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Abstract A vigorously degassing lava lake appeared inside the Santiago pit crater of Masaya volcano

(Nicaragua) in December 2015, after years of degassing with no (or minor) incandescence. Here we present

an unprecedented-long (3 years) and continuous volcanic gas record that instrumentally characterizes the

(re)activation of the lava lake. Our results show that, before appearance of the lake, the volcanic gas plume

composition became unusually CO2 rich, as testified by high CO2/SO2 ratios (mean: 12.26 6.3) and low

H2O/CO2 ratios (mean: 2.36 1.3). The volcanic CO2 flux also peaked in November 2015 (mean: 81.36

40.6 kg/s; maximum: 247 kg/s). Using results of magma degassing models and budgets, we interpret this

elevated CO2 degassing as sourced by degassing of a volatile-rich fast-overturning (3.6–5.2 m3 s21) magma,

supplying CO2-rich gas bubbles from minimum equivalent depths of 0.36–1.4 km. We propose this elevated

gas bubble supply destabilized the shallow (<1 km) Masaya magma reservoir, leading to upward migration

of vesicular (buoyant) resident magma, and ultimately to (re)formation of the lava lake. At onset of lava lake

activity on 11 December 2015 (constrained by satellite-based MODIS thermal observations), the gas emis-

sions transitioned to more SO2-rich composition, and the SO2 flux increased by a factor �40% (11.46

5.2 kg/s) relative to background degassing (8.0 kg/s), confirming faster than normal (4.4 versus �3 m3 s21)

shallow magma convection. Based on thermal energy records, we estimate that only �0.8 of the 4.4 m3 s21

of magma actually reached the surface to manifest into a convecting lava lake, suggesting inefficient trans-

port of magma in the near-surface plumbing system.

1. Introduction

Emergence of a new lava lake is a relatively rare and exceptional event in Nature. Stable, nearly persistent lava

lakes are scarce volcanic features on Earth, existing at Ambrym volcano in Vanuatu (Allard et al., 2015), Erebus

in Antarctica (Oppenheimer et al., 2009), Erta Ale in Ethiopia (Vergniolle & Bouche, 2016), Nyiragongo in Congo

(Burgi et al., 2014), and Villarrica in Chile (Palma et al., 2008). Formation or rebirth of lava lakes is even less fre-

quently observed. Recent examples of lava lake emergence include Halema‘uma‘u Crater on Kilauea in 2008

to present (Patrick et al., 2013, 2016) and Nyamuragira in 2012–2014 (Coppola et al., 2016a). The processes

leading to (re)formation of a lava lake are not well understood due to the limited observations available.

Masaya volcano (Figure 1) in Nicaragua has nearly continuous historical record of magma appearing and

disappearing in the crater floor since the time of the first sightings by the Spanish conquistadors in 1524–

1529 (Global Volcanism Program, 2013; Rymer et al., 1998). Since its formation in 1858–1859 (McBirney,

1956), Masaya’s Santiago pit crater (Figure 1) has intermittently hosted one or more incandescence vents of

variable size and degassing activity (Rymer et al., 1998). Occasionally, these vents have enlarged in dimen-

sion, most likely due to magma level increase in the conduit and crater floor collapse, ultimately leading to
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formation of an ‘‘active lava lake.’’ Such a lava lake formation events in the Santiago crater floor have typi-

cally been associated with strong degassing episodes, each lasting years to decades (Delmelle et al., 1999;

Stoiber et al., 1986), making Masaya one of the strongest degassing sources in the Central America Volcanic

Arc (Aiuppa et al., 2014; Martin et al., 2010; Mather et al., 2006).

The latest Santiago degassing crisis started in 1993 and has persisted with fluctuating vigor until present

(Delmelle et al., 1999; Stix, 2007; Williams-Jones et al., 2003). Although little or no magma has been erupted

out of the crater, voluminous amounts of magmatic gas have been vented into the atmosphere (Burton

et al., 2000; de Moor et al., 2013; Horrocks, 2001; Martin et al., 2010; Moune et al., 2010; Nadeau & Williams-

Jones, 2009; Stoiber et al., 1986), resulting in substantial environmental impact on the surroundings and

local communities (Delmelle et al., 1999, 2002). This unusually persistent degassing activity has also moti-

vated extensive geophysical work in the attempt to resolve the structure of the shallow plumbing system

(Delmelle et al., 1999; Rymer et al., 1998; Williams-Jones et al., 2003), and the magma circulation pathways/

rates therein (Stix, 2007). Based on results of periodic gravity surveys, Rymer et al. (1998) and Williams-Jones

Figure 1. (a) Google Earth map showing location of Masaya volcano in Nicaragua; (b) the Masaya caldera (red dotted

line), with the Masaya and Nindiri cones in its center; (c) a zoom of the Nindiri cone (see white box in Figure 1b for loca-

tion), showing the active Santiago pit crater along with the currently quiescent Nindiri and San Pedro craters. Locations of

the DECADE Multi-GAS and the scanning NOVAC spectrometer are also shown: (d, e) panoramic views of the inner Santi-

ago crater, taken on 23 February 2016, with the active lava lake visible on the crater bottom; (f) night view of the Santiago

crater floor on 23 February 2016, showing two distinct lakes; (g) night view of the Santiago crater floor on 5 May 2016.

The two to three lava lakes formed during December 2015 to February 2016 had merged into a single, vigorously active

lake.
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et al. (2003) proposed that the Masaya cyclic degassing crises are caused by convective replacement of

dense, degassed magma by gas-rich vesicular magma in the shallow (<1 km depth) plumbing system.

These authors also argued such convective overturning is not necessarily triggered by intrusion of fresh

(gas-rich) magma but may simply be initiated by degassing/crystallization (and consequent sinking) of shal-

low resident magma. However, volcanic gas information has never been available for the onset of a degass-

ing crisis to test the likelihood of the two possible scenarios, i.e., intrusion of fresh magma versus

convention of resident magma.

A vigorously degassing, actively convecting lava lake formed in the Santiago crater between December 2015

and March 2016, marking the end of a 3 yearlong period of reduced activity and the onset of a new period of

elevated degassing. Before, during, and after formation of the lava lake, the composition and flux of volcanic

gases were systematically measured using a permanent gas network that includes a Multi-Component Gas

Analyzer System (Multi-GAS; Aiuppa et al., 2005) of the DECADE network and a scanning-Differential Optical

Absorption Spectrometer (DOAS) of the NOVAC (Network for Observation of Volcanic and Atmospheric

Change) network (Galle et al., 2010). At the same time, infrared images acquired by the Moderate Resolution

Imaging Spectroradiometer (MODIS), elaborated by the Middle Infrared Observation of Volcanic Activity (MIR-

OVA) system (Coppola et al., 2016b), were used to detect and quantify thermal anomalies related to the lava

lake activity inside Santiago crater. Thanks to integration of these ground-based and satellite-based data, tran-

sition to a lava lake phase was observed for the first time, yielding novel information on the underlying driving

processes. Summarizing the key observations obtained, and their implications for our knowledge of the volca-

no’s degassing mechanisms and behavior, is the objective of the present study.

2. Materials and Methods

2.1. Masaya Volcano

Masaya is a tholeiitic basaltic shield volcanic complex (Walker et al., 1993) in Central Nicaragua (Figure 1a),

world-renown for its nearly persistent open-vent degassing activity (Stix, 2007) and for having produced

some of the few examples of basaltic plinian eruptions (Kutterolf et al., 2007; P�erez et al., 2009; van Wyk de

Vries, 1993; Williams, 1983). The Masaya volcano in a strict sense is the youngest shield edifice of the com-

plex and sits on an older sequence of nested calderas and craters. Masaya is cut on its summit by a NW-SE

elongated caldera that is 11 km long by 6 km wide (Figure 1b) and was formed by at least three major (pli-

nian) basaltic eruptions between �6 and 1.8 ka ago (Bice, 1985; Kutterolf et al., 2007, 2008; P�erez et al.,

2009; P�erez & Freundt, 2006; van Wyk de Vries, 1993; Williams, 1983). The post 1.8 ka activity has been con-

centrated in the caldera center along a semicircular set of vents/cones, today topped by four pit craters,

among which is the currently active Santiago crater (Rymer et al., 1998; Figure 1c).

The Santiago pit crater (Figures 1d and 1e) formed in a sequence of collapse/explosion events in 1858–

1859 (McBirney, 1956; Rymer et al., 1998) and has since remained the main site of activity at Masaya. During

its short-lived history, Santiago has alternated between (i) periods of intense degassing associated with

opening of active vents on the crater floor eventually culminating with lava lake formation (such as in

1965–1969, 1972–1979, 1989, and 1993–1994) and (ii) phases of reduced activity. Each ‘‘degassing crisis’’

has typically lasted years to decades (the most recent started in 1993) and has typically fluctuated between

vent-opening phases (mostly due to unroofing of small chambers beneath the crater floor) and vent-closing

phases (due to rockfalls inside the crater; Rymer et al., 1998). Occasionally, the latter crater wall collapse

events have been followed by vent-clearing ash explosions, such as in 2001 (Duffell et al., 2003) and in

April–May 2012 (Global Volcanism Program, 2016; Pearson et al., 2012). After a period of reduced volcanic

activity between late 2012 and late 2015, incandescence was again reported on the crater floor by INETER

on 11 December 2015 (Global Volcanism Program, 2016). Between mid-December 2015 and March 2016,

two to three incandescent vents (Figure 1f) became visible, which progressively widened to merge into a

single, vigorously active lava lake (Figure 1g), perhaps due to collapsing of the crater floor. Intense seismic-

ity and SO2 degassing have been associated with formation of the lava lake (Global Volcanism Program,

2016). The lava lake is still active at the time of writing.

2.2. Gas Measurements

We field deployed a Multi-GAS on Masaya in March 2014, as part of the global network of the Deep Earth

CArbon DEgassing (DECADE; https://deepcarboncycle.org/home-decade/) project funded by the Deep
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Carbon Observatory (DCO; https://deepcarbon.net/). This fully autonomous gas sensing unit was installed

on the outer rim of the Santiago pit crater (coordinates: 11859014.41000N, 28681003.73400W, see Figure 1c).

The Multi-GAS is still operating by November 2017, but 3 years of results (March 2014 to March 2017) are

discussed here. The instrument measured in situ the mixing ratio of CO2, SO2, and H2S in the volcanic gas

plume, using the established combination of Near Dispersive Infra Red (NDIR) spectrometers and electro-

chemical sensors described in previous work (Aiuppa et al., 2014, 2017). Ambient pressure, temperature,

and relative humidity were also comeasured, from which the in-plume H2O mixing ratio were obtained

using the Arden Buck equation (Buck, 1981). Data acquisition was controlled by a Moxa embedded com-

puter (model 7112plus), and the whole system was powered by two batteries and a 120 W solar panel. The

Multi-GAS unit was programed to acquire data (at 0.1 Hz) during four daily measurement cycles, each 30

min long. The acquired data were stored in an onboard data logger and telemetered to the INETER base sta-

tion in Managua using a radio link. Concentration data were then postprocessed using the Ratiocalc soft-

ware (Tamburello, 2015) to obtain time series of the volcanic gas CO2/SO2 and H2O/CO2 molar ratios. The

data set is accessible at (https://doi.org/10.1594/IEDA/100651), which lists (i) raw (mixing ratio) data and (ii)

time-averaged CO2/SO2 and H2O/CO2 ratios for 30 min-long Multi-GAS acquisition windows. No ratio was

derived for acquisition windows in which the maximum SO2 concentration was <3 ppmv threshold and/or

low correlation coefficients (R2� 0.6) between gas species were observed. Based on laboratory tests with

Figure 2. (a) Time series of the volcanic radiant power (VRP, in W), January 2014 to March 2017. The lake is first detected

on 11 December 2015. Thermal radiance then grows from December to mid February 2016, when a plateau is reached.

(b) Time series of molar CO2/SO2 ratios. Each point corresponds to the time-averaged CO2/SO2 ratio calculated in a 30

min-long Multi-GAS acquisition window (raw data and CO2/SO2 ratios are accessible at https://doi.org/10.1594/IEDA/

100651). Data are divided into five subintervals (which we refer to as subintervals P1–P5), during which data acquisition

was continuous. The five cycles are shown in different colors: P1, white; P2, yellow; P3, red; P4, orange; and P5, green.

CO2/SO2 ratios are anomalously high in subinterval P3, prior to lake formation. The blue stars identify the periodic survey

results reported in de Moor et al. (2017). (c) Plot of molar CO2/SO2 ratios versus peak SO2 concentration (the maximum

SO2 value recorded in the corresponding 30 min-long Multi-GAS acquisition window). The five Masaya gas populations

converge to relatively constant (and SO2-independent) CO2/SO2 ratios in dense plume conditions (>10 ppm peak SO2

concentrations). (d) The CO2/SO2 ratio gas population (of Figure 2b) filtered using a 15 ppm SO2 threshold. (e) Time series

of the CO2/SO2 ratio for period P3, from 11 October to 10 December 2015. (f) Time series of molar H2O/CO2 ratios. Each

point corresponds to the time-averaged H2O/CO2 ratio calculated in a 30 min-long Multi-GAS acquisition window (raw

data and H2O/CO2 ratios are accessible at https://doi.org/10.1594/IEDA/100651). Error bars for some representative mea-

surement points are shown.
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standard gases, errors in derived ratios are typically �15% and �30% for CO2/SO2 and H2O/CO2 ratios,

respectively. The sensors’ calibration was also regularly checked in the laboratory using calibration gases at

the beginning and end of each measurement subinterval P1–P5 (see below), and no substantial drift or

change was observed.

The volcanic CO2 flux is calculated from combination of coacquired CO2/SO2 ratios and SO2 fluxes. SO2 flux

is obtained for the period March 2014 to February 2017, from evaluation of data of one scanning-DOAS sta-

tion from the NOVAC network, located �1.5 km WSW of Santiago crater at an altitude of 387 m asl (see Fig-

ure 1c). The instrument points to the Santiago crater and scans the plume over a flat surface from horizon

to horizon, at steps of 3.68, recording at each step spectra of solar scattered radiation in the 280–450 nm

wavelength range (effective range between 300 and 360 nm due to atmospheric and optical filters). The

system is a standard NOVAC-Mark I instrument, which specifications are described by Galle et al. (2010).

Each scan is completed in about 5 min during daylight. By integrating the column densities of SO2, derived

by the DOAS method (Platt & Stutz, 2008), over a cross section of the plume, and multiplying by the trans-

port speed, the flux of SO2 is derived. For this evaluation, we used wind speed from the ECMWF ERA-Interim

database (Dee et al., 2011) with a spatial resolution of 0.1258 3 0.1258 and a temporal resolution of 6 h,

which was then interpolated to the coordinates of the crater and time of each measurement. Plume direc-

tion was obtained by observing the distribution of column densities on each scan, and assuming that the

plume centre of mass was drifted at the summit level. Only measurements that were elevated (to ensure

complete plume coverage and availability of a background spectrum for cancellation of instrumental and

atmospheric effects) were used for further analysis. A total of 28,754 flux measurements were obtained (for

details see https://doi.org/10.1594/IEDA/100672), each with an estimated uncertainty of <26% (after Galle

et al., 2010). This uncertainty mostly comes from uncertainty in wind speed data, since radiative transfer

effects are likely less important due to close proximity to an ash-free plume. Available SO2 flux data were

averaged to obtain mean values for each valid Multi-GAS temporal window. The cumulative error in derived

CO2 fluxes is estimated at 40% from propagation of Multi-GAS and NOVAC uncertainties.

2.3. Space-Based Thermal Data

Thermal data acquired by MODIS sensors were analyzed using MIROVA, an automated, near-real time volcanic

hot spot detection system, developed at the University of Turin (Coppola et al., 2016b; www.mirovaweb.it).

The MIROVA system uses the MIR radiance measured by the two MODIS sensors (carried on Terra and Aqua

NASA’s satellites, respectively) that scan the entire earth surface approximately four times per day (2 nighttime

and 2 daytime) with a nominal ground resolution of 1 km. These features, together with the presence of a

low-gain middle infrared (MIR) channel (MODIS band 21), make MODIS particularly suitable for near-real time

monitoring of worldwide volcanic activity (Coppola et al., 2013, 2016b; Rothery et al., 2005; Wright et al., 2002,

2004, 2008).

The hot spot detection algorithm consists of contextual spectral and spatial principles specifically designed

to efficiently detect small-scale to large-scale thermal anomalies (from <1 MW to >40 GW) while maintain-

ing false detections low (<1% according to Coppola et al., 2016b). This procedure allows to track a large

variety of volcanic activity, including lava flows (Coppola et al., 2017a, 2017b) and domes (Coppola et al.,

2015; Werner et al., 2017), as well as strombolian activity (Coppola et al., 2014). Nonetheless, MIROVA has

shown its efficiency in detecting previously unknown effusive activity at remote volcanoes (i.e., Nevados del

Chillan; Coppola et al., 2016c), in tracking the development of intense fumarolic activity at Santa Ana vol-

cano (Laiolo et al., 2017) and in detecting the recent rebirth of Nyamulagira lava lake (Coppola et al., 2016a).

The Wooster et al. (2003) formulation is used to retrieve the volcanic radiant power (VRP; W) from MODIS

data, starting from hot spot pixels detected by MIROVA:

VRP51:8931073ðLMIR2LMIRbkÞ (1)

where LMIR and LMIRbk are the MIR radiances (W m22 sr21
mm21) characterizing the single hot spot pixel and

the background. The coefficient 1.89 3 107 (m2 sr mm) results from best fit regression analysis between

above background MIR radiance and radiant power (Wooster et al., 2003) and allows estimations of VRP

(630%) of hot surfaces having temperatures ranging from 600 to 1,500 K.

Visual inspection of acquired images is used to discard false alerts, isolated fires, thermal data contaminated

by clouds, or images affected by poor viewing geometry conditions. Between 2015 and 2017, MIROVA
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identified 282 hotspots over Masaya volcano. Of these, 8 hotspots were due to false detections, and 31

were associated with wild fires. All of these nonvolcanic sources were easily identified because they

occurred at more than 5 km from the volcano summit. Of the remaining 243 thermal anomalies associated

with volcanic activity, 88 images were discarded because of the presence of clouds and/or because the

high satellite zenith angle (i.e., >458) impeded a clear view of the Masaya summit craters. The supervised

VRP measurements collected during the analyzed period are listed in the supporting information Table S1.

3. Results

The MIROVA thermal record (March 2014 to March 2017; see supporting information Table S1), illustrated in

Figure 2a, confirms the Masaya lava lake formation time as established by visual observations. No thermal

anomaly is detected above the Masaya summit between January 2014 and December 2015 (Figure 2a). This

suggests that no magma is ponding in the Santiago crater in this temporal interval, and that the thermal

anomalies associated with the degassing vent(s) are below the MIROVA detection limit. The first hot spot

(�0.9 MW) is detected on 11 December 2015, the same day of the first direct lava lake observations in the

field (Global Volcanism Program, 2016). Since then, the thermal anomalies become increasingly frequent,

from 1 alert per week in December 2015 up to �2 alerts per day in late March 2016. At the same time, the

volcanic radiant power (VRP) increases regularly, reaching >10 MW on 21 January 2016 and >100 MW on 3

April 2016. After peaking at 126 MW on 9 May 2016, the VRP fluctuates around a mean value of 60.8 MW

(1r5 25.5 MW) until March 2017 (the end of our observation interval; see supporting information Table S1).

The temporal record of CO2/SO2 ratios in the Masaya volcanic plume, March 2014 to March 2017, is illus-

trated in Figure 2b. The several data-gaps are due to recurrent damage to electronics/mechanical parts of

the Multi-GAS, caused by the corrosive action of the acidic volcanic plume. Our time series is therefore

divided into five subintervals (which we refer to as phases P1–P5), during which the Multi-GAS was continu-

ally operating (Table 1).

The mean CO2/SO2 ratio is similar for phases P1 (6.36 3.1), P2 (4.96 2.0), P4 (5.46 2.1), and P5 (5.56 1.9)

(Figure 2b). In contrast, interval P3, which encompasses formation of the lava lake in early December 2015,

is characterized by higher mean CO2/SO2 ratio (12.26 6.3), and peak values >20 (and up to 41) (Figure 2b

and Table 1). To test if this factor >2 difference in the CO2/SO2 ratio between phases P3 and P1–P2–P4–P5

is real, and not simply due to different total volcanic gas concentration in the plumes being measured, we

investigate the relationship between CO2/SO2 ratios and peak SO2 concentrations in Figure 2c. The peak

SO2 concentration is the maximum SO2 value recorded within each 30 min-long Multi-GAS acquisition win-

dow and is commonly used (e.g., Shinohara et al., 2008) as a proxy for the measured plume being rich in

volcanic gases, and less air diluted. As first noted at Etna by Shinohara et al. (2008), a Multi-GAS based CO2/

SO2 ratio population is often inversely correlated to peak SO2 concentrations in diluted-plume conditions

(low peak SO2). In our Masaya case, the gas population shows more dispersed CO2/SO2 ratios at low (<15

ppm) peak SO2 concentrations (Figure 2c), but the P3 gases still stand out for their unusually C-rich compo-

sitions (relative to P1–P2–P4–P5). In each of the five subintervals above, the CO2/SO2 ratio then levels out at

relatively constant (and SO2-independent) values in dense plume conditions (>15 ppm peak SO2 concentra-

tions). Filtering our data set using a SO2 threshold of 15 ppm, the filtered time series of Figure 2d is

obtained. The figure confirms the CO2/SO2 ratio difference between phases P3 (10.36 2.3), and P1–P2–P4–

P5 (means from 3.96 1.1 to 5.06 1.5) at statistically significant level (e.g., well above 1 standard deviation,

and beyond analytical uncertainty in individual CO2/SO2 ratios, 615%). In summary, we conclude that the

compositional contrast between P3 and P1–P2–P4–P5 gas is significant at any gas concentration level

reported here (both at< and >15 ppm SO2).

The anomalous CO2/SO2 ratio variations during period P3 are detailed in Figure 2e. The figure highlights a

phase of anomalous CO2/SO2 ratio increase in mid-November 2015, followed by a drop on 26–27 November

2015, preceding the first reports of incandescence inside the Santiago crater on December 11.

The volcanic gas plume H2O/CO2 ratio also varies markedly (Figure 2f). The ratio progressively decreases in

time, from P1 (17.36 10.3), P2 (5.76 5.1), P3 (3.76 1.6), and P4 (2.36 1.3), and then increased again in sub-

interval P5 (12.86 10.1) (Figure 2f). In phases P3 and P4, thus, the plume exhibits more uniform, H2O-poorer

composition, relative to other temporal intervals.
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The NOVAC-based SO2 flux time series (Figure 3a) is more continuous than the Multi-GAS time series. Each

of the five phases above exhibits a wide SO2 flux range, with no obvious temporal trend, the mean SO2

fluxes (61 standard deviation) being: P1 (8.66 2.4 kg/s), P2 (7.86 1.6 kg/s), P3 (9.56 3.2 kg/s), P4 (8.06

2.6 kg/s), and P5 (7.96 3.5 kg/s). The mean SO2 flux in interval P3 is thus close, or only slightly (17%) higher

than, the 8.0 kg/s average for P1–P2–P4–P5. The highest peak SO2 fluxes (up to 50.7 kg/s) are recorded in

the temporal interval between P3 and P4, e.g., between 11 December 2015 and 15 February 2016 (Figure

3b), when the lava lake was first visually observed and was reported to be more vigorously degassing

(Global Volcanism Program, 2016). The mean SO2 flux in this phase of lake formation (PLF) is 11.46 5.2 kg/s,

or 40% higher than the P1–P2–P4–P5 average (8.0 kg/s). We yet caution that this SO2 flux increase, while sig-

nificant (Figure 3b), is still within uncertainty (45%). Our SO2 flux results (Figure 3a), including those in the

PLF, are within the range of those obtained by de Moor et al. (2017). These authors conducted periodic sur-

veys at a number of Central American volcanoes including Masaya (12 measurements between November

Figure 3. (a) Time series of the volcanic SO2 flux (kg s21), January 2014 to February 2015, based on measurements with a

permanent scanning-DOAS of the NOVAC network. Data obtained during the five Multi-GAS acquisition subintervals are

colored as in Figure 2, grey symbols identify DOAS data with no contemporaneous compositional (Multi-GAS) record,

including the phase of lake formation (PLF). (b) Zoom of Figure 3a for the period before and during lava lake formation.

The white line is a 3 month moving average. The SO2 flux peaks in the PLF phase. (c) Time series of the volcanic CO2 flux

(kg s21), calculated combining sets of coacquired CO2/SO2 ratio values (of Figure 2b) and SO2 fluxes (the DOAS records

closest in time to each 30 min Multi-GAS temporal interval are averaged and used for scaling). The CO2 flux peaks in the

P3 subinterval, right before appearance of the lava lake. Error bars for some representative measurement points are

shown.

Geochemistry, Geophysics, Geosystems 10.1002/2017GC007227

AIUPPA ET AL. 8



2015 and July 2016), where SO2 fluxes of 10.1–58.1 kg/s were obtained using the traverse technique (e.g.,

traversing underneath the plume with a vertically pointed DOAS).

The volcanic CO2 flux time series (Figure 3c) is calculated by multiplying each CO2/SO2 ratio value (of

Figure 2b) by the time-averaged SO2 flux during the same temporal interval. The CO2 flux peaks during sub-

interval P3 (mean, 81.36 40.6 kg/s; maximum, 247 kg/s on 25 November 2015). Both the mean (26.2–

37.3 kg/s, Table 1) and maximum (149 kg/s) CO2 flux are systematically lower during subintervals P1–P2–

P4–P5. For comparison, the CO2 flux results reported in de Moor et al. (2017) range from 50 to 161 kg/s (10

measurements between November 2015 and July 2016).

4. Discussion

Visual observations and satellite data concur to indicate that a stable, vigorously degassing lava lake

resumed at Masaya on 11 December 2015 (Figures 1 and 2a), after �3 years of passive degassing but no vis-

ible incandescence (Global Volcanism Program, 2016). The lava lake has been, since its formation, a sizeable

heat source. By using the volcanic radiant power (VRP) results illustrated in Figure 2a, we estimate a cumula-

tive thermal radiance from the Masaya lava lake, between 11 December 2015 and 31 December 2016, of

�1.536 0.46�1015 J, and a mean radiant flux of 46.56 3.9 MW. This radiant power is similar to the long-term

thermal output produced by the Erta Ale lava lake (20–100 MW; Barnie et al., 2016 and references therein),

which yet contributes an order of magnitude less SO2 (�1.3 kg/s; Oppenheimer et al., 2004). The Masaya

radiant flux is only �5–10% the radiant power recently recorded above the Nyiragongo lava lake (�1,000

MW; Coppola et al., 2016a; Spampinato et al., 2013).

The presence of an operating ground-based gas observational network, combined with satellite thermal

sensing, allows us to track resumption of lava lake activity with relatively high temporal resolution, and to

derive novel information on the driving magmatic processes.

4.1. A CO2-Rich Gas

Since onset of the 1993 to present degassing unrest, and prior to our study, the H2O-CO2-SO2 signature of

the Masaya volcanic gas plume has been determined in six occasions during field surveys in 1998, 1999,

2000, 2001, 2006, and 2009 (see Martin et al., 2010 for a review). These previous studies indicated plume

CO2/SO2 ratios of 1.5–3.5 (mean: 2.56 0.7) and a hydrous gas signature (H2O/CO2 ratios of 27.96 11.2)

(Figure 4a).

Our systematic gas observations demonstrate a systematically more CO2-rich gas vented by Masaya in

2014–2017 (Figure 4a). The time-averaged (all data, 2014–2017 period) CO2/SO2 ratio is 6.26 3.5 (range

2.2–41), well beyond the 1998–2009 range. Our derived H2O/CO2 ratios are also lower (2014–2017 average:

10.36 8.8). An especially CO2-rich composition (Figures 2 and 4a) is observed in mid to late-November

2015 (our subinterval P3), a few weeks prior to ‘‘rebirth’’ of the Masaya lava lake in December 2015. In the

same subinterval P3, the CO2 flux (Figure 3c) is 2–3 times the average 2014–2017 levels (26.2–37.3 kg/s),

and 7.5 times the Martin et al. (2010) estimate of �10.7 kg/s (in March 2009). After P3, gas parameters (com-

position and fluxes) are back to P1–P2 levels. In summary, our results point to a perturbed degassing regime

at Masaya in 2014–2017 and suggest unusually elevated CO2 release prior to appearance of the lava lake in

late 2015.

4.2. Measured Versus Modeled Gas Compositions

The time-evolving volcanic gas composition in 2014–2017 and especially the elevated CO2 degassing phase

P3 are quantitatively interpreted from results of model runs performed with a volatile saturation code (Fig-

ure 4). As in previous work (Aiuppa et al., 2007, 2010, 2016; de Moor et al., 2016), the model of Moretti et al.

(2003) and Moretti and Papale (2004) is used to simulate the pressure-dependent compositional evolution

(in the C-O-H-S system) of the Masaya magmatic gas phase formed upon magma decompression in the

400–0.1 MPa interval (Figure 4b).

The model runs are initialized at conditions representative of the Masaya magmatic system (Table 2). Tem-

perature is set constant throughout the runs at 1,1168C (from de Moor et al., 2013, calculated from the

olivine-liquid geothermometer of Putirka (2008)). Oxygen fugacity of Masaya melt is fixed at 1.7 Log units

above the QFM (DQFM511.7, whereby QFM is the quartz-fayalite-magnetite buffer of Frost (1991)), based
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on measured iron speciation (de Moor et al., 2013). Melt composition and total volatile contents (Table 2)

are inferred from compositions of Masaya melt inclusions (MIs; Atlas & Dixon, 2006; de Moor et al., 2013;

Sadofsky et al., 2008; Wehrmann et al., 2011; Zurek, 2016) and glasses from laboratory degassing experi-

ments performed at Masaya-like conditions (Lesne et al., 2011).

Melt inclusion results suggest that Masaya volcano is fed by relatively water-poor (1.5–1.6 wt %) magma,

similar to other primitive magmas in Central Nicaragua (e.g., Granada and Nejapa volcanoes; Wehrmann

et al., 2011). Available melt inclusion data for Masaya show therefore no evidence of the water-rich

(H2O5 3.0–6.1 wt %) magma component seen at other Nicaraguan volcanoes, including Cerro Negro, Tel-

ica, San Crist�obal, and Cosig€uina (Longpr�e et al., 2014; Portnyagin et al., 2014; Robidoux et al., 2017a, 2017b;

Roggensack et al., 1997). Note that although the degassing experiments of Lesne et al. (2011) were initially

prepared and run at 1.5–1.7 wt % H2O, final total H2O contents in experimental charges (fluid1glass) were

>2.6 wt % because of water production due to hydrogen exchange and reduction of ferric iron (Lesne

et al., 2011; Table 2). The experimental results of Lesne et al. (2011) are unique for Masaya, but their higher

(than MIs) H2O contents are likely to have determined vapor-melt partitioning unrepresentative of natural

conditions (see below). The Lesne’s et al. (2011) experiments will be thus considered in the following for

comparative purposes only, but not as stringent constraints for our interpretation.

Melt inclusion information also converges to indicate a preeruptive S content of �500 mg kg21 (Table 2).

This implies that the MAS.1.A experiment of Lesne et al. (2011) (our run#2) is likely the closest to natural

conditions (apart from the aforesaid issues on the total water content), while the MAS.1.B experiment of

Figure 4. (a) Triangular plot comparing the measured compositions of Masaya volcanic gases (circles; symbols as in

Figure 2) with model gas compositions calculated in the four model runs with the saturation model of Moretti et al.

(2003). Runs #1 to #4 differ in the model initialization parameters used (see Table 2 for details) but all describe a pressure-

dependent magmatic gas evolution, from CO2 rich (high pressure) to SO2 rich (low pressure). Isobars are indicated by the

white dashed lines (numbers stand for pressure, in MPa). The model lines confine the Masaya magmatic gas field (grey

filled area). The calculated experimental fluid compositions (MAS.1.A and MAS.1.B) of Lesne et al. (2011) consistently fall

within this magmatic field. However, different initial conditions prevent a quantitative comparison between model results

and experimental runs (see text for details). Volcanic gas samples obtained in 2014–2017 (this study) are systematically

richer in CO2 relative to 1998–2009 gas data (triangles, see Martin et al., 2010 for data source). P1 and P5 gases mostly fall

out of the Masaya magmatic gas field, suggesting addition of nonmagmatic (meteoric or atmospheric) H2O. P3 gases are

the richest in CO2, implying separation pressures of >10 MPa. (b) Pressure dependence of the (molar) CO2/ST ratio in the

four model runs (ST stands for total S, and corresponds to SO21H2S at the conditions explored here). Runs#1, #2, and #4

output overall consistent trends, while the S-rich run#3 yields systematically lower CO2/ST ratio compositions. A gas

source pressure of 9–35 MPa is inferred by combing the measured P3 gas compositions with the model trends. The exper-

imental fluids of Lesne et al. (2011) diverge from the model trends at high pressure and are shifted to lower CO2/ST ratios.

We ascribe this to higher H2O contents and formation of solid/liquid sulphides in the experiments of Lesne et al. (2011).
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Lesne et al. (2011) (our run#3) should only be viewed as a hypothetic S-rich example. As commonly

observed at arc volcanoes (Wallace, 2005; Wallace et al., 2015), the preeruptive melt CO2 content is the

least well constrained. Wehrmann et al. (2011) reported one single inclusion with a measured CO2 con-

tent of 369 mg kg21, and this is used as the basis for our run#1 simulation. In run#4, we consider a

CO2-richer magmatic content, based on the maximum melt inclusion CO2 content (�6,000 mg kg21) of

Atlas and Dixon (2006). Lesne et al. (2011) assumed a similarly high CO2 content (�7,000 mg kg21;

adopted in our runs#2 and #3).

Model results (Figure 4) show that, at any explored condition, the magmatic gas in equilibrium with the

Masaya melt is rich in CO2 at high pressure. As pressure decreases, the gas composition becomes H2O-dom-

inated and richer in S in all model runs (Figure 4). The different model trends obtained in the four runs

reflect the distinct initial volatile contents used, with the most hydrous gas compositions obtained in the

CO2-poor run#1 and the least hydrous in the S-rich run#3. The four model lines together identify the com-

positional field of Masaya magmatic gases (Figure 4a), which also encompass the inferred compositional

range of fluids formed in the experiments of Lesne et al. (2011).

The model runs also confirm the strong pressure dependence of the CO2/S ratio (Figure 4b), as seen in other

mafic systems (Aiuppa et al., 2007, 2010, 2017; de Moor et al., 2016). The model-derived CO2/S versus pres-

sure trends are less steep, and shifted toward CO2-enriched compositions, relative to the experimental

trends obtained by Lesne et al. (2011). This discrepancy, particularly evident at high pressure, reflects the

80% higher total water contents in the experiments of Lesne et al. (2011) (see above), which may have

acted to determine a gas phase enriched in H2O and S (at the expense of CO2). We additionally argue that

the CO2/S ratios in the experiments of Lesne et al. (2011), being relatively constant over a wide P-range (Fig-

ure 4b), are inconsistent with a sulfur dissolution behavior simply determined by gas-melt partitioning.

Rather, they suggest that the sulfur saturation content at sulfide saturation (SCSS) was likely reached during

the experiments, leading to formation of solid/liquid iron sulfides (Mavrogenes & O’Neill, 1999; Moretti &

Baker, 2008). Sulfide saturation, while not reported by Lesne et al. (2011), is well consistent with the hydrous

nature of their experimental melts (Fortin et al., 2015; Moune et al., 2009). H2O-rich conditions determine a

high Fe21/Fetot ratio (>0.7; Lesne et al., 2011 and our modeling) even at oxidation states of NNO1 1 or

more (Moretti & Baker, 2008). In contrast, no sulfide separation is predicted by our model runs (conducted

at the less hydrous conditions of Masaya natural melts), justifying the disagreement between model (this

study) and experimental (Lesne et al., 2011) results at high pressures (Figure 4b). Model and experimental

trends converge at low pressure (Figure 4b).

Comparison between models and observations (Figure 4a) suggests that the CO2-rich gas detected in subin-

terval P3, prior to emergence of the lava lake (Figure 2e), cannot originate from a shallow source, e.g., from

near-surface (0.1 MPa pressure) gas-melt separation. The four most CO2-enriched P3 gases in Figure 4a, in

particular, have CO2/SO2 ratios of 24.1–40.8. Depending on the model run used, these correspond to model

magmatic gas compositions at respectively �9–25 and �15–35 MPa pressure (Figure 4b). Note that even

higher equilibrium pressures (�100–200 MPa; Figure 4b) would be obtained using the MAS.1.A experimen-

tal fluid line of Lesne et al. (2011). In contrast, the CO2-poorer gases observed in subintervals P1–P2–P4–P5

mostly fall within the low-pressure (0.1–10 MPa; Figure 4a) domain of the Masaya magmatic gas composi-

tional field, indicating more shallow origin. A cluster of P1–P2–P4–P5 gases, finally, plots outside the Masaya

magmatic gas field, and is displaced toward the H2O corner. Most of the 1998–2009 Masaya gas data are

similarly more H2O rich than the predicted (model) magmatic gas compositions. We ascribe these hydrous

gas compositions to entrainment of nonmagmatic H2O in the plume. Interestingly, these H2O-rich composi-

tions dominate in subintervals P1, P2, and P5 (mostly referring to the Masaya wet season), while they are

typically missing during subintervals P3 and P4 (Figure 2f) (encompassing a typical Masaya dry season). We

argue that sampling of recirculated meteoric water, perhaps emitted by low-temperature meteoric-H2O-

dominated hydrothermal fumaroles along the inner crater’s walls, may justify the nonmagmatic H2O-rich

gas compositions in subintervals P1, P2, and P5.

4.3. A Deep Trigger?

The above model results imply that the CO2-rich signature of P3 gas is inconsistent with a shallow magma

source. To preserve equilibrium compositions corresponding to �9–35 MPa pressure, the source magmatic

gas phase must have last equilibrated with (and separated from) the melt at equivalent depths of 0.36–
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1.4 km (calculated using a magma density of 2,600 kg m23 for Masaya; Stix, 2007). This depth interval corre-

sponds to the roots of the shallow magma reservoir identified by Rymer et al. (1998) and Williams-Jones

et al. (2003), based on modeling of gravity data. According to these authors, a shallow magmatic body

(<�1 km) is located directly beneath the currently active Nindiri cone (Figure 5), and the temporal changes

in its degree of vesiculation (and thus density) govern the observed gravity variations at Masaya. Vesicular-

ity of the shallow resident magma would, in turn, be modulated by temporal variations in gas bubble sup-

ply from deeper convecting magma (Stix, 2007), with a larger bubble influx resulting in periods of

decreased gravity and elevated degassing at the surface (e.g., a degassing crisis; Delmelle et al., 1999;

Williams-Jones et al., 2003).
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Figure 5. Cartoons showing a schematic cross section of the shallow Masaya plumbing system (modified from Rymer

et al., 1998; Williams-Jones et al., 2003). (a) During subintervals P1–P2, SO2 and CO2 emissions are stable, implying magma

circulation and degassing at �3.1 m3 s21. (b) The CO2 flux peaks in phase P3, suggesting enhanced gas bubble supply

from deep volatile-rich magma. The magma degassing rate increases (3.6–5.2 m3 s21) and gas-melt separation level is

deeper in the pluming system (0.36–1.4 km depth). (c) Enhanced vesicularity (and thus buoyancy) of shallow resident

magma, plus further magma ascent of deep-rising magma, lead to magma level rise and formation of the lake on 11

December 2015 (subinterval LFP). The SO2 flux peaks at 11.4 kg s21 and the lake irradiates thermal energy consisted with

surface overturning of �0.4 m3 s21 of magma. (d) During subintervals P4–P5, the lake is now formed and steadily degass-

ing. The surface magma circulation (�0.8 m3 s21) represents 20–30% of the magma degassing rate (returning to the pre-

eruptive level of �3.1 m3 s21). The lake will likely persists until the magma supply (degassing) rate will not drop down to

�3.1 m3 s21.
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Our observations here suggest an increasing supply of CO2-rich gas bubbles to the shallow magmatic body

(Rymer et al., 1998) in November 2015 (Figures 3c and 5b). We propose this (factor �3) higher than usual

gas bubble supply is sourced by degassing of faster convecting magma, at minimum equivalent depths of

0.36–1.4 km (Figure 5b). We infer below the increase in magma convection rate that is required to justify

elevated degassing during P3.

The rate at which magma is convectively rising and degassing (magma degassing rate; Table 1) is initially

calculated from the measured SO2 flux, as in Williams-Jones et al. (2003) and Stix (2007). In these calcula-

tions, we use a 2,600 kg m23 magma density (Stix, 2007) and assume complete degassing of a magma with

500 mg kg21 initial S content (Table 2). We neglect crystal content owing to the poorly porphyric (�10%)

nature of Masaya magmas (Zurek, 2016). Using these numbers, the mean SO2 flux of 9.56 3.2 kg s21 con-

verts into a magma degassing rate for subinterval P3 of 3.66 1.2 m3 s21 (Table 1). This calculation implies a

�20% increase in magma transport rate, relative to P1–P2–P4–P5 (mean 3.1 m3 s21; range 3.0–3.3, Table 1)

is required to account for the elevated SO2 degassing in P3. Integrated over the 26 days of duration, we

infer that �8 Mm3 must have completely degassed during P3 to account for surface SO2 emissions, or

�1.2 Mm3 in excess to what would have degassed in the same time interval at the background rate of

3.1 m3 s21 (Table 1).

We also argue that, during P3, the SO2 flux increases by only �17% (relative to P1–P2–P4–P5), while the CO2

flux increases by a factor 157% (Table 1). As such, the CO2 flux would in principle be more appropriate to

confine the magma degassing rate increase. However, this operation is complicated by the total CO2 con-

tent in Masaya magmas being poorly constrained (Table 2). Assuming a total (parental melt) CO2 content of

6,000 mg kg21, the P3 CO2 flux would imply magma degassing rate of 5.26 2.6 m3 s21, higher than the

3.66 1.2 m3 s21 obtained above from SO2. This mismatch is reconciled by assuming (i) a higher parental

melt CO2 content (8,600 mg kg21 of CO2 are required to obtain a 3.6 m3 s21 magma degassing rate) or (ii)

that there is deeply degassing magma that contributes lots of CO2 but little SO2 to the shallow convecting

part of the plumbing system, or (iii) by considering that only a fraction (�70%) of total S (500 mg kg21) is

actually degassed, the remaining fraction remaining dissolved in the melt. The latter is well consistent with

the relatively deep (�9–35 MPa pressure) gas source in subinterval P3, and considering that the model

melts still contain 295–462 mg kg21 S in dissolved form at 10 MPa (model runs#1, #2, and #4). Although we

cannot entire resolve between the three hypotheses above, owing to the lack of more precise knowledge

on parental melt CO2 content, we still consider our ‘‘deep degassing’’ hypothesis (a combination of (ii) and

(iii) above) well motivated. The CO2 flux-based magma degassing rate of 5.2 m3 s21 would imply a degass-

ing magma volume (in 26 days) of 11.7 Mm3, and an excess magma degassing magma volume of

�7.2 Mm3 (Table 1)

In view of the above calculations, we consider likely that degassing of an unusually high (8.2–11.7 Mm3)

magma volume, circulating at >�9–35 MPa pressure (0.36–1.4 km depth) at an average rate of 3.6–

5.2 m3 s21, sustained elevated CO2-rich gas supply during the 26 days of subinterval P3. Interestingly, our

results are consistent with a general inflation of the Masaya edifice since late 2015, interpreted as due to

volume change/pressure increase at �2.3–3.8 km beneath the surface (Stephens et al., 2017; C. Wauthier,

2017, personal communication).

4.4. Formation of the Lava Lake

An elevated gas bubble supply from depth may impact stability of the shallow magma reservoir that feeds

the lava lake in many different ways. According to Stix (2007), the long-lived (1993 to present) degassing

unrest at Masaya, occurring with essentially no eruption of magma, can be explained by either one of the

two models below (or from a combination of the two). In the conduit convection model (Kazahaya et al.,

1994; Stevenson & Blake, 1998), persistent open-vent activity is thought to be driven by density contrast

between continuously ascending (and degassing) buoyant gas-rich magma, and degassed (denser) resident

magma, being recycled back in the conduit. In the foam accumulation model (Jaupart & Vergniolle, 1989),

instead, open-vent activity is controlled by development of a foam layer at the reservoir-conduit discontinu-

ity, in which quiescent leakage from the foam feeds continuous passive gas emissions, while catastrophic

collapse of the foam (by reaching a critical thickness) generates explosive magmatic eruptions (not recently

recorded at Masaya). In both models, the gas bubble supply is a critical factor. In the conduit convection

model, gas bubbles control density of the ascending magma, with an increase in bubble supply leading to
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greater buoyancy and faster convection. In the foam accumulation model, a larger influx of gas bubbles

leads to thickening of the foam layer, increased gas transport from the foam to the conduit (and, hence,

enhanced surface degassing), and to increasing magma level in the conduit. A variable gas bubble supply

from depth has, for instance, been evoked as the mechanism driving lava lake level fluctuations at Erta Ale

volcano in Ethiopia (Vergniolle & Bouche, 2016).

In view of these considerations, it is reasonable to establish a cause-effect relationship between the ele-

vated gas bubble supply (and surface discharge) in subinterval P3, and the ensuing formation of the Masaya

lava lake. Although we cannot exclude the concomitant action of additional factors, including gravitational

collapse of the unstable crater floor (Harris, 2009; Rymer et al., 1998), we find it unlikely that the elevated

degassing pulse in mid to late-November 2015, and the appearance of the lava lake on 11 December 2015,

is a mere temporal coincidence. We propose, instead, that a combination of (i) further upward migration of

the bubble-rich magma and (ii) rejuvenation of shallow resident magma by deeply sourced gas bubbles,

caused the more buoyant column to migrate upward, driving collapse of the crater floor and ultimately

manifesting in a vigorous lava lake (Figure 5c). No gas composition information is available for the most vig-

orous lava lake activity period (PLF; Figure 3a). However, a decreasing CO2/SO2 ratio is observed in the last

12 days of subinterval P3 (Figure 2e), and a carbon-poor composition (relative to P3) is observed in subinter-

val P4 (22 February to 28 March 2016), with the lake still being present and active (Figure 1). Our gas com-

positional data are therefore consistent with shallowing of the magmatic source (Figure 4).

Enhanced shallow magma convection in late 2015 to early 2016 is clearly supported by the elevated SO2

fluxes in subinterval PLF (Figures 3a and 3b). The SO2 flux during PLF averages at 11.46 5.2 kg/s (versus the

8.1 kg/s mean for subintervals P1–P2–P4–P5), and implies degassing of 4.46 2.0 m3 of magma per second

(Table 1 and Figures 5 and 6). For the PLF duration of 64 days, this corresponds to convective ascent, com-

plete degassing, and recycling of �24 Mm3 of magma. The excess magma volume, e.g., the mass of magma

exceeding what would have degassed in 64 days at the background rate of 3.1 m3 s21, is thus �7 Mm3.

In total, we thus infer that �7.2 to �8.2 Mm3 more magma than during background intervals (P1–P2–

P4–P5) circulated (and degassed) underneath Masaya between November 2015 and February 2016 (Table

1). This elevated shallow magma circulation ultimately culminated in formation and growth of the lava lake

(Figure 5c).

Further clues on the processes leading to formation of the lake can be obtained by comparing the above

SO2-derived magma degassing rate (Table 1) with the volumetric magma flux inferred from MIROVA-

derived thermal data (Figure 6). In fact, while the SO2 data allows constraint on the rate at which the
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Figure 6. Time series of magma degassing rate (QSO2
in blue) and ‘‘surficial’’ magma flux retrieved using thermal data

(QIR in red). The two magma fluxes describe the rate of convective magma transport inside two distinct portions of the

plumbing system: (i) the degassing cell located above the exsolution level of SO2 (QSO2
) and (ii) the lava lake system at

the surface. Only 1–10% of the degassing magma reaches the free surface of the lake during phases LFP and P4. The effi-

ciency of magma transport increases up to 20–30% during P5, characterized by a stable magma level. The long-term

mean magma degassing rate typical of Masaya is represented by the grey horizontal bar.
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magma is convectively rising and degassing within the shallow plumbing system (QSO2
), the thermal data

can be used to infer the rate at which the magma reaches the uppermost levels of the magma column (i.e.,

the lava lake), where it radiates and cools before being cycled back (QIR).

Following Coppola et al. (2013) this magma flux can be calculated from

QIR5
VRP

6:45310253ðXSiO2
Þ210:4

(2)

where XSiO2
is the silica content of the erupted lavas (51.5 wt % for Masaya; Walker et al., 1993). This

approach and other similar thermal proxies (see Harris & Baloga, 2009) are commonly applied during effu-

sive eruptions in order to estimate the ‘‘TimeAveraged Lava Discharge Rate’’ (TADR) feeding an active lava

flow. The typical error associated with satellite-based estimates of magma flux is 650%, a value comparable

with field-based estimates (Coppola et al., 2013; Harris et al., 2007). This uncertainty mostly comes from the

implicit assumption of two end-member thermorheological models (defined as hot and cold models by

Harris et al. (2007)) that may characterize the spreading and cooling processes of active lava flows. The two

models thus provide an upper and lower value of magma flux for any VRP measurement, being representa-

tive of large areas/poorly insulated conditions (the hot model – higher radiant density) and small areas/

highly insulated conditions (the cold model – lower radiant density). The real volumetric flux may thus vary

within these two boundary estimates depending on the local conditions of area and temperature.

In the case of a convecting lava lake, where no magma is discharged from the magmatic system, the ther-

mal proxy (equation (2)) can be used to evaluate what would be the equivalent magma discharge rate in

the absence of magma recycling (Coppola et al., 2012, 2013). This corresponds to the volumetric magma

flux that would need to be supplied to a lava flow in order to radiate an equivalent amount of thermal

energy into the atmosphere. In other words, QIR provides the rate at which magma is supplied to the sur-

face before being ‘‘discharged’’ (effusive eruptions) or cycled back into the feeding system (lava lakes/open-

vent volcanoes).

In this view, we interpret the two magma fluxes (QSO2
and QIR) as sampling the rate of magma transport at

different depths, being the SO2-derived flux relative to the magma circulation above the exsolution level of

SO2, and the IR-derived flux relative to surficial magma circulation (i.e., few tens of meters at most; Figure 6).

The two magma fluxes may be nonsynchronous due, for example, to the different ascent rate of gas and

magma within the shallow plumbing system, or due to the delay it takes a degassing-induced collapses in

the crater to reveal the magma. However, on a reasonable time scale of few days, the two fluxes can only

be equivalent in the limit condition that all magma entering and degassing within the shallow plumbing

system ultimately reaches the free air-magma interface.

During subinterval P3, QIR is equal to zero (Figures 5b and 6), since no lava lake is exposed at the bottom of

the Santiago crater. However, the higher than normal magma degassing rate (see section 4.3) suggests

ascent (and degassing) of a new batch of gas-rich magma in the magmatic system (see above, Figure 5b).

We propose that such increased gas supply, and the added magma volume, lead to overpressurization of

the shallow magmatic system, causing a gradual rise of the magma column and the subsequence appear-

ance of the lava lake during subinterval PLF (Figure 5c). During this period, the magma degassing rate

(QSO2
) is enhanced by �0.8 m3 s21, thus reaching �4.4 m3 s21 (Figure 6). At the same time, QIR gradually

increases from 0 to �0.4 m3 s21 (about one tenth of the total SO2-derived flux), suggesting that �10% of

the degassing magma can finally make its way to the surface in a lava lake (Figure 6). The progressive

increase in the magma level continues until March 2016, when QIR stabilizes at �0.8 m3 s21 and the magma

degassing rate returns back to normal values (i.e., �3 m3 s21) (Figure 6). In these periods (P4 and P5; Figure

5d), the proportion of degassing magma reaching the free surface of the lake increases to �20–30%, thus

suggesting an improved, but still incomplete efficiency of the plumbing system in transporting the ascend-

ing magma up to the free surface. This condition persists to the time of writing, and will likely continue until

a further decrease of the magma degassing rate (e.g., in magma feeding into the shallow plumbing system)

may cause the lava lake to disappear (as previously seen at Masaya in historical time). On the contrary, the

upper limit condition of magma transport efficiency (�100%, i.e., with all the degassing magma reaching

the lava lake) would be hypothetically reached for QIR5QSO2
ffi 3.1 m3 s21, at which the lava lake would be

radiating �400 MW (equation (2)). In view of the rarity of historical eruptions at Masaya, this condition is
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reached very infrequently. However, a maximum efficiency of transport to the surface could result in further

rise of the lava lake level or even eventual production of a lava flow.

4.5. Comparison With Other Lava Lakes

The calculations above suggest an evident unbalance between magma input (QSO2
) and output (QIR) at

Masaya. We speculate this unbalance may be causing the rarity of overflow or lateral eruptions at this vol-

cano, and perhaps at other systems (e.g., Villarrica and Erebus) that exhibit similarly stable lava lakes. We

anticipate that a systematic analysis of QSO2
versus QIR relationships is required to test, and eventually cor-

roborate, our hypothesis, including observations and modeling at those lava lakes characterized by more

dynamic eruptive behavior (such as Nyiragongo (Burgi et al., 2014) and Erta Ale (Vergniolle & Bouche,

2016)).

The QSO2
versus QIR unbalance at Masaya requires a very efficient extraction of gas bubbles from the melt,

perhaps due to reduced melt viscosity (in the �102 Pa s order; Stix, 2007). Gas separation from melt during

open-system degassing drives sinking of degassed magma back into the conduit (Shinohara, 2008), thus

posing a limit to the surface emplaced magma volume (QIR).

The contrasting magma rheologies can also justify the distinct 2015 behaviours of Masaya and Villarrica

lava lakes (degassed, crystal-rich basaltic andesites feeding the Villarrica lava lake have inferred viscosity in

the �103 Pa s range (Witter et al., 2004), or a factor 10 higher than Masaya). As reported by Aiuppa et al.

(2017), a period of elevated supply of deeply sourced CO2-rich gas bubbles, similar in duration and magni-

tude to that seen at Masaya (this study), was observed in early 2015 at Villarica. However, the elevated CO2

degassing phase at Villarrica culminated into a violent (VEI, Volcanic Explosivity Index5 2) paroxysmal

explosion, while no eruption was observed at Masaya, only the emergence of a vigorously degassing lava

lake. A combination of different initial volatile contents, magma overpressures, and decompression rates, in

addition to distinct magma rheologies, may have concurred to explain the contrasting volcanic behaviours.

In any case, the ‘‘quiet’’ lava lake emergence at Masaya is clearly indicative of efficient magma degassing.

5. Conclusions

We have presented novel ground-based (volcanic gas) and space-based (thermal) observations to systemi-

cally characterize a (re)formation event of the Masaya lava lake for the first time. Our results show that

appearance of the lava lake in December 2015 was anticipated in mid to late-November by a noticeable vol-

canic gas plume compositional change toward more CO2-rich compositions, and by a sizeable CO2 flux

increase. We interpret these observations as evidence for usual supply of CO2-rich gas bubbles, sourced by

enhanced (3.6–5.2 m3 s21) magma transport and degassing at >�9–35 MPa pressure (0.36–1.4 km depth).

This interpretation is consistent with a measured (late 2015 to early 2016) inflation, having an inferred

deformation source at �2.3–3.8 km depth km beneath the surface (Stephens et al., 2017; C. Wauthier, 2017,

personal communication). Further upward magma migration, and/or rejuvenation of shallow resident

magma by deep-rising gas bubbles, ultimately caused the lava lake to appear on 11 December 2015.

Shallow-level, faster than normal (4.4 versus �3 m3 s21) magma circulation since mid-December 2015 is

proved by a return to more SO2-rich composition, by a �40% SO2 flux increase, and by a progressive volca-

nic radiant power increase, peaking at 126 MW in May 2016. Modeling of the thermal anomaly irradiated by

the lava lake is consistent with a lava lake supplied at �0.4–0.8 m3 s21 rate, implying that only �10–30% of

shallow circulating (and degassing) magma (4.4–3.1 m3 s21) ultimately reached the surface. We anticipate

the lava lake will likely persist until magma feeding in the shallow plumbing system declines to�3 m3 s21.
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