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Abstract

The human body is structurally symmetric. Tracking by

detection approaches for human pose suffer from double

counting, where the same image evidence is used to explain

two separate but symmetric parts, such as the left and right

feet. Double counting, if left unaddressed can critically af-

fect subsequent processes, such as action recognition, af-

fordance estimation, and pose reconstruction. In this work,

we present an occlusion aware algorithm for tracking hu-

man pose in an image sequence, that addresses the problem

of double counting. Our key insight is that tracking human

pose can be cast as a multi-target tracking problem where

the ”targets” are related by an underlying articulated struc-

ture. The human body is modeled as a combination of sin-

gleton parts (such as the head and neck) and symmetric

pairs of parts (such as the shoulders, knees, and feet). Sym-

metric body parts are jointly tracked with mutual exclusion

constraints to prevent double counting by reasoning about

occlusion. We evaluate our algorithm on an outdoor dataset

with natural background clutter, a standard indoor dataset

(HumanEva-I), and compare against a state of the art pose

estimation algorithm.

1. Introduction

As far back as Gibson [11, 12], researchers have noted

the importance of having a representation for occlusion to

reason about motion. Representing occlusion is particularly

important in estimating human motion because, as the hu-

man body is an articulated structure, different parts occlude

each other frequently. The human body is structurally sym-

metric and parts tend to be occluded by their symmetric

counterparts, such as left knees by right knees (Figure 1).

This occurs because the viewer’s optical axis is often per-

pendicular to the body’s bilateral plane of symmetry.

During occlusions, the appearance symmetry of the hu-

man body can cause double counting: the same image ev-

idence is used to explain the location of both symmetric

parts. If left unaddressed, double counting can critically af-

fect subsequent processes, such as action recognition [37],

affordance estimation [9], and pose reconstruction [24]. In

action recognition and affordance estimation, these errors
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Figure 1: Symmetric Parts. Symmetric parts tend to cause double count-

ing errors (a) in tree-structured models because they have similar appear-
ance models as shown for a set of parts in (c). Our method reasons about
occlusions and tracks symmetric parts jointly, and thereby reduces double
counting errors shown in (b).

can substantially change the semantic interpretation of an

action or scene. Double counting occurs when symmetric

part pairs have high detection scores at the same locations

in the image (Figure 2). This happens in two cases: (1)

when image cues for one part of a symmetric pair dominate

the other, and (2) in occlusion scenarios, in which the image

only contains evidence for one part, such as profile views of

a person. Thus, dealing with double counting requires a rep-

resentation for occlusion, as well as relationships between

symmetric parts that enforce mutual exclusion.

Spatial representations for reasoning about occlusion re-

quire evaluating a large set of possible spatial configurations

[31], which scales combinatorially as we move from images

to videos. Spatial representations also rely on weak cues;

for example, the location and appearance of a shoulder pro-

vides only a weak cue as to whether the elbow is occluded.

Temporal representations can make use of strong temporal

continuity priors to reason about occlusions. It has been

noted that even in the human visual system [28], temporal

motion continuity serves occlusion reasoning. A part that

is visible and has a smooth trajectory before and after a pe-

riod of non-visibility must be occluded for that period. If
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(a) Frame 10 (b) Frame 15 (c) Frame 20
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Figure 2: Double Counting. The max marginals for symmetric parts (left
and right knees) score highly on the same locations in the image because
of the similar appearance of symmetric parts. We show three frames of a
ballet sequence with the max-marginals of the left and right knees overlaid
on the top and bottom rows respectively.

a system cannot reason about occlusion temporally, motion

consistency will force it to struggle to find image evidence

to support a smooth path when occlusion occurs. This can

corrupt tracking even outside the duration of occlusion.

In this work, we argue that temporal reasoning about oc-

clusion is essential to tracking human pose and handling

double counting. We divide the body into a set of singleton

parts and pairs of symmetric parts. Our key insight is that

tracking human pose can be cast as a multi-target tracking

problem where the ”targets” are related by an underlying ar-

ticulated structure. Our contributions are: (1) an occlusion-

aware model for tracking human pose that enforces both

spatial and temporal consistency; (2) a method for jointly

tracking symmetric parts that is inspired by optimal formu-

lations for multi-target tracking. We evaluate our method on

an outdoor pose dataset and report results on two standard

datasets. We outperform a state-of-the-art baseline [23] and

demonstrate a marked reduction in double counting errors.

2. Relevant Work

There exists a large body of work that tackles the prob-

lem of human pose estimation. Early methods [29, 22]

used model-based representations to track human pose in

video sequences, however these methods usually required

good initializations and strong dynamic priors such as [18].

These methods usually require knowledge of the action be-

ing performed a priori, although some methods [2] exist

which attempt to estimate the dynamical model online.

There is also a large body of work that looks at the

problem of directly estimating 3D human pose from video

sequences. These methods, while attractive for reasoning

about occlusion in 3D, tend to require strong priors due to

the larger set of possible configurations in 3D and do not

generalize to arbitrary actions easily. We refer the inter-

ested reader to [32, 10, 20] for a survey of methods in this

area.

There has been a recent thrust in methods that aim to

detect people in a single image. Pictorial structure mod-

els [4, 3, 36, 25, 16], model the human body as a tree-

structured graphical model with kinematic priors that cou-

ple connected limbs. These methods have typically been

successful on images where all the limbs of the person are

visible. However, they struggle on images where the subject

is undergoing self-occlusion and suffer from double count-

ing of image evidence.

Fully connected models have been employed by [35, 31,

19, 17] to estimate pose in a single image. These mod-

els augment the tree-structure to capture occlusion relation-

ships between parts not connected in the tree. These models

often require loopy belief-propagation for inference. Re-

cently [33] used branch and bound to perform exact infer-

ence on a loopy graph, however these models do not have a

representation for occlusion. For the single image case, the

work by Jiang [15, 13] enforces exclusion constraints by de-

coding trellis graphs for each part with constraints between

the graphs to enforce mutual exclusion. Our method can be

viewed as the temporal dual of this approach and makes use

of strong temporal continuity cues to exclude inconsistent

configurations.

In the video domain, [26] found a frame with an easily

detectable canonical pose to build up an appearance model

of the person that can be used to aid tracking in the rest of

the frames. While this method has been effective, finding a

detectable canonical pose is usually difficult in short videos

and in videos of non-standard actions. Sapp et al. [30] de-

composed a full model for video into a set of tree-structured

subgraphs, on which inference is performed separately and

agreement is enforced between the solutions. Park et al.

[23] generated multiple diverse high-scoring pose propos-

als from a tree-structured model and used a chain CRF to

track the pose through the sequence. Recent approaches

have also looked to track extremities of multiple interacting

people using a branch and bound framework on AND-OR

graphs [21] and quadratic binary programming [34].

We cast the problem of tracking human pose as a multi-

target tracking problem where the ”targets” are related by an

articulated skeleton. Our formulation for the simultaneous

tracking of symmetric parts draws inspiration from recent

advances in the area of multiple target tracking. Several

linear programming formulations [14, 7, 5] have been pro-

posed that allow a variable number of objects to be tracked

in a globally optimal fashion. We choose to adopt an LP for-

mulation as it allows for us to easily incorporate constraints

that are specific to our problem.

3. Tracking Human Pose

The (u, v) location of a part p in a frame at time instant

f is denoted by xf
p . We denote by xp = [x1

p . . . xF
p ], the

locations of part p in frames 1 to F and by x the set of
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Figure 3: Graphical representation of the algorithm. We use a tree-structured deformable parts model in each frame to generate proposals for each part.
In the first iteration, we track the head node using an LP tracking formulation. Proposals for the next symmetric pair in the tree are generated by conditioning
each tree on the tracked locations computed in the previous iteration. Symmetric parts are tracked simultaneously with mutual exclusion constraints. The
method proceeds by sequentially conditioning the tracking of parts on their parents until all the parts are tracked.

Algorithm 1 Tracking Human Pose by Tracking Symmetric

Parts

Compute max-marginals and generate detections for root

part (head).

Track root part.

while In breadth first fashion, select next part(s) do

Compute max-marginals for current part(s) condi-

tioned on the tracked locations of parent parts.

if is symmetric(part) then

Track symmetric parts using LP multi-target track-

ing.

else

Track part using LP tracking.

end if

end while

tracks for all parts (1, . . . , P ). A symmetric part pair is a

pair of parts (p, q) that share the same appearance. The goal

of human pose tracking is to estimate the location of each

part of the person in every frame of the image sequence.

We write this as maximizing the following scoring function

over the full model:

x
∗ = argmax

x

E(x1,x2, . . .xP ). (1)

Optimizing the above scoring function over the full model

requires a search over an exponential number of configura-

tions and is NP-hard in general.

To bypass the intractability of the objective, we proceed

by approximating the function and making stage-wise lo-

cally optimal decisions (see Figure 3). We begin with a root

node for which the false positive rate is the lowest [36]. For

human pose, this root node is the head for which we are able

to get reliable detections. Given a set of proposals for the

location of the head in each frame (Section 3.4), we solve

for the optimal track x
∗
1,

x
∗
1 = argmax

x1

E(x1,x2, . . .xP ). (2)

3.1. Tracking a Singleton Part

Given a set of proposals denoted by X f
p for part p

in the image at each frame f , we first augment the pro-

posal sets with an occlusion state ofp for each frame. We

form tracklets ptijk for each part by combining triplets

(ixf−1
p , jxf

p ,
kxf+1

p ) where ixf
p ∈ X f

p is a proposal at lo-

cation i in the image or an occlusion state ofp .

We denote by p
X

f
ijk the indicator variable that is asso-

ciated with tracklet ptijk that takes values ∈ {0, 1} corre-

sponding to the tracklet being selected or not. We associate

with each tracklet, a score u
f
ijk based on appearance, de-

tection, and foreground likelihood cues, which is described

in Section 3.5. Our goal then is to maximize the following

objective subject to constraints:

max
{pX}

∑
∀i,j,k,f

pu
f
ijk

p
X

f
ijk

s.t. {Xf
ijk} ∈ {0, 1}

∀f, ∀(j, k) ∑
i

p
X

f
ijk =

∑
l

p
X

f+1
jkl (Continuity)

∀f,
∑
i,j,k

p
X

f
ijk = 1 (Uniqueness)

(3)

The above optimization problem corresonds to finding

the single best path in a lattice graph and can be solved ef-

ficiently using dynamic programming.

Continuity Constraints enforce conservation of flow by

stating that the flow entering the nodes j and k should be

equal to the flow emanating from those nodes. These con-

straints essentially encode the connectivity of a track, pre-

venting fragmented tracks.

Uniqueness Constraints limit the flow at each time in-

stant to be 1. This implies that one object is being tracked

in the network graph.

3.2. Conditioned Tracking

Once the optimal track x
∗
1 has been obtained (Section

3.1), we generate proposals and track the next set of nodes

372837283730
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Occlusion Node
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Constraints
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Figure 4: Max-flow formulation for symmetric part tracking. The blue and
red dots denote detections for each of the parts separately in each frame.
The gray nodes denote occlusion nodes for each frame. The dotted lines
depict mutual exclusion constraints between certain sets of nodes. The
symmetric tracking problem is to find the best scoring path in each of these
graphs subject to the mutual-exclusion constraints.

conditioned on the optimal parent track x
∗
1.

(x∗
2) = argmax

x2

E(x1 = x
∗
1,x2,x3,x4 . . .xP ). (4)

We use the same formulation as in Section 3.1 to obtain the

optimal track x
∗
2.

Next, for a symmetric pair of parts whose tracks are

given by (x3,x4) we simultaneously estimate the optimal

tracks (See Section 3.3):

(x∗
3,x

∗
4) = argmax

x3,x4

E(x1 = x
∗
1,x2 = x

∗
2,x3, . . .xP ).

(5)

Tracking is conditioned on the optimal parent track by fix-

ing the location of the parent in each of the frames to the

tracked locations and re-running dynamic programming in-

ference in each of the trees in each frame (Section 3.4).

We proceed in this manner, by conditioning the tracking

of the child nodes on the optimal tracks of their parents and

by tracking symmetric parts using a joint formulation, until

all the parts have been tracked.

3.3. Tracking a Pair of Symmetric Parts

Our approach treats the problem of tracking symmetric

pairs of parts as a multi-target tracking problem. In multi-

target tracking, the goal is to track multiple objects that

share the same appearance and hence the same generic de-

tector (typically pedestrians). The objects move in the scene

in an unconstrained fashion with mutual occlusions. Recent

methods have modeled multi-target tracking as a network

flow problem [5, 14, 7] where finding tracks is equivalent

to pushing K-units of flow through a graph where K is the

number of objects to be tracked.

Our formulation is as follows: we denote by p
X and q

X

the set of all indicator variables for tracklets p and q respec-

tively. Our full objective is now the following optimization

problem:

max
{pX,qX}

∑
i,j,k,f

pu
f
ijk

p
X

f
ijk +

∑
i,j,k,f

qu
f
ijk

q
X

f
ijk

s.t. {Xf
ijk} ∈ {0, 1}

∀f, ∑
i

p
X

f
ijk =

∑
l

p
X

f+1
jkl (Continuity)

∀f, ∑
i

q
X

f
ijk =

∑
l

q
X

f+1
jkl

∑
i,k

p
X

f
ijk +

∑
i,k

q
X

f
ijk ≤ 1 (Mutual Exclusion)

∀f,
∑
i,j,k

p
X

f
ijk = 1 (Uniqueness)

∀f, ∑
i,j,k

q
X

f
ijk = 1

(6)

Mutual Exclusion Constraints. We enforce mutual exclu-

sion constraints that prevent the symmetric parts from oc-

cupying the same location in the image. In a typical self-

occlusion scenario the score of a particular location in the

image will be high for both the symmetric parts. In such a

case the mutual-exclusion constraints enforce that only one

part can occupy the location, while the symmetric counter-

part is either pushed to an occlusion node or to another loca-

tion in the image that is consistent with the constraints and

has a high score. We enforce these constraints by limiting

the total flow at nodes in both networks that share the same

location in the image.

This formulation corresponds to maximizing the flow

through two separate networks that interact via the mutual

exclusion constraints. The above optimization problem is

an integer linear program and solving it is NP-complete.

However, we can relax the problem by replacing the integral

constraints by allowing 0 ≤ p
X

f
ijk ≤ 1 and 0 ≤ q

X
f
ijk ≤

1. The relaxation can be shown to be tight for most practical

cases [5].

We solve this linear program using a commercially avail-

able solver [1]. In the case of non-integral solutions, we use

a branch and cut method to find the integral optimum as

suggested in [5].

Occlusion Interpolation Once a solution is obtained,

the location of the occluded part is estimated by interpolat-

ing between the image location of the node preceding and

following occlusion using cubic B-spline interpolation.

3.4. Generating Part Proposals via Max-Marginals

Human pose in a frame at each time instant is modeled

with a tree-strutured deformable part model as in recent

work by [36]. A deformable part model is a tree-structured

CRF that maximizes the following score, given an image:

S(xf ) =
∑

i=1

wF
i φ(It, x

f
i ) +

∑

i,j

wijψ(x
f
i , x

f
j ) (7)

where xt = [xf
1 . . . x

f
P ] is the pose in frame f , φ(If , x

f
i ) are

a set of image features computed at location x
f
i , ψ(xf

i , x
f
j )

372937293731



(a) (b) (c) (d)

Figure 5: Scoring Tracklets. (a) Proposals for the head are generated
from the max-marginal score map shown in (d). (b) Proposal sets are
augmented by tracking each proposal forwards and backwards to ensure
smooth tracks. (c) Foreground likelihood used to score tracklets (d) The
detection likelihood for the head part.

is a quadratic function that measures the displacement be-

tween parts i and j. The weights wi and wij are the param-

eters of the CRF that are learned as described in [36].

To generate proposals for part locations in each frame,

we compute the max-marginal of the above scoring function

at each part. The max-marginal for part i in frame f is given

by:

µ∗(xt
i = s) = max

xt:xt
i
=s

S(xt), (8)

which is the maximum of the scoring function with the part i
clamped to location s. The max-marginal provides a peaky

approximation of the true marginal distribution. We com-

pute max-marginals for each tree in each frame separately.

The max-marginals for a tree-structured graphical model

can be computed efficiently for all the parts by performing

two passes of max-sum message passing inference. We per-

form non-maxima suppression on the max-marginal score

map for each part to generate a set of location proposals in

each frame.

We expand the proposal set by tracking each proposal

forwards and backwards using a Lucas-Kanade template

tracker [6] to obtain extended proposal sets X t
i . This en-

sures smoother tracks and makes the proposal generation

robust to frame-to-frame inconsistencies of the detector.

Once a parent part has been tracked, the max-marginals

for the child nodes are recomputed by conditioning on the

tracked locations of the parent nodes. The conditioned max-

marginals for part i in frame f with a set of parent nodes

pa(i) with tracked locations x∗
pa(i) can be written as:

µ∗(xf
i = s) = max

xf :xf
i
=s,

∀j∈pa(i), xf
j
=x

f∗
j

S(xf ). (9)

This can be efficiently computed for a tree, as before, by

performing dynamic programming max-sum inference.

3.5. Scoring Part Tracklets

Each tracklet is assigned a likelihood score that consists

of terms that measure the detection likelihood, the fore-

ground likelihood and motion prior:

u
f
ijk = αssfore(X

f
ijk) + αfsdet(X

f
ijk)

+ αmsmot(X
f
ijk).

(10)

The weighting co-efficients of the different terms were set

by performing a grid search on validation data.

Detection Likelihood. The likelihood of detection for a

particular part is obtained by using the max-marginal score

of the tree-structured CRF model. We normalize the max-

marginal score and obtain a likelihood of detection of part

p at location i as:

ldet(
ixf

p) ∝
exp(−µ∗(xf

p = i))
∑L

s=1 exp(−µ∗(xf
p = s))

. (11)

For a tracklet with occlusion nodes we assign a constant

score for the occlusion nod ldet(
iofp) ∝ podet. This constant

needs to be calibrated in relation to the scores of the detector

and is found by performing a grid search on validation data.

The detection score for the tracklet X
f
ijk is obtained as:

sdet(X
f
ijk) = ldet(

ixf−1
p ) · ldet(

jxf
p) · ldet(

kxf+1
p ). (12)

Motion Likelihood. We use a constant velocity motion

model. In order to check for constant velocity, we require

two motion vectors, and therefore we use three consecutive

sites in our formulation (similar to [5]). We denote the two

motion vectors as vij = x
f−1
i − x

f
j and vjk = x

f
j − x

f+1
k .

Our motion score is now given by:

smot(X
f
ijk) = e

−
(

‖vij−vjk‖

σm

)2

. (13)

The constant velocity model allows us to enforce

smoother trajectories and penalize large deviations.

Foreground Likelihood. The foreground likelihood is es-

timated by computing a background model by median fil-

tering the image sequence. The foreground likelihood is

estimated as:

smot(X
f
ijk) = (1− pb(x

f−1
i )) · (1− pb(x

f
j ))

·(1− pb(x
f+1
k ))

where pb(x
f
j ) denotes the probability of the location x

f
j of

belonging to the background, as given by:

pb(x) =
1√
2πσb

e
−
(

‖I(x)−Ib(x)‖

σb

)2

(14)

where Ib is the computed background model. As before, we

assign a constant score to occlusion nodes.

4. Evaluation

We perform qualitative and quantitative experiments on

two challenging datasets to determine the performance of
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Metric Method Head Torso U.L. L.L. U.A. L.A.

PCP Ours 0.99 0.86 0.95 0.96 0.86 0.52
[23] 0.99 0.83 0.92 0.86 0.79 0.52

KLE Ours 0.39 0.58 0.48 0.48 0.88 1.42
[23] 0.44 0.58 0.55 0.69 1.03 1.65

Table 1: PCP scores and keypoint localization error for the six sequences
of the outdoor pose dataset. We obtain a significant improvement over the
baseline due to better temporal consistency and occlusion handling.

the proposed algorithm. In order to test the tracking

method we model human pose with the state-of-the-art tree-

structured CRF model of [36]. For all experiments, we train

the model on the PARSE dataset introduced in [27]. We

model the human body with 26 parts as in [36]: 2 singleton

parts for the head and neck and a total of 12 symmetric pairs

of parts for the shoulders, torso, legs, and upper arms.

Comparisons. As our baseline, we compare the method

of [23] that also uses a detector for pose in each frame [36]

that is trained on the same training data. The n-Best pose

configurations are generated for each frame and tracking is

performed by modeling pose tracking with a chain-CRF and

performing viterbi-decoding like inference.

4.1. Datasets.

We test our method on a variety of challenging datasets

consisting of both indoor and outdoor sequences.

Human Eva-I: We evaluate our method on a standard-

ized dataset that comprises of sequences of actors perform-

ing different actions in a indoor motion capture environ-

ment. We report results on the 250 frames each of the se-

quences S1 Walking, S1 Jog, S2 Jog for camera 1. We show

qualitative results in Figure 8.

Outdoor Pose Dataset: This dataset consists of 6 se-

quences collected by us comprising of 4 different actors

performing varied actions outdoors with a natural clut-

tered background. The actors perform complex actions and

switch between actions within the same video. The poses

they assume include many with significant self-occlusion.

We have annotated close to 1000 frames of data and will

be making this data available to the community for future

evaluation. We show qualitative results in Figure 7.

Sequences from [23]: We also test our method on the

walkstraight and baseball sequences used in [23] for eval-

uation and report PCP scores on these videos. We show

qualitative results in Figure 6.

4.2. Detection Accuracy

We use two metrics to evaluate our algorithm. We use

the PCP criterion as in [8] and keypoint localization error

(KLE). Keypoint localization error measures the average

euclidean distance from the ground truth keypoint normal-

ized scaled by the size of the head in each frame to correct

for scale changes. As our method (and most 2D pose esti-

mation methods) cannot distinguish between left and right

limbs we report the score of the higher scoring assignment.

We obtain significantly better results than our baseline [23]
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Figure 6: Qualitative Comparison. We show improvement frames on
two of the sequences used in [23].

Metric Method Head Torso U.L. L.L. U.A. L.A.

PCP Ours 1.00 0.69 0.91 0.89 0.85 0.42
[23] 1.00 0.61 0.86 0.84 0.66 0.41

KLE Ours 0.53 0.88 0.67 1.01 1.70 2.68
[23] 0.54 0.74 0.80 1.39 2.39 4.08

Table 2: PCP scores and keypoint localization error for the baseball and
walking videos. We outperform the baseline due to better temporal consis-
tency and occlusion handling.

on the outdoor pose dataset as reported in Table 1. The main

improvements are in the tracking of the lower limbs which

are especially susceptible to double counting errors. Our

method reduces the double counting artifacts and enforces

temporal smoothness for each part resulting in smoother

and more accurate tracks. We also show improvments on

the sequences used in [23], PCP and KLE accuracies are

reported in Table 2.

4.3. Double counting errors

We observe a significant decrease in the number of dou-

ble counting errors of our method over the baseline (Fig-

ure 9). In the outdoor pose dataset we reduce the number

of double counting errors by substantially by around 75 %,

while we observe a decrease of approximately 41 % on the

HumanEva-I sequences.

5. Discussion

We have presented an occlusion-aware model for track-
ing human pose in video which addresses the problem of
double-counting by explicitly modelling the tracking of
symmetric parts as a multi-target tracking problem. We
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Figure 8: Qualitative Comparison. We show improvement frames on a
sequence from the HumanEva-I dataset. We reduce double counting errors
by reasoning about occlusion and enforcing mutual exclusion constraints.

Metric Method Head Torso U.L. L.L. U.A. L.A.

PCP Ours 0.99 1.00 0.99 0.98 0.99 0.53
[23] 0.97 0.97 0.97 0.90 0.83 0.48

KLE Ours 0.27 0.48 0.13 0.22 1.14 1.07
[23] 0.23 0.52 0.24 0.35 1.10 1.18

Table 3: HumanEvaI evaluation. PCP scores and keypoint localization
error for sequences from the HumanEva-I dataset. We obtain significant
improvement over the baseline due to better temporal consistency and oc-
clusion handling. We particularly perform well on the lower and upper legs
which typically are difficult because of mutual occlusions.
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Figure 9: Reduction in double counting. We achieve a reduction in dou-
ble counting errors on both our evaluation datasets due to better occlusion
reasoning and mutual exclusion constraints.

argue that temporal continuity is a strong cue for under-
standing occlusion and therefore propose to track parts in-
dividually or in symmetric pairs resulting in a significant
reduction in false positive occlusions and double count-
ing. Future work will aim to infer a depth ordering be-
tween mutually occluding parts that enables 3D under-
standing and modelling the probability of transition into
an occlusion state using appearance cues such as occlusion
edges.
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Figure 7: Qualitative Comparison. We show frames of symmetric tracking of human pose in comparison to the baseline [23] on outdoor pose dataset.
Note that our method reduces double counting errors especially on frames when the person is entering a profile view with mutual occlusion.
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