based �sh counts are gaining popularity as an e�ective, non-invasive sampling method 
in the marine environment13. �is technology has been proposed as a valuable and cost-e�ective complement 
to expensive in situ monitoring programs that are operated through vessels (e.g., trawling and ROV surveys)14. 
Finally, increasing e�orts are being made to implement the use of underwater video cameras.
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Despite their high deployment and maintenance costs15, installing cameras coupled with other biogeochem-
ical and physical sensors allows cabled observatories to provide powerful devices for quantifying biotic compo-
nents at time frequencies that span from seconds to hours, months, and even years, producing a huge amount of 
data that urgently needs appropriate methodologies for an e�ective automated processing16. �e resulting dataset 
can be used to establish solid cause-e�ect relationships between biotic responses (e.g., macro- and megafaunal 
community changes) and environmental perturbations of either natural or anthropogenic nature. �is contin-
uous and coupled observation of biological and environmental parameters represents the core of an ongoing 
“technological transition”, which will have signi�cant implications for future monitoring strategies17.

Computer vision and pattern recognition are key elements of this technological progress and they o�er new 
possibilities to use marine cabled video-platforms. Over the last two decades, a number of methodologies have 
been proposed for �sh species recognition18. However, the great variability arising from either divergent species 
morphologies or from �uctuating conditions in which the videos are captured is still a major challenge for auto-
mated processing4. Indeed, the methods that have been developed so far have the main shortcoming of having 
been tested under controlled conditions, such as constrained environments (e.g., �sh farms or laboratories) or 
stable-optimal meteorological conditions (i.e., good water transparency and no or very low turbidity)19 or in 
relation to the classi�cation of single species20,21.

Many automated recognition and classi�cation approaches have been experimented and validated on the Fish-
4K-knowledge (F4K) repository22, which only provides underwater images acquired during the daylight (i.e., 
from the sunrise to the sunset) in oligotrophic and transparent coral reef waters. �ese automated approaches 
span a wide range of topics, from statistics23 to convolutional neural networks13,24,25 and unsupervised machine 
learning26. �ese methods are used to recognise, classify, and count �sh specimens. Other approaches have been 
validated through the ROV images that are acquired in the deep-sea light homogeneous environment27 or in 
aquarium trials28. In addition, ad-hoc aquaculture devices have been employed to force the �shes to swim fron-
tally to the video cameras6.

Methods that are robust enough to handle all of the possible varying conditions of the natural environment are 
still unavailable2,4,29 but are highly requested to transform the cameras on underwater cabled observatories into 
quantitative sensors for ecological monitoring30.

In this study, we have developed a novel video-automated procedure to e�ectively track and estimate �sh 
count variations, without discriminating among di�erent species, in a challenging real-world scenarios. A general 
supervised machine learning framework for image content-based �sh recognition was conceived and evaluated 
under di�erent light conditions, variable water turbidity, and changing bio-fouling coverage on the camera hous-
ing. We used a K-fold Cross-Validation framework31 to select the most relevant image-features32 and to produce 
an automated image classi�er with high generalization performance33. Tests were performed on more than 20,000 
images that were acquired at the OBSEA EMSO testing-site34 during the years 2012 and 2013, at 30 min fre-
quency, continuously over day and night. �e �sh counts and the related time series were validated by comparing 
automated versus manually generated data.

Results
�e training and validation dataset that was used for learning the automated image classi�er was obtained by 
randomly sampling a subset of images that were acquired in the year 2012. �is dataset covers one year to enable 
it to capture all of the most critical acquisition conditions that could have a�ected the quality of the content-based 
image recognition, including the light variation between day and night, changes in water transparency (i.e., clear 
vs. turbid water), the bio-fouling on the camera, crowded scenes (i.e., presence of large �sh schools), and wrong 
positions of the Pan-Tilt-Zoom (PTZ) camera; as shown in Fig. 1.

�e learnt image classi�er was then tested on images that were acquired in the year 2013, where 10,961 images 
were manually scored according to the degree of water turbidity and bio-fouling present on the camera. �is latter 
score information was used to estimate the e�ect of both phenomena on the recognition performance.

Training and Validation of the Image Classifier. Among the images acquired in the year 2012, 11,920 
images were available for learning and validating a binary image classi�er capable to detect the �shes contained 
into an image, without discriminating among di�erent species. Given that one of the most critical acquisition 
conditions is the di�erent light di�usion between daylight (i.e., natural light) and night (i.e., arti�cial light), the 
training and validation image dataset was obtained by uniformly sampling 10% of the daylight images and 10% of 
the night images, which gave a total of 1,191 images corresponding to 10% of all of the images acquired in 2012.

�e most representative examples of image regions used for training the binary image classi�er are shown 
in Fig. 2. Regions of Interest (RoI) were automatically extracted from the training and validation image dataset 
and manually labelled to identify the positive and negative examples. Figure 2(a) shows three examples of RoIs 
labelled as positive examples that contain the whole �sh. Figure 2(b) shows three positive examples, although in 
this case only part of the �sh is contained in the RoI. �is happened because sometimes the �shes were too close 
to the border of the image, as shown in the le�most and in the rightmost images of Fig. 2(b). In other cases, the 
segmentation process was not able to identify a RoI containing a complete �sh (see Fig. 2(b)-middle) because 
of the position of the �sh, the light conditions, and the water turbidity. Large schools of �shes were sometimes 
captured by the images, as shown in Fig. 2(c). In these cases the �shes were overlapping and, therefore, the seg-
mentation process was not able to produce one RoI for each �sh. Although a RoI containing more than one �sh 
can compromise the correct �sh count, in the experiments that we performed large school of �shes were split into 
several RoIs and the magnitude of the �sh abundance was still captured. Figure 2(d) shows the three most com-
mon situations where the RoIs were labelled as negative examples. In this case, the le�most image shows a RoI 
containing some patches of bio-fouling, in the middle image the RoI contains some algae and in the rightmost 
image the RoI contains the borders of the arti�cial reef imaged by the camera.
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Figure 1. Examples of the most relevant conditions of image acquisition occurring at the OBSEA observatory 
during the daylight and night: clear and turbid water, bio-fouling on the camera housing, crowded scenes, and 
wrong pan-tilt-zoom camera positions and errors.

Figure 2. Representative Regions of Interest (RoIs) used in the examples set for training the binary image 
classi�er. �e RoIs bounded by a green contour, (a), (b) and (c), correspond to positive examples; while the RoIs 
bounded by a red contour, (d), correspond to negative examples.
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�e manual labelling of the RoIs extracted from the image dataset produced 861 positive examples and 27,162 
negative examples. A�er labelling, the image-features were extracted from each RoI. �ey were then used for the 
training and the validation of the image classi�er within a 10-Fold Cross-Validation framework. To maximize 
the use of the information contained in the examples set and to perform a balanced cross-validation, the 10-fold 
cross-validation was performed 10 times, each time randomly sampling 861 negative examples from the examples 
set and each time, reshu�ing the 861 positive examples. �e recognition performance obtained from the vali-
dation phase resulted in an average accuracy of 92% with a standard deviation (std) equal to 0.02, a true positive 
rate (TPR) equals 95% with std equals to 0.03 and a false positive rate (FPR) that equals 12% with std equals to 
0.04. Table 1 summarises the data that we used for the training of the image classi�er and also the corresponding 
validation performance.

Test of the Image Classifier. �e ground-truth that we used in the test phase corresponds to the number of 
�shes that are visually observed in each of the 10,961 images acquired in the year 2013. �e Pearson Correlation 
between the abundance time series resulting from the observation and the abundance time series produced by the 
automated image classi�er was used to evaluate the test performance.

An example of the Pearson correlation between the time series resulting from the observation and the time 
series produced by the automated image classi�er is shown in Fig. 3 (r = 0.90, p = 1.62−83), where a fragment 
of the time-series obtained through the observation (red line) is compared with the fragment of time-series 
automatically extracted by the image classi�er (blue line) in the same period. Even if the automated recognition 
underestimated the observed abundance, the temporal variation of the observation is captured by the automated 
image classi�er. In the presence of few observed specimens, few specimens were automatically recognised inde-
pendently by the light di�usion, the water turbidity and the bio-fouling present on the camera. Analogously, in 
the presence of observed crowded scenes, many �shes were automatically recognised.

�e images in Fig. 3(e) and (h) show the recognition results (red boxes) of two crowded scenes acquired 
during daylight. Similarly, Fig. 3(a) and (c) show the recognition results of similar scenes acquired in the early 
morning and during the night, respectively. When few specimens were present, the automated image classi�er 
performed a correct recognition, as shown in Fig. 3(b), acquired during the daylight and in Fig. 3(d),(f) and (g), 
acquired during the night. Figure 4, shows several recognition results sampled from the test dataset. �e supple-
mentary video that is provided online shows the automated recognition of a 24 hour time-series fragment.

�e e�ects of turbidity and bio-fouling on the automated recognition performance. �e correlation between the 
observed and the automated time series was studied at 30 min. frequency, over daily and monthly scales, and 
under varying water turbidity and bio-fouling scores. Two di�erent test datasets were used: a complete dataset 
that included all of the images acquired in the year 2013 and a reduced dataset that was obtained by removing all 
of the images characterised by the wrong position of the PTZ camera (e.g., Fig. 1(i),(l)), the image errors (e.g., 
Fig. 1 (m) and(n)) and few very crowded images where a school of �shes takes up the whole scene.

�e study of the reduced dataset provided detailed information on how light di�usion, bio-fouling, and water 
turbidity have a�ected the automated recognition performance. Similar tests were performed on the complete 
image dataset, which show how the wrong PTZ positions and the image errors can a�ect the capability of the 
image classi�er to capture the �sh abundance temporal dynamics.

Figure 5 shows the recognition performance at 30 min., daily and monthly scales for both the complete and 
the reduced datasets in relation to variable bio-fouling and turbidity. Globally, as the bio-fouling score increases 
(from 0 to 3), the correlation between both automated and manual time series decreases. �is reveals a sensible 
decline in automated classi�cation performance. In contrast, the level of water turbidity does not relevantly a�ect 
the correlation between the observed and the recognised time series.

Considering the reduced 30 min. image dataset shown in Fig. 5(a), with the absence of, or with a small quan-
tity of bio-fouling (i.e., bio-fouling score equal to 0), the correlation between the two time-series shows just a 
small variation from 0.78 to 0.75 (p ≤ 0.001), even if the water turbidity score is increased. Moreover, independ-
ent of the water turbidity level, the correlation between the observed and the recognised time-series decreases 
below 0.60 only in the case of a heavy presence of bio-fouling on the camera (i.e., bio-fouling score equal to 3 is 
considered).

2012 Image Dataset

Total Acquired Images 11,920

Daylight images 6,814

Night images 5,106

Training & Validation based on 
10-fold Cross-Validation

Training & Validation Images (10% of 
the Daylight and Night Images)

1,191

Positive Examples 861

Negative Examples 27,162

Validation Performance

Accuracy (std) 92% (0.02)

True Positive Rate (std) 95% (0.03)

False Positive Rate (std) 12% (0.04)

Table 1. Summary of the data acquired in the year 2012 that was used to train and validate the binary image 
classi�er.
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Figure 5(b) shows the results obtained by considering the complete image dataset. Similar to the previous case, 
the water turbidity intensity does not a�ect the recognition performance. In contrast, as the bio-fouling score 
increases, the correlation between both manual and automated time series decreases. �erefore, the recognition 
performance is sensibly reduced, even if the level of bio-fouling is low (i.e., score equal to 0). �is shows the bad 
e�ects of PTZ and image errors. In this case, the correlation between the observed and the automate time-series 
is 0.57 and it decreases to 0.43 as the bio-fouling level increases (p ≤ 0.001).

�e daily dynamics of the �sh abundance were analysed by averaging the number of observed and recognised 
�shes in the images acquired during daylight and during the night. �e daylight and the night periods were com-
puted according to the global solar irradiance data that were provided by the sensors installed on the OBSEA. 
Similar to the 30 min. dynamics, as the bio-fouling increases, the correlation between the observed and the rec-
ognised time-series decreases; as shown in Fig. 5 (c) and(d). When the PTZ positions were wrong and the image 
errors are not considered in the analysed dataset (Fig. 5c) the automated recognition produces a time-series that 
is strongly correlated to the manual inspection, even if the presence of bio-fouling on the camera is heavy and 
independent of the water turbidity. In fact, the correlation is still 0.7 (p ≤ 0.001) when images with bio-fouling and 
turbidity scores equal to 3 are considered.

Similar to the previous cases, the wrong PTZ position of the camera and the image errors sensibly decrease 
the recognition performance; as shown in Fig. 5(d). Nevertheless, by considering the complete Day–Night aver-
aged dataset, the correlation between both automated and manual time series varies from a maximum of 0.78 
(p ≤ 0.001) when the bio-fouling score is 0 to a minimum of 0.60 (p ≤ 0.001) when images with bio-fouling score 
equal to 3 are considered.

Finally, the monthly dynamics of the �sh abundance were studied by computing the monthly average of 
the �sh specimens number observed and recognised in the two image datasets. As shown in Fig. 5(e), because 
few elements were used to compute the correlation between both series, the automated recognition of images 
with the heavy presence of bio-fouling (scores = 3) could not be correlated to the results of the visual inspection 
(p ≥ 0.001). Similar results were obtained for the images characterised by moderate or heavy bio-fouling and 
moderate or high turbidity, and for the reduced monthly average dataset. Nevertheless, as for the previous anal-
ysis, low levels of bio-fouling resulted in a strong correlation between both time series, independent of the water 
turbidity level.

Efficacy of the Automated Recognition for Ecological Analyses. Our results showed that bio-fouling 
a�ects the results obtained by using recognized and observed data more than turbidity. Globally, signi�cant dif-
ferences between daylight and night data were always detected at all combinations of turbidity and fouling, with 
decreasing F values (Univariate PERMANOVA test), but still signi�cant at a greater level of fouling (score equal 
to 3); as shown in Table 2.

Figure 3. An example of a correlation between the time-series obtained through the visual inspection of the 
images (red line) and the time-series automatically extracted by the image classi�er (blue line). �e images 
show several examples of automated recognition (red boxes) during the presence of moderate turbidity and bio-
fouling.
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Turbidity had less a�ect on data comparisons, with a good correspondence in the results of PERMANOVA 
at all levels of turbidity (from T0 to T3) but with the absence or small quantity of fouling (F0). Although the 
PERMANOVA test was always signi�cant, the source of variation (i.e., di�erences between contiguous months) 
changed according to the combination of turbidity and fouling conditions. In fact, when the bio-fouling score 
was equal to 0, PERMANOVA showed a good correspondence in changes of �sh abundance between months, 
when comparing observed and recognized datasets; as shown in Table 3. Conversely, by increasing the bio-fouling 
score, the correspondence was null; as shown in the Supplementary Table S6.

Finally, GLM models related the abundance data with the environmental variables, which provided similar 
results: the driving variables of changes in �sh abundance were similar when running the models with observed 
and recognized datasets with absent or small quantity of fouling (F0) and at all levels of turbidity; as shown in 
Table 4. Meanwhile, di�erent variables drove changes in the observed and recognised datasets if fouling was set at 
level 1 or 3; see the Supplementary Table S7.

Figure 4. Examples of automatic recognition in di�erent operating conditions: Sunlight with turbid waters (b), 
(l); twilight (c); presence of mucilage (e), (f); bio-fouling over the camera (i). False negative in correspondence 
of dense aggregations of �shes are also illustrated (f).
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Figure 5. Pearson correlation between the observed and the recognised time series as a function of the level of 
water turbidity and bio-fouling on the camera housing.

Observed Recognised

T0, F0 68.25*** 67.83***

T1, F0 53.10*** 32.21***

T3, F0 21.87*** 15.43***

T0, F1 72.54*** 69.10***

T0, F3 121.49*** 122.42***

T3, F3 35.45*** 32.29***

Table 2. Results of Univariate PERMANOVA test carried out on factor “day vs. night”, comparing observed and 
recognised datasets with di�erent combinations of fouling (F) and turbidity (T). Both parameters varied from 0 
(no or scarce value of the parameter) to 3 (maximum value). ***p < 0.001.

observed recognised

main test

T0, F0

Pseudo-F9,64 = 5.21*** Pseudo-F9,64 = 3.76**

pairwise

Groups t Groups t

1, 2 2.96* 1, 2 2.37*

4, 5 2.32* 4, 5 2.38*

8, 9 3.93** 8, 9 2.35q.s

q.s = 0.050

T1, F0

Pseudo-F9,73 = 6.15*** Pseudo-F9,73 = 2.37*

pairwise

Groups t Groups t

1,2 3.44** 1,2 2.36*

4,5 2.14* 4,5 2.17*

8,9 3.85**

T3, F0

Pseudo-F9,64 = 5.99*** Pseudo-F9,74 = 3.15**

pairwise

Groups t Groups t

1, 2 3.81** 1, 2 2.75*

8, 9 2.87*

Table 3. Main PERMANOVA test and pairwise comparisons (only signi�cant variations are shown) of 
observed and recognized abundance data by month, regarding absent or small quantity of bio-fouling (F = 0) 
and di�erent combinations of turbidity score (T). Numbers from 1 to 12 in the pairwise tests indicate months 
from January (1) to December (12).
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Discussion
In this study, we developed a novel methodology for automated fish recognition and counting at a cabled 
video-observatory, which allowed us to take into account a variety of operating circumstances that included wide 
variations in light intensity, turbidity, fouling growth and dense �sh assemblages. �is technique was tested at a 
high frequency (i.e., 30 min) and over a long–lasting period of time (i.e., one year). We found that it is a reliable 
benchmark for scaling to other still video sources, either in deeper continental margin areas–such as in the LoVE 
observatory35 and the NEPTUNE network36)–or on board of mobile platforms–such as ARGO �oats, ROVs, 
AUVs33,37,38 and crawlers39,40 if the hypothesis that the not relevant information (e.g. background, bio-fouling 
over the camera) changes more slowly, along the time, than the relevant subjects (e.g. the �shes) contained in the 
acquired images. �is condition is satis�ed especially when the background is �xed or it consists only of water 
column or it is mostly uniform (e.g. a sandy seabed).

�e light di�usion followed transient changes in cloud coverage. It varied daily, from the dawn to the sunset, 
and it varied seasonally (due to the changing photophase length). During the night, the use of arti�cial illumina-
tion imposed entirely new conditions, where the intensity generally di�used with a more homogeneous �eld than 
daytime. �is also a�ected the scattering e�ects of the suspended particulate and the �sh bodies41,42. All of these 
luminosity changes can severely a�ect the �sh recognition performance; for example, by changing the animal 
textural features or their contrast with the background. Nevertheless, our method proved to be robust enough to 
handle these changes. It was also robust when the arti�cial light changed both the background and the foreground 
subjects, making some �sh almost invisible and other �sh strongly highlighted thanks to the light re�ections on 
their skin markings.

Unexpected variations of the water turbidity occurred in relatively short times (e.g., hours) and they per-
sisted for several days, as in many other coastal areas43. Turbid waters and changes in light di�usion reduced the 
camera’s �eld of view. �is challenged the recognition of �sh distant from the camera, which became similar to 
patches of bio-fouling. In this case, not all of the �sh in the scene could be correctly detected, which increased the 
false negative rate. �e method was, however, capable of handling water turbidity (see Fig. 5).

Fouling organisms typically grow over any solid exposed surface. �is is a typical issue for the use of stationary 
underwater cameras, although solutions such as protective coating, wipers, and copper shutters are available44–46. 
In our case, fouling was generally present and was subjected to seasonal variations because these communities 
grow less during the cold periods and �ourish during the warm season47. As expected, as the bio-fouling devel-
oped on the camera porthole and on the lighting system, it had more a�ect on the recognition performance; for 
example, it reduced the Pearson correlation between the observed and the recognised time series. While absent 
or moderate levels of bio-fouling can be e�ectively managed by our automated classi�er independent of the light 
di�usion and of the level of water turbidity, larger patches tend to occlude the scene and these corrupt the recog-
nition accuracy.

Another constraint limiting recognition e�ciency was represented by “crowded scenes”, when large numbers 
of �sh gather together in front of the camera. When these assemblages are particularly dense, individuals typically 
overlap each other. �is increases the false negative rate. Although these situations may be critical for automated 
counting, our results demonstrated that in presence of low or moderate levels of bio-fouling, the correlation 
between observed and the automated time-series is still high; it is even high when dense schools of �sh gather.

�e ultimate aim of our automation process is to use it to study natural processes. Consequently, it is impor-
tant to be able to e�ciently correlate the seasonal abundance changes with other biotic and environmental factors 
by using consistent manually counted and automated recognised time series. Indeed, the two datasets provided 
highly comparable results at all levels of light di�usion and turbidity. Accordingly, the present imaging processing 
scripts represent a contribution towards promoting the use of cameras as autonomous sensors for the quanti�ca-
tion of ecosystem functioning in di�erent marine ecosystems based on faunal quanti�cation17.

Observed Recognised

Vars Df Dev.
Res.
Df

Res.
dev. F

sign
corr. Vars Df Dev.

Res.
Df

Res.
dev. F

sign
corr.

T0-F0

NULL 64 14.44 NULL 64 6.8771

Chla_1mo 1 1.12 63 13.317 5.31* neg Chlor_1mo 1 1.09 63 5.7839 11.91** neg

AIC = 87.41 expl. Dev. = 7.78% AIC = 33.21 expl. Dev. = 15.90%

T1-F0

NULL 73 231.82 NULL 73 79.88

Solar irr 1 19.75 72 212.07 6.70* neg Solar_irr 1 4.54 72 75.34 4.53* neg

Chla_1mo 1 4.37 71 70.97 4.37* neg

AIC = 293.91 expl. Devi. = 8.52% AIC = 214.91 expl. Dev. = 11.15%

T3-F0

NULL 72 190 NULL 72 65.35

Solar_irr 1 39.14 71 150.86 18.42*** neg Solar_irr 1 11.18 71 59.93 14.11*** neg

Chla_sim 1 4.46 70 55.47 5.62* neg

AIC = 266.15 expl. Dev. = 20.6% AIC = 195.12 expl. dev. = 21.99%

Table 4. Results of GLM models for absent or small quantity of bio-fouling (F = 0), and di�erent values of 
water turbidity (T). Chla_1mo = Chlorophyll-a concentration recorded by satellite one month before actual 
data; SST_sat = sea surface temperature recorded by satellite; solar_irr = solar irradiance; corr = sign of the 
correlation; neg = negative.
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�e results show that the recognition performance is compromised when the Pan-Tilt-Zoom camera installed 
on the observatory assumes unexpected positions or when an image transmission error occurs. �ese acqui-
sition conditions occurred a smaller number of times than the light, water, and fouling condition changes. 
Consequently, they are not su�ciently represented in the set of examples used within the proposed supervised 
machine learning approach. �erefore, the learnt automated classi�er was not able to manage these images and 
the number of false positive detections increased. �is issue can be consistently attenuated by building an ad-hoc 
set of examples with the aim of managing the camera malfunctions. Nevertheless, because the camera malfunc-
tions should be avoided independent of the image analysis activities, no actions were taken in this work for 
adapting the training set.

�e results show that the recognition performance is mostly a�ected by the bio-fouling and by the system 
errors. In fact, the light radiation changes and the �sh crowding are ubiquitous in the image dataset and their 
combined e�ects on the recognition performance is marginal and can be ignored.

�e proposed image analysis and recognition approach was conceived to adaptively work in di�erent environ-
mental and operational contexts (i.e., at all depths of the continental margin, over heterogeneous and homogene-
ous backgrounds, and with �xed and mobile platforms). Di�erent image segmentation and pattern recognition 
approaches can be considered, mainly depending on the speci�c acquisition conditions and on the speci�c hard-
ware support that executes the so�ware components. If the automated recognition is operated by a CPU with low 
computational power (e.g., mobile platforms or �xed platforms powered by batteries), the computational com-
plexity of the so�ware components must be limited33,37. In contrast, if the automated recognition is not subjected 
to such limits (e.g., cabled observatories), then di�erent image segmentation or feature extraction approaches can 
be used48,49. Alternatively, the image enhancement and the image di�erencing methodologies proposed in this 
work can easily be combined with traditional and novel deep learning approaches50–52. Our results were obtained 
through an easily customisable image elaboration process and pattern recognition approach. We were able to 
show that the automated extraction of time-series can be embedded and then performed on hardware supported 
with low computational performance. Moreover, the general character of the proposed methodology is also guar-
anteed by the �exibility of the supervised machine learning approach. In fact, this methodology can be used for 
di�erent image backgrounds (e.g., water column, seabed, arti�cial reefs, shallow or deep water) or for di�erent 
organisms (e.g., gelatinous zooplankton or �shes)33.

�e proposed binary classi�er for image recognition can easily be extended to multi-classi�cation applica-
tions. For example, di�erent binary classi�ers can be trained to recognise relevant subjects (e.g., di�erent �sh spe-
cies) and then combined into an ensemble to obtain a multi-classi�cation of all of the relevant subjects contained 
in the input image53,54. In this case, a multi-species time-series that is obtained by using an ensemble of binary 
classi�ers can be used to investigate species assemblage dynamics or species behaviour in a monitored area.

If we consider that these cameras are now being permanently installed worldwide, their potential to 
track spatio-temporal changes in marine populations and the impacts on ecosystem services is enormous17. 
Nevertheless, the full potential of this technology will only be expressed through the application of automated 
routines for video-counting. �is study has tackled the overall challenge of counting �sh in uncontrolled envi-
ronments and it has provided a robust tool for automated �sh counts across multiple depths and habitats. Future 
research could start transferring and standardising these automated techniques to other existing cabled observa-
tories, which will help to coordinate monitoring e�orts toward a synchronous and promising large-scale contin-
uous monitoring of marine ecosystems.

Methods
�e image analysis and recognition methodology proposed in this work combines an image segmentation process 
and an image-feature extraction process, together with a supervised machine learning approach. �is is coupled 
with a K-fold cross-validation framework that is similar to the approach proposed in33. Details on the proposed 
methodology can be found in the Supplementary Table S1 that is available online.

The Image Dataset. �e content-based image recognition algorithm for �sh counting was learnt and tested by 
using the image dataset provided by the Western Mediterranean Expandable SEA�oor OBservatory (OBSEA)34 (the 
data can be requested through the contact section of the website) in the years 2012 and 2013. �e OBSEA is located 
at a depth of 20 m within the Colls i Miralpeix Marine Reserve, which is 4 km o� Vilanova i la GeltrÃ° (Catalonia, 
Spain)55. This is the location of a testing site for the European Multidisciplinary Seafloor and water-column 
Observatory (EMSO). �is location is equipped with an OPT-06 Underwater IP Camera (OpticCam) associated 
to two LED-based lighting sources located beside the camera at 1 m distance from each other, emitting 2900 lumen 
with colour temperature of 2700 kelvin and with an illumination angle of 120°55. �e camera acquires digital images 
of the surrounding environment at 360° at 30 min frequency, continuously by day and night.

The Environmental Data. �e GLM analysis was based on several oceanographic and atmospheric param-
eters: the water temperature, the pressure of the water column, the water salinity, the air temperature, the wind 
speed and direction, the global solar irradiance, the sun elevation and azimuth can be accessed through the web 
portal of the OBSEA observatory34; while the chlorophyll a concentration recorded from three to one month 
before and simultaneously to actual data, was downloaded by the NASA hearth data science portal Giovanni56.

Image Segmentation and Feature Extraction. �e proposed segmentation process is aimed at reduc-
ing the e�ects of the light di�usion changes, the e�ects of the turbid water and the e�ects of the bio-fouling 
presence on the camera. �is process is based on two assumptions: (i) the images are sorted with respect to the 
acquisition time (i.e., the image dataset must be organised as time-series), and (ii) considering the time-sorted 
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sequence of the images, the relevant subjects within an image (i.e., �shes) change faster (along the sequence) than 
the not relevant image regions (e.g., background, bio-fouling). Within these two assumptions, an image di�er-
encing approach between consecutive images57 was used to discard image regions persisting along consecutive 
images (i.e., representing not relevant subjects, such as image background) and at the same time preserve image 
regions containing di�erences between consecutive images (i.e., representing candidate relevant subjects, such as 
�shes). An example of image di�erencing is shown in the Supplementary Fig. S2, where �shes are even detected 
in the presence of massive bio-fouling on the camera.

A�er the image di�erence is computed, a blurring operator, a Gaussian thresholding and morphological oper-
ators57,58 were used to identify the image blobs representing potential relevant subjects (i.e., �sh bodies) and the 
algorithm presented in59 was used to extract the corresponding blob contours. Due to the natural propensity of 
�shes to hide so that they can prey without being predated, the light di�usion (either natural or arti�cial) on the 
body surface and its orientation with respect to the camera o�en produce blobs that are characterised by jagged 
contours that do not correspond to the proper �sh silhouette. �is misleading e�ect was reduced by characteris-
ing the blob contour through its convex hull.

�e convex hulls identi�ed on the image di�erence were then mapped back onto the original image. �e RoIs 
corresponding to the bounding boxes of these convex hulls were then analysed to extract the image features that 
are able to describe both the texture and the shape of the corresponding potential relevant subjects48,57,60. �e 
image features used in this work are detailed in the Supplementary Tables S1 and in S2.

Image Recognition and Feature Selection. �e recognition problem faced in this work corresponds to 
the detection of one or more �shes within each analysed image. To achieve this task, a binary classi�er is de�ned 
on the RoIs extracted from the input images, where the returned output assumes a value 1 if the RoI contains at 
least a �sh and is 0 otherwise.

�e binary classi�er is learnt through a supervised machine learning approach that combines a genetic pro-
gramming (GP) based procedure with a strati�ed K-fold cross-validation framework; as discussed in33. �e cross 
validation framework allows to select the most relevant and e�ective image features32,33 and at the same time 
assures good generalization performance of the binary RoI classi�er. �e GP parameters that were used to learn 
the automated image recognition algorithm are shown in the Supplementary Table S3.

Within the supervised learning phase, a 10-fold cross-validation was used to train and validate the binary 
classi�er, where the positive and negative examples were obtained by manually labelling the RoIs extracted from 
the 10% of the images acquired in the year 2012. �e image features resulting from the training and the validation 
process are shown in the Supplementary Table S4 online, while the automated image classi�er is de�ned by the 
Supplementary equation Eq. S1 online, based on the GP individuals shown in the Supplementary Table S5.

�e validation performance of the learnt classi�er was then obtained by computing the average and standard 
deviation of accuracy (ACC), true positive rate (TPR) and false positive rate (FPR), which are de�ned as:

=
+

+ + +
ACC

TP TN

TP FP FN TN
,

=
+

TPR
TP

TP FN
,

=
+

FPR
FP

FP TN
,

where TP, FP, TN and FN represent true positive, false positive, true negative and false negative recognitions, 
respectively; as discussed in61.

�e ground-truth that was used in the test phase of the binary classi�er corresponds to the number of �shes 
per image of the test dataset, which were obtained through visual counting performed by expert biologists. In this 
case, the e�ectiveness of the binary classi�er was estimated by computing the Pearson correlation between the 
time series resulting from the visual inspection and the time series produced by the automated image classi�er. 
�e correlation between the two time-series indicates the ability of the automate image classi�er to capture the 
same temporal dynamics that were identi�ed through the visual inspection.

Besides the visual counting, the images collected in the year 2013 were also manually tagged to represent the 
level of water turbidity and bio-fouling on the camera. �ese images were used in the test phase to estimate the 
impact of this of phenomena on the quality of the automated recognition. �e scores that we used to describe the 
level of water turbidity varies from 0 to 3, as follows: clear water, low turbidity, moderate turbidity and high tur-
bidity, respectively. Analogously, the scores that we used to describe the amount of bio-fouling also varies between 
0 and 3, as follows: absence or a small quantity of bio-fouling on the camera, low level of bio-fouling, moderate 
bio-fouling and heavy presence of bio-fouling on the camera, respectively.

Ecological Statistical Analysis. Di�erent statistical analyses were carried out to assess the e�ectiveness of 
the automated recognition process in terms of ecological monitoring applications, the inputs were manually and 
automated �sh count data.

For all of the analyses, the data were averaged each 24-h, but considering day versus night samples separately. 
First, an univariate PERMANOVA62 was run on the Euclidean resemblance matrix of square root-transformed 
abundance data to test for di�erences between day versus night abundances. Since the univariate PERMANOVA 
proved that there were signi�cant di�erences, the subsequent analyses were only focused on the daytime data 
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because the �sh abundance at night was considerably lower. Univariate PERMANOVA62 was also performed on 
the “month” factor to check for seasonal temporal di�erences in automation versus manual counting. Pairwise 
comparisons were also carried out to assess their level of signi�cance.

Finally, daytime count data were compared with environmental variables using generalized linear models 
(GLM), where the distribution family used was Gaussian. �e model selection was based on minimising Akaike’s 
information criterion (AIC) values. Before the analysis, a Dra�sman plot was performed on the environmental 
dataset to look for auto-correlation among the variables. Only data that were not auto-correlated (Pearson’s cor-
relation, R < 0.70) were retained for the analysis.

�e results were compared to assess which level of turbidity and fouling prevented the use of recognised data-
sets for ecological analyses. Six di�erent datasets were analysed: three di�erent combinations of fouling intensity 
(F) as 0, 1, and 3 in no turbidity (T) condition (T0-F0, T0-F1 and T0-F3, respectively); and two antithetic con-
ditions of turbidity (0 and 3) with two di�erent conditions of fouling, from no to a maximum in fouling (T1-F0, 
T3-F0 and T3-F3, respectively).
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