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Abstract

This paper presents a framework for tracking human mo-

tion in an indoor environment from sequences of monoc-

ular grayscale images obtained from multiple fixed cam-

eras. Multivariate Gaussian models are applied to find the

most likely matches of human subjects between consecutive

frames taken by cameras mounted in various locations. Ex-

perimental results from real data show the robustness of the

algorithm and its potential for real time applications.

1. Introduction

Tracking human motion in an indoor environment is of

interest in applications of surveillance. In particular, we

are developing a methodology to track individuals at sites

such as corridors, airports, borders, and secured buildings.

This requires that the viewing system be able to image the

tracked subject in a broad area over a long period of time.

In pursuit of this goal, our work has evolved from study-

ing human walking using a fixed camera [1, 2] to tracking

non-background objects in a single moving camera [3]. The

studies in tracking using a fixed single camera [4, 2, 5] are

limited to a very narrow area due to the restricted viewing

angle of the system. A moving camera with a substantial

degree of rotational freedom [3] increases the viewing angle

to certain degree, however, it complicates the implementa-

tion by adding the motion estimation of both the viewing

system and the subject of interest, and is still limited in

the amount of viewing area. In this work, we chose to use

multiple fixed cameras mounted in the area of interest to

track and monitor the motion of individuals in sequences

of monocular grayscale images. As long as the subject is

within the area monitored by the fixed cameras, the image

of this subject will be contained in the view of at least one
✁
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camera. Based on this scenario, the problem of monitoring

a subject becomes that of tracking the subject of interest in

one camera view and matching that subject across different

camera views, where the cameras’ intrinsic parameters and

relative positions are assumed to be known a priori.

To establish correspondence between consecutive frames

from different cameras, conventional tracking methods

based on the similarity of the object shape, such as cross-

correlation and line-edge matching, are not applicable be-

cause the shape of an object image varies drastically from

view to view of different cameras, and the whole body of a

moving human usually goes through complicated changes

during motion. Deformable template tracking for non-rigid

objects does not fit either because the contours of the human

shape are not always complete in cluttered indoor scenes. In

addition, the continuity of the motion flow does not retain

in the views of multiple cameras. Optical flow methods [6],

which are widely used for featureless motion tracking, de-

mand small and smooth motion between frames,a restriction

that also does not hold in our case. In this paper, we propose

to track a moving human in different camera views based on

low level recognition of human motion [5]. A simpler form

of a 2D human model [7] is applied to detect moving human

subjects. Tracking between consecutive frames is mainly

based on the consistency of the position, velocity, and av-

erage intensity of feature points formulated by multivariate

Gaussian models, considered in the views of various cam-

eras. The proposed algorithm is computationally efficient

and can be readily used in real time applications.

2. Pre-processing

Three stages of pre-processing are performed before

tracking begins: 1) segmentation of the non-background

objects from the still background, 2) detection of human

subjects from the segmented non-background objects, and

3) feature extraction from the segmented human subjects.

The quality of object segmentation plays a critical role in

later processing. If an non-background object is missed at



this stage, the system later will not be able to track this

particular object. Detection of human subjects based on

coarse human features reduces the ambiguity of matching in

consecutive frames, decreases the search space, and makes

the system robust and efficient. Finally, points belonging

to the stick figure of a subject head and trunk are selected

as the feature for matching in consecutive frames, due to its

robustness in views of different cameras.

2.1. Segmentation

The proposed segmentation method takes advantage of

the property of time-dependent data. Since we are using

fixed cameras, the background image from the same camera

view remains relatively unchanged. We recover and update

the background image dynamically [3], as we are not able

to obtain a “pure” background without including some non-

background objects. Once the background image is recov-

ered, images of the non-backgroundobjects can be separated

from the background image by differencing and threshold-

ing [8]. The next step is to obtain images of non-background

objects within different bounding boxes. We apply the win-

dow slicing technique [9] to the thresholded binary image in

a coarse to fine manner. The binary image is first smoothed

by a 5
�

5 mean filter before we calculate its correspond-

ing horizontal and vertical profiles. Then the valleys of the

smoothed profiles are considered to be the boundaries of the

rectangle boxes containing non-background objects.

2.2. Coarse Human Detection

Various techniques for modeling the human body have

been developed by past researchers. Generally, the human

body is represented either as a stick figure or as a volumet-

ric model [10]. In this work, we use a coarse 2D model

which is most related to Leung and Yang [7], but in a much

simplified form. Based on the observation that the human

head and trunk do not change as drastically as the hands and

legs during motion, our method attempts to locate the head

and trunk using a coarse 2D model of the human body. The

human head is modeled as an ecllipse with a height to width

ratio of 1 to 1.5. The human trunk is represented as a rectan-

gle with a height to width ratio between 1 and 3 considering

the different angles of body projections to the viewing cam-

era. The ratio of the height of the trunk to that of the head

is about 4 to 1. All the ratios are learnt from experimental

study of images of humans from different points of view. To

start with, we look for the location of the head considering

the area of a blob which is consistent with
✁✄✂✆☎✞✝✠✟☛✡

4 where☎
and

✝
are the axes of the ecllipse. If the area of any top

subregion inside each bounding box is relatively consistent

with the above relationship, we declare that this might be a

head. Otherwise, we exclude it from further consideration.

Any object that has a head region and a rectangle trunk re-

gion consistent with the coarse human model is considered a

human subject. This step helps to remove most non-human

objects.

2.3. Feature Extraction

We select ☞ points belonging to the medial axis of the

upper body as the feature for tracking. Using multiple fea-

ture points rather than a single point [5] makes the matching

of the same subject between consecutive frames more re-

liable. Compared to the height, the width of a subject is

more likely to be complete from observations. Based on

this assumption, we always treat the width of a bounding

box as true information and adjust the height accordingly so

that all the bounding boxes for comparison have the same

width to height ratio. The locations of ☞ feature points

in the medial axis of a upper body at time ✌ form a geo-

metric feature vector ✍✏✎✒✑✔✓ ✕ 1 ✎✗✖✘✕ 2 ✎✙✖✠✚✛✚✜✚✛✖✘✕✆✢✣✎✗✖✠✚✛✚✛✚✜✖☛✕✥✤✦✎★✧✪✩✫✑
✓ ✁✄✬ 1 ✖✘✭ 1

✟ ✖ ✁✮✬ 2 ✖☛✭ 2

✟ ✖✠✚✛✚✛✚✜✖ ✁✮✬ ✢✯✖☛✭✰✢ ✟ ✖✠✚✛✚✜✚✛✖ ✁✄✬ ✤✯✖✘✭✱✤ ✟ ✧✪✩ . As for the

visual features, we use an ☞ dimensional feature vector✲ ✎ ✑✴✳✶✵ 1 ✎ ✖✘✵ 2 ✎ ✖✶✚✜✚✛✚✜✖☛✵ ✤✷✎✘✸ ✩ , in which ✵ ✢✷✎ is the average in-

tensity of the neighborhood of the ✹ th feature points.

3. Tracking

To begin with, we monitor the target within the view

of one fixed camera. Then the system follows the subject

moving across the viewing boundary of one camera to an-

other. As long as the target is within the field of view of

the system cameras, it can always be tracked across various

video streams captured from the cameras. Thus the tracking

task in this setup consists of two major parts: 1) tracking a

human in the view of one fixed camera, and 2) tracking a

human across different camera views.

3.1. The Basic Tracking Scheme

Tracking a subject between adjacent frames can be

achieved by finding the closest match in the next frame

based on the consistency of certain features, such as geo-

metric and visual features. Using Bayes’ rule in the uniform

a priori distribution case, searching a subject of interest re-

duces to finding the maximum of the ✺ ✁★✻✷✼✾✽Θ ✟ , where
✻ ✎

denotes a feature vector of a subject at time ✌ , and Θ denotes

the feature parameters corresponding to the tracked subject

at time ✌❀✿ 1. The whole feature space can be partitioned

into two sub-spaces, namely, geometric and visual spaces,

i.e.,

✺ ✁❁✻ ✎ ✽Θ ✟ ✑❂✺❄❃ ✁ ✍ ✎ ✽Θ ❃ ✟ ✺❆❅ ✁ ✲ ✎ ✽Θ ❅ ✟ (1)

where ✺ ❃ ✁ ✍❇✎ ✽Θ ❃ ✟ and ✺ ❅ ✁ ✲ ✎ ✽Θ ❅ ✟ are pdfs correspond-

ing to the geometric and visual features respectively; and



✻ ✎ ✑ ✓ ✍ ✎ ✲ ✎ ✧ . In this work, we use position and veloc-

ity as the geometric features and average intensity of the

neighborhood of a feature point as the visual feature. Mul-

tivariate Gaussian models are applied for the various feature

distributions. Thus, maximizing ✺ ✁❁✻ ✎ ✽Θ ✟ is equivalent to

minimizing its corresponding Mahalanobis distance, which

is the sum of the Mahalanobis distances in sub-spaces, i.e.,� ✎ ✑ ✁✄✂✆☎
✂ � ✂ ✝ ❃ ✎✟✞ ✁✡✠☛☎

✠ � ✠ ✝ ❅ ✎
where ☞ and ✌ are indexes for the ☞ th geometric and ✌ th
visual feature;

☎ ✂
and
☎ ✠

are the weights proportional to

the robustness of the corresponding feature (we set them to

be 1 in this work);
� ✂ ✝ ❃ ✎ and

� ✠ ✝ ❅ ✎ are the Mahalanobis

distances of the ☞ th geometric and ✌ th visual features re-

spectively. If multiple candidates exist for matching, we

select the minimum value of
� ✎ s as the best match. In cases

only one candidate exists due to occlusion or disappearance

of subjects, we compare the Mahalanobis distance to a cer-

tain threshold, and if the value is less than the threshold, it

is considered to be a valid match. In the case of multiple

candidates, the closest match found should also satisfy this

threshold condition. In following subsections, we discuss

the formulation of ✺ ❃ ✁ ✍ ✎ ✽Θ ❃ ✟ and ✺❆❅ ✁ ✲ ✎ ✽Θ ❅ ✟ both in the

cases of a single fixed camera and multiple fixed cameras.

3.2 Tracking in a Single Fixed Camera

To find the match for the subject of interest between

consecutive frames. two cases are considered: 1) where

there is no velocity information about the subject of interest,

and 2) when velocity information is available.

Case 1) At the start of tracking when the velocity of the

subject is unknown, the pdf of the geometric (position only)

feature is approximated as

✺❆❃ ✁ ✍ ✎ ✽Θ ❃ ✟ ✑
✤✍
✢✏✎ 1 ✺❆❃

✁ ✕ ✢✷✎ ✽Θ ❃ ✟ (2)

✑
✤✍
✢✑✎ 1 1

2
✂✓✒

2❃ ✝ ✢ exp ✓ ✿
✁✮✬ ✢✷✎ ✿ ¯

✬ ✢✣✎ ✟ 2 ✞ ✁ ✭ ✢✣✎ ✿ ¯✭ ✢✣✎ ✟ 2
2
✒

2❃ ✝ ✢ ✧

where
✁
¯
✬ ✢✣✎ ✖ ¯✭ ✢✣✎ ✟ is the ✹ th feature point in the subject

of interest in the previous frame at time ✌ , and
✒ ❃ ✝ ✢ is the

maximum value of ✔ ✁✄✬ ✢✣✎✥✿ ¯
✬ ✢✷✎ ✟ 2 ✞ ✁ ✭✰✢✣✎❄✿ ¯✭✰✢✣✎ ✟ 2 for all

candidate subjects in the current frame. Similarly, the pdf

of visual parameter space is modeled as

✺ ❅ ✁ ✲ ✎ ✽Θ ❅ ✟ ✑
✤✍
✢✑✎ 1 1✕

2
✂✓✒ ❅ ✝ ✢ exp ✓✜✿

✁ ✵ ✢✣✎ ✿ ¯✵ ✢✣✎ ✟ 2
2
✒

2❅ ✝ ✢ ✧ (3)

where ¯✵✱✢✣✎ is the ✹ th visual feature point in the subject of

interest in the previous frame, ✌ is time index, and
✒ ❅ ✝ ✢ is the

maximum value of
✽ ✵ ✢ ✿ ¯✵ ✢ ✽ for all candidates in the current

frame (set to 1 if only one candidate exists). According

to Equations (2) and (3), the corresponding Mahalanobis

distances are

� ✂ ✝ ❃ ✎ ✑
✤✁
✢✑✎ 1

✁✮✬
✂
✝ ✢✣✎ ✿ ¯

✬
✂
✝ ✢✣✎ ✟ 2 ✞ ✁ ✭

✂
✝ ✢✣✎ ✿ ¯✭

✂
✝ ✢✣✎ ✟ 2✒

2❃
✂
✝ ✢

� ✠ ✝ ❅ ✎ ✑
✤✁
✢✑✎ 1

✁ ✵
✠
✝ ✢✷✎❆✿ ¯✵
✠
✝ ✢✣✎ ✟ 2✒

2❅
✠
✝ ✢ ✚

Case 2) When the position and the velocity of the subject

in previous frames are known, we use the same model but

calculate the mean
✁
¯
✬ ✢✣✎✙✖ ¯✭✰✢✣✎ ✟ for the multi-variate Gaussian

model from the following equations

¯
✬ ✢✗✖ ✎✙✘ 1 ✚ ✿✜✛ ✎✙✘ 1 ¯

✬ ✢✗✖ ✎✙✘ 2 ✚ ✑ ¯
✬ ✢✷✎ ✡ ✛ ✎ ✿ ¯

✬ ✢✢✖✜✎✙✘ 1 ✚
¯✭ ✢✢✖✜✎✙✘ 1 ✚ ✿✜✛ ✎✙✘ 1 ¯✭ ✢✢✖✜✎✙✘ 2 ✚ ✑ ¯✭ ✢✣✎ ✡ ✛ ✎ ✿ ¯✭ ✢✢✖✜✎✙✘ 1 ✚

under the assumption that the width change is consistent with

the depth change of the tracked subject among three con-

secutive frames. In the above equation,
✁
¯
✬ ✢✗✖ ✎✙✘ 2 ✚ ✖ ¯✭ ✢✗✖ ✎✙✘ 2 ✚ ✟

and
✁
¯
✬ ✢✗✖ ✎✙✘ 1 ✚ ✖ ¯✭ ✢✗✖ ✎✙✘ 1 ✚ ✟ are the locations of the same point

in the previous two frames, ✛ ✎ denotes the width ratio of the

tracked human upper body between time ✌ and ✌❆✿ 1.

3.3. Matching in Multiple Fixed Cameras

To match a subject of interest in views of multiple fixed

cameras, we assume that the intrinsic parameters of the cam-

eras and relative positions between them are known a priori.

The Gaussian model employed in tracking using visual cues

is also similar to what we discussed in the previous subsec-

tion. The only difference is that we consider images from

various cameras having different average lighting. Instead

of using the intensity from an image directly, we normal-

ize it by the ratio between the average intensities of various

cameras. In this section, we focus on tracking based on

geometric parameters, such as position and velocity of the

feature point, in the views of different cameras.✣
Tracking Based on Positions. The multi-variat Gaussian

model for matching subject images between the frames taken

by the previous camera and the current camera is modified

from Equation 3 to

✺ ❃ 1

✁ ✍❇✎ ✽Θ ❃ 1

✟ ✑
✤✍
✢✏✎ 1 1

2
✂✓✒

2❃ 1 ✝ ✢ exp ✓✜✿✥✤ 2✢✣✎
2
✒

2❃ 1 ✝ ✢ ✧★✖
where ✤ ✢✣✎ is the distance between the ✹ th feature point✁✮✬ ✢✣✎ ✖☛✭✰✢✣✎ ✟ in the view of the current camera and the line☎ ✢✷✎✙✦✧✞ ✝ ✢✷✎❁✵★✞✪✩ ✢✣✎ ✑ 0 in the current camera which is

mapped from the point
✁
¯
✬ ✢✣✎★✖ ¯✭✰✢✣✎ ✟ in the view of the previous

camera, ✌ is the time index, and
✒ ❃ 1 ✝ ✢ is obtained in the same



way as with a single camera, i.e., the maximum value of ✤ ✢✷✎
for all candidates in the view of the current camera.✣

Tracking Based on Velocities. Because all the extrinsic

parameters are 3D in nature, the velocities used in tracking

human subjects with multiple cameras have to be related

to depth information. So the key problem is how to esti-

mate the projection of a 3D point in the view of camera�
at time ✌ (denoted as

✁
¯
✬✂✁ ✎✗✖ ¯✭ ✁ ✎ ✟ ), given

✁
¯
✬ ✁ ✖ ✎✙✘ 1 ✚ ✖ ¯✭ ✁ ✖ ✎✙✘ 1 ✚ ✟ ,✁

¯
✬☎✄ ✖ ✎✙✘ 1 ✚ ✖ ¯✭ ✄ ✖✜✎✙✘ 1 ✚ ✟ ), and

✁
¯
✬ ✄ ✎✗✖ ¯✭ ✄ ✎ ✟ ). Using the pinhole pro-

jection model, we have

✆
1 ✓ ¯✬ ✁ ✖ ✎✙✘ 1 ✚ ¯✭ ✁ ✖ ✎✙✘ 1 ✚ ✝ ✧ ✩ ✑ ✆

2 ✞ ✁ ✄ ✓ ¯✬☎✄ ✖ ✎✙✘ 1 ✚ ¯✭ ✄ ✖ ✎✙✘ 1 ✚ ✝ ✧ ✩ ✞✠✟ ✁ ✄
(4)

and

✡
1
✆

1 ✓ ¯✬ ✁ ✎ ¯✭ ✁ ✎ ✝ ✧ ✩ ✑ ✡
2
✆

2 ✞ ✁ ✄ ✓ ¯✬ ✄ ✎ ¯✭ ✄ ✎ ✝ ✧ ✩ ✞✠✟ ✁ ✄ (5)

where ✆ 1 and ✆ 2 are scaling factors,
✡

1 and
✡

2 are the depth

ratio of the same point between time ✌ ✿ 1 and time ✌ , in the�
th and ☛ th cameras. These can be calculated using the width

of the corresponding subject based on the justification that

points belonging to the same subject have the same depths.

From Equation 4 and 5, we arrive at

✆ ✑
✁ ✡

1 ✿ 1
✟ ✝

✛ 31 ☞ ✞ ✛ 32 ✌ ✞ ✛ 33

✁ ✡
2 ✿ 1

✟ ✝
¯
✬✍✁ ✎ ✑

✆
✡

1

✁ ✛ 11 ☞ ✞ ✛ 12 ✌ ✞ ✛ 13

✁ ✡
2 ✿ 1

✟ ✝ ✟ ✞ ¯
✬ ✁ ✖ ✎✙✘ 1 ✚✡

1

¯✭ ✁ ✎ ✑
✆
✡

1

✁ ✛ 21 ☞ ✞ ✛ 22 ✌ ✞ ✛ 23

✁ ✡
2 ✿ 1

✟ ✝ ✟ ✞ ¯✭ ✁ ✖ ✎✙✘ 1 ✚✡
1

where
✆ ✑ ✆

2

✡ ✆
1, ☞ ✑ ✡

1 ¯
✬ ✄ ✎ ✿ ¯

✬☎✄ ✖ ✎✙✘ 1 ✚ , ✌ ✑ ✡
1 ¯✭ ✄ ✎ ✿

¯✭ ✄ ✖ ✎✙✘ 1 ✚ , and ✛
✂ ✠

is the element of ✞ ✁ ✄ in ☞ th row and ✌ th
column. Finally, we substitute these

✁
¯
✬ ✁ ✎ ✖ ¯✭ ✁ ✎ ✟ s into a similar

2D Gaussian model as

✺ ❃ 2

✁ ✍❇✎ ✽Θ ❃ 2

✟ ✑
✤✍
✢✑✎ 1

✺ ❃ 2

✁ ✕✆✢✷✎ ✽Θ ❃ 2

✟

✑
✤✍
✢✏✎ 1

1

2
✂✓✒

2❃ 2 ✝ ✢ exp ✓✜✿
✁✮✬ ✢✣✎✥✿ ¯

✬ ✢✣✎ ✟ 2 ✞ ✁ ✭✰✢✣✎❄✿ ¯✭✰✢✣✎ ✟ 2
2
✒

2❃ 2 ✝ ✢ ✧★✚

4. Results and Extensions

In the system setup, we place cameras on both sides and at

least one camera at the end of the scene, which most likely is

a corridor. The distance between two cameras on the same

side is at most twice the corridor width, restricted by the

view angle of the wide angle lens (about 75 degrees) used in

the experiments. In our prototype experiments, we use three

cameras, with two of them mounted on each side and one

at the end of the room, covering an area with a length-to-

width ratio about 2, simulating a portion of a corridor. All

these cameras are connected to a frame grabber which grabs,

(a) (b) (c)

Figure 1. (a) The thresholded image after dif-

ferencing, (b) the bounding boxes contain

segmented non-background objects, (c) de-

tected human head and trunk after the detec-

tion stage.

digitizes, and then sends grayscale images to a workstation

for further processing. The images used in the experiments

have a size of 512
�

480 pixels. The time interval between

consecutive frames taken by a camera is 0.3 seconds, while

the interval between consecutive frames taken by different

cameras is 0.1 to 0.2 seconds. It takes about 0.3 seconds

for a RISC workstation runing AIX (60MHZ) to process the

tracking algorithm between consecutive frames.

Figures 1(a) shows an example of the thresholded binary

image, Figure 1(b) is the result after segmentation, the de-

tected human subjects are shown in Figure 1(c). Figure 1

presents a difficult case where one human subject is occluded

by another, and the hands of the male subject sway away

from the body. But we still see that the non-background

objects due to the change of lighting is excluded after the

detection stage. Figure 2 shows an example of tracking

a light subject across two cameras. The switching between

cameras are done manually. The subject is first tracked in a

single fixed camera (camera 1). When the subject is about

to walk out of the view of this camera, another camera (cam-

era 2) takes over the tracking task. The white lines in the

upper right images from camera 2 are the 2D lines projected

from the same feature points in camera 1. The normalized

Mahalanobis Distances for both the correct match and other

matches during camera switching are listed in Table 1. From

the results listed in the table, we can see that each cue is suc-

cessful in tracking the subject. However, single cue tracking

is not as robust as the integration method when the subject

is difficult to distinguish by either clothing intensity or the

image position. For example, Table 2 shows a case where

the integration method succeeds, while the matching by the

single visual cue fails.

This paper has proposed a framework for tracking hu-

man motion in an indoor environment from sequences of

monocular grayscale images using multiple cameras. Ex-

perimental results using real data prove the robustness of the



Figure 2. An example of tracking a human

subject using multiple fixed cameras.

Correct Match Other Match

Position 0.074134 1.0

Velocity 0.254631 1.0

Visual 0.531236 1.0

Sum 0.860001 3.0

Table 1. Normalized Mahalanobis Distances

for all possible matches during camera

switching.

Correct Match Other Match

Position 0.373154 1.0

Visual 1.0 0.812189

Sum 1.373154 1.81218

Table 2. Normalized Mahalanobis distances

for all possible matches in the case where

the single cue matching fails.

algorithm. Future work can be extended in the following di-

rections: 1) implementation of automatic camera switching

among neighboring cameras, 2) performing a more accurate

segmentation by using elaborate human models, 3) incor-

poration of more cues for tracking, and 4) testing on more

video streams with longer sequences.
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