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Abstract

Research at the Computer Vision Laboratory at the Uni-

versity of Maryland has focussed on developing algorithms

and systems that can look at humans and recognize their ac-

tivities in near real-time. Our earlier implementation (the

W4 system) while quite successful, was restricted to appli-

cations with a fixed camera. In this paper we present some

recent work that removes this restriction. Such systems are

required for machine vision from moving platforms such as

robots, intelligent vehicles, and unattended large field of re-

gard cameras with a small field of view. Our approach is

based on the use of a deformable shape model for humans

coupled with a novel variant of the Condensation algorithm

that uses quasi-random sampling for efficiency. This al-

lows the use of simple motion models which results in al-

gorithm robustness, enabling us to handle unknown cam-

era/human motion with unrestricted camera viewing angles.

We present the details of our human tracking algorithms

and some examples from pedestrian tracking and automated

surveillance.

1 Introduction

The Computer Vision Laboratory at the University of

Maryland has been investigating problems related to detec-

tion, tracking and analysis of human activities for almost

ten years. Our earliest work focused on tracking of facial

features in the context of recognizing human facial expres-

sions from motion [11, 2]. The system described in [2],

which involved robust flow estimation, image stabilization,

and tracking of several facial features, required more than

one minute of what then passed for CPU time per frame.

Clearly, the system was far from real time, which limited

both experimentation during development as well as perfor-

mance evaluation over large data sets. Just seven years later

at SIGGRAPH 2000 we demonstrated in collaboration with

IBM Almaden a real time system for detection of faces and

facial features, recognition of facial expressions and online

mimicry of those facial expression on an electromechanical

face.

Another early project was described in [5]. Here, multi-

perspective videos of humans in action were analyzed and

3D volumetric models with many degrees of freedom were

fit to these images as the body was tracked through the se-

quence. This system, which was implemented using Khoros

and ran on a rather underpowered UNIX workstation, took

many minutes per frame to analyze. But at SIGGRAPH

1998 we were able to demonstrate, in collaboration with the

M.I.T. Media Laboratory and the ATR Media and Commu-

nications Laboratory, a 3D motion capture system that uti-

lized six cameras, eight PCs and was able to recover coarse

body shape data at rates of 28 frames per second. That sys-

tem used many of the processing elements integrated into

our W4 visual surveillance system, a PC based system that

could detect and track people and their body parts at speeds

of more than thirty frames per second [7]. The W4 sys-

tem, however, was designed with a stationary camera in

mind (as shown by its heavy dependency on background

subtraction techniques) and so takes a “Stop and Look” ap-

proach when dealing with moving camera platforms. More

recently, in collaboration with Daimler-Chrysler Research,

we addressed the problem of detection of humans from

moving vehicles [4] using an efficient variant of a multi-

feature distance transform algorithm. The system described

in [4] was able to achieve near real-time performance in nat-

ural environments as a result of an efficient organization of

shape templates into a hierarchical data structure for match-

ing (resulting in a matching strategy with logarithmic com-

plexity rather than linear), a coarse-to-fine search over the

transformation parameters and a SIMD (Single Instruction

Multiple Data) implementation of the time-consuming steps

of the algorithm.

We have been able to achieve these several order of mag-

nitude increases in computational capability through a com-

bination of better algorithm and data structure design, re-

lentless increases in processing power of commodity com-



puting, and advances in both communication hardware and

software for multiprocessor systems. In this paper we dis-

cuss recent research in our laboratory that addresses the

related problem of tracking humans from moving camera

platforms. In particular, we describe how efficient ran-

dom sampling techniques can be employed in the Conden-

sation algorithm [8] to improve its asymptotic complexity

and robustness, especially for problems that involve high-

dimensional state spaces.

This paper is organized as follows: Section 2 gives a

brief introduction to the shape model used to model humans

and explains how to learn the model automatically from seg-

mented pedestrian contours. This gives a set of deforma-

tion parameters which along with the Euclidean parameters

(translation, rotation and scaling) constitute the state space.

Section 3 describes the tracking algorithm that addresses the

issues of an unknown motion model, robustness to outliers,

and use of quasi-random points for efficiency. In Section 4

we successfully apply this algorithm to real video sequences

of pedestrians as well as automated surveillance sequences.

Section 5 concludes the paper.

2 Learning a linear human model

The Point Distribution Model (PDM) [3] has proven to

be a useful method for building a compact linear shape

model from training examples of a class of shapes. The

conventional PDM requires manual labelling of a set of

points called the “landmark” points in each training image.

These points are concatenated to form a shape vector and

the shape vectors resulting from all the training images are

aligned using Procrustes analysis [6]. A mean shape and

a set of modes of variation are then generated using Prin-

cipal Component Analysis (PCA). A method for automat-

ically extracting the human silhouettes from a training set

of images and building a linear shape model is described

in [1]. First, the silhouettes are extracted using background

subtraction followed by morphological operations and then

tracing the boundary points of the resulting foreground re-

gions to form edge chains. A uniform B-spline with the

control points placed at approximately uniformly spaced in-

tervals along the contour is produced efficiently from each

of these silhouettes. The control points of the B-spline are

then used as the landmark points in the PDM.

We use techniques similar to that described in [1] and

[3] with some improvements to build a linear human model.

One improvement is in the parameterization of the B-spline

curve that is fitted to each extracted contour. Suppose that

the set of points in a single human contour is {Qk}, k =

0, . . . ,m, and we want to approximate these points with a

pth degree B-spline. Suppose that the values for the param-

eters ūk and the knot vector U = u0, ..., ur are precom-

puted and known. We then set up and solve the (unique)

linear least squares problem for the unknown control points

Pi. Assume that p ≥ 1, m > n and n ≥ p. We seek a pth

degree nonrational curve

C(u) =

n∑

i=0

Ni,p(u)Pi u ∈ [0, 1]

satisfying:

• Q0 = C(0) and Qm = C(1);

• the remainingQk are approximated in the least squares

sense, i.e.

m−1∑

k=1

|Qk − C(ūk)|
2

is a minimum with respect to the n + 1 variables,

Pi; the {ūk} are the precomputed parameter values

and Ni,p are the pth degree B-spline basis functions.

The resulting curve generally does not pass precisely

throughQk, andC(ūk) is not the closest point onC(u)

to Qk.

The choice of ūk andU affects the shape and parameteri-

zation of the curve. The most common method for choosing

ūk is the chord length parameterization, which is the one

used in [1]. Here, if d is the total chord length given by

d =

m∑

k=1

|Qk −Qk−1|

then ū0 = 0, ūm = 1 and

ūk = ūk−1 +
|Qk −Qk−1|

d
k = 1, . . . ,m− 1

This gives a good parameterization of the curve in the sense

that it approximates a uniform parameterization. However,

when the data takes very sharp turns such as in the case of

human shapes, the chord length method does not perform

well. We use the centripetal method ([9]) that gives better

results with such data, where if

d =

m∑

k=1

√
|Qk −Qk−1|

then ū0 = 0, ūm = 1 and

ūk = ūk−1 +

√
|Qk −Qk−1|

d
k = 1, . . . ,m− 1

The placement of the knots should reflect the distribution of

the {ūk} and we choose the knot vector U as follows. Let

c = m+1

n−p+1
, then the internal knots are given by

i = ⌊jc⌋ α = jc− i

up+j = (1− α)ūi−1 + αūi j = 1, . . . , n− p (1)



Figure 1. Modes of variation of pedestrian
shapes

Equation (1) guarantees that every knot span contains at

least one ūk, and under this condition the matrix in the

least squares formulation is positive definite and well-

conditioned.

We also use a weighted least squares method to align

two shapes in the Procrustes analysis, where the weights are

chosen so that more significance is given to the more stable

landmark points i.e. the points which vary their position

the least over the entire training set. As a result, empha-

sis is given to aligning the stable parts of the object rather

than the unstable parts during shape alignment. Figure 1

shows some of the significant modes of variation of the hu-

man shapes in the training set of pedestrian contours.

3 Tracking algorithm

The Condensation algorithm [8] has attracted much in-

terest in the active vision area as it offers a framework for

dynamic state estimation where the underlying probability

density functions (pdfs) need not be Gaussian. The algo-

rithm is based on a Monte Carlo or sampling approach,

where the pdf is represented by a set of random samples.

As new information becomes available, the posterior distri-

bution of the state variables is updated by recursively prop-

agating these samples (using a motion model as a predic-

tor) and resampling. An accurate dynamical model is es-

sential for robust tracking and for achieving real-time per-

formance. This is due to the fact that the process noise of

the model has to be made artificially high in order to track

objects that deviate significantly from the learned dynam-

ics, thereby increasing the extent of each predicted cluster

in state space. One would then have to increase the sam-

ple size to populate these large clusters with enough sam-

ples. A high-dimensional state space (required for track-

ing complex shapes such as pedestrians) only makes mat-

ters worse. Even when one uses a “perfect” pseudo-random

sequence for generating N sample points, the sampling er-

ror will only decrease asO(N
−1/2

) as opposed to O(N
−1

)

for another class of sequences known as quasi-random se-

quences which have low discrepancy. We introduced quasi-

random sampling in the context of the Condensation algo-

rithm in [10] and showed that even in low dimensions, a

significantly fewer amount of sample points were needed to

achieve the same sampling error when compared to pseudo-

random sampling. For reasons of brevity, the details are

not discussed here; the readers are referred to [10]. In typi-

cal implementations of the Condensation algorithm, a “per-

fect” pseudo-random number generator is almost never used

and a linear congruential generator (such as the system sup-

plied rand()function) is used instead. These generators,

although very fast, have an additional inherent weakness

that they are not free of sequential correlation on succes-

sive calls, i.e. if k random numbers at a time are used to

generate points in k-dimensional space, the points will lie

on (k − 1)-dimensional planes and will not fill up the k-

dimensional space.

Since we do not want to make any assumptions about

how the vehicle and the pedestrian are moving or about

the viewing angle, we propose using a zero-order motion

model with large process noise high enough to account for

the greatest expected change in shape and motion. In other

words, we need to concentrate our samples in large regions

around highly probable locations from the previous time

step. These high-dimensional regions which correspond to

the large process noise can now be efficiently sampled using

quasi-random sampling as described below.

Given the sample set {(s
(n)

t−1
, π

(n)

t−1
)} at the previous time

step, π
(n)

t−1
being the associated probabilities, we first choose

a base sample s
(i)

t−1
with probability π

(i)

t−1
. This yields

a small number of highly probable locations, say M , the

neighborhoods of which we must sample more densely. If

there were just one region requiring a dense concentration,

an invertible mapping from a uniform space to the space

of equal importance could be constructed, as given below

in Equation (3) for the case of a multi-dimensional Gaus-

sian. Since we have M regions, the importance function

cannot be constructed in closed form. One therefore needs

an alternative strategy for generating from the quasi-random

distribution, a set of points that samples important regions

densely.



We have devised a simple yet effective strategy that

achieves these objectives. Let the M locations have centers

µ(j) and variances σ(j) based on the process noise, where

these quantities are k-dimensional vectors. We then overlay

M + 1 distributions of quasi-random points over the space,

with the first M distributions made Gaussian, centered at

µ(j) and with diagonal variance σ(j) (3). Finally, we also

overlay a (M + 1)th distribution that is spread uniformly

over the entire state space. This provides robustness against

sudden changes in shape and motion. The total number of

points used is N , where

N = N1 +N2 + . . .+NM+1, (2)

the sample size in the Condensation algorithm. We have in

effect chosen s
(n)
t by sampling from p(Xt/Xt−1 = s

(i)
t−1).

The conversion from a uniform quasi-random distribu-

tion to a Gaussian quasi-random distribution is achieved us-

ing the mapping along the lth dimension

yjl = µ
(j)
l +

√
2σ

(j)
l erf

−1
((2ξl − 1)) , (3)

where erf
−1 is the inverse of the error function given by

erf(z) =
2
√
π

∫ z

0

e
−t2

dt,

and ξl represents the quasi-randomly distributed points in

[0, 1].

Finally, we measure and compute the probabilities

π
(n)
t = p(Zt/Xt = s

(n)
t ) for these new sample positions

in terms of the image data Zt. We use a measurement den-

sity based on the multi-feature distance transform algorithm

(see [4] for details) that has been successfully used for de-

tecting pedestrians from static images. Therefore

log p(Zt/Xt) = log p (Z/X)

∝

{
−

1

M

M∑
i=1

d
2
typed(zi, I)

}
,

where the zi’s are measurement points along the contour,

I is the image data, and dtyped(zi, I) denotes the distance

between zi and the closest feature of the same type in I. We

use oriented edges discretized into eight bins as the features

in all our experiments.

4 Results

We now present some results on tracking pedestrians

from a moving vehicle (Figure 2) and humans from an over-

head surveillance camera that pans from side to side (Fig-

ures 3 and 4). First, a linear shape model was built from

automatically segmented human contours using the tech-

niques described in Section 2 and the dimensionality was

reduced using PCA to find an eight-dimensional space of

deformations. We used N = 2000 samples in the Conden-

sation algorithm and introduced 10% of random samples at

every iteration to account for sudden changes in shape and

motion. Figures 2, 3 and 4 show the tracker output as con-

tours corresponding to the modal (highest probability) state

and the mean state. The tracker was able to recover very

quickly from failures due to sudden changes in shape or

motion and track people through partial occlusion. Figure 3

shows a specific example where the person being tracked is

temporarily occluded by a pole between Frames 38 and 50.

5 Conclusions

In this paper, we have developed a framework for track-

ing humans from moving camera platforms. Our approach

used the Condensation tracker and extended it to high-

dimensional problems by incorporating quasi-Monte Carlo

methods into the conventional algorithm. Specifically, we

overlaid layers of quasi-random Gaussian grids over the

state space which allowed for efficient sampling. As a re-

sult, we could handle general situations where there are no

restrictions on the dynamics of the camera or the human

being tracked and there are no assumptions on the viewing

angle.
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Figure 2. Tracking results for Daimler-Chrysler pedestrian sequence using quasi-random sampling.
Dark - Modal state estimate; Light - Mean state estimate.
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Figure 3. Tracking results for a surveillance sequence with occlusion using quasi-random sampling.
Dark - Modal state estimate; Light - Mean state estimate.
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Figure 4. Tracking results for a surveillance sequence with occlusion using quasi-random sampling
(cont’d from Figure 3). Dark - Modal state estimate; Light - Mean state estimate.
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