
CARBON CYCLE AND CLIMATE (K ZICKFELD, JR MELTON AND N LOVENDUSKI, SECTION

EDITORS)

Tracking Improvement in Simulated Marine Biogeochemistry
Between CMIP5 and CMIP6

Roland Séférian1
& Sarah Berthet1 & Andrew Yool2 & Julien Palmiéri2 & Laurent Bopp3

&

Alessandro Tagliabue4
& Lester Kwiatkowski5 & Olivier Aumont5 & James Christian6

& John Dunne7
&

Marion Gehlen8
& Tatiana Ilyina9 & Jasmin G. John7

& Hongmei Li9 & Matthew C. Long10
& Jessica Y. Luo7

&

Hideyuki Nakano11
& Anastasia Romanou12

& Jörg Schwinger13 & Charles Stock7 & Yeray Santana-Falcón1
&

Yohei Takano9,14
& Jerry Tjiputra13 & Hiroyuki Tsujino11

& Michio Watanabe15
& Tongwen Wu16

&

Fanghua Wu16
& Akitomo Yamamoto15

# The Author(s) 2020

Abstract

Purpose of Review The changes or updates in ocean biogeochemistry component have been mapped between CMIP5 and

CMIP6 model versions, and an assessment made of how far these have led to improvements in the simulated mean state of

marine biogeochemical models within the current generation of Earth system models (ESMs).

Recent Findings The representation of marine biogeochemistry has progressed within the current generation of Earth system

models. However, it remains difficult to identify which model updates are responsible for a given improvement. In addition, the

full potential of marine biogeochemistry in terms of Earth system interactions and climate feedback remains poorly examined in

the current generation of Earth system models.
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Summary Increasing availability of ocean biogeochemical data, as well as an improved understanding of the underlying pro-

cesses, allows advances in the marine biogeochemical components of the current generation of ESMs. The present study

scrutinizes the extent to which marine biogeochemistry components of ESMs have progressed between the 5th and the 6th

phases of the Coupled Model Intercomparison Project (CMIP).

Keywords Marine Biogeochemistry . CMIP5 . CMIP6 . Biogeochemistry-Climate Feedbacks .Model Performance

Introduction

Marine biogeochemistry plays a key role in the Earth system.

By regulating the exchange of CO2 and other climatically

active gases with the atmosphere [1], it is involved in a large

range of climate feedbacks [2]. As a result, changes in ocean

biogeochemistry can have important consequences for climate

[3–5]. Marine biogeochemistry is also deeply interwoven with

the functioning of marine ecosystems and ultimately food

webs [6–8]. Marine ecosystems are affected by anthropogenic

environmental change [9–11], particularly through climate-

induced changes in physical properties and CO2-induced

ocean acidification [12–16]. Understanding and quantifying

the response of ocean biogeochemistry to global changes, as

well as its role in Earth system feedbacks [12, 17], are essen-

tial to improve our capacity to project ecosystem services and

climate change in this century and beyond.

In this context, ocean biogeochemical models are acknowl-

edged as powerful tools to study the ocean carbon cycle and

its response to past and future climate and chemical changes

[2]. Since the pioneering assessment of anthropogenic carbon

uptake by the ocean by Maier-Reimer and Hasselmann [18]

and Sarmiento et al. [19], and the Ocean Carbon Model

Intercomparison Project (OCMIP) of Orr et al. [20], ocean

biogeochemical models have been successfully integrated in

many Earth system models (e.g. [21–31]).

Over the last few decades, the results from ocean biogeo-

chemical models running within ESMs have increasingly

been used to drive research on the carbon cycle. Their results

have supported the assessment of carbon cycle feedbacks

[32–35] and have improved the understanding of mechanisms

behind the near-linear transient climate response to cumula-

tive CO2 emissions [36]. Consequently, they have helped de-

termine the change in carbon budgets that is compatible with a

given level of warming since pre-industrial times. Ocean bio-

geochemical models have also been used to investigate poten-

tial geoengineering solutions to climate change such as solar

radiation management [37–39], ocean fertilization [40–47],

alkalinity addition [48–52] and reversibility experiments

(e.g. [53, 54]).

Recent advances in marine ecosystem modelling have also

led to diversification in the use of ocean biogeochemistry

models within ESMs to study a wide range of potential im-

pacts [55–58]. These research activities are now grouped

under the umbrella of the Inter-Sectoral Impact Model

Intercomparison Project (ISIMIP), with the FishMIP initiative

being a specific example for fisheries impacts [59, 60].

Over recent years, models are increasingly being used in a

semi-operational mode to aid with investigations of the pre-

dictability of key policy-relevant ocean biogeochemistry

fields (e.g. net primary productivity, ocean acidity, ocean car-

bon uptake) [61–67]. Because of their close relationship with

important living marine resources, skillful predictions of these

properties have led to ocean biogeochemistry models being

recognized as valuable tools when developing environmental

policies (e.g. [68]) or designing fisheries management [64, 65,

69].

Because this large array of applications goes well beyond

the conventional scientific investigation of the ocean carbon

cycle, marine biogeochemical models have been developed in

a number of directions over recent years. These developments

are generally supported by progress in process understanding,

which in turn is driven by an increasing number of observa-

tional databases [70–72]. However, from one generation to

another, the development of marine biogeochemical models

is driven not only by common scientific considerations but

also by the internal priorities of individual modelling groups.

As a consequence, it is difficult to anticipate how far the rep-

resentation of marine biogeochemistry within the current gen-

eration of Earth system models differs from—and has im-

proved upon—the previous one.

The present study maps the changes or updates in ocean

biogeochemistry components that have arisen between

CMIP5 and CMIP6 and assesses how far these have led to

actual improvements in model skill against present-day obser-

vations. Overall, our assessment demonstrates that the simu-

lated mean state of ocean biogeochemistry models in CMIP6

is more realistic than that produced by their CMIP5 analogues

in many aspects, but that it remains difficult to clearly identify

which changes in a given ocean biogeochemistry model are

responsible for these improvements.

Mapping Changes or Updates in Ocean
Biogeochemistry

In this section, we review the changes or updates implemented

by participating modelling groups. The following method was
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employed to collect relevant model details as shown in

Table 1. First, all of the modelling groups contributing both

to CMIP5 and CMIP6 were approached. Next, a questionnaire

in the form of a spreadsheet was proposed and developed.

This sought details around (1) model resolution, (2) complex-

ity in marine biology, (3) the representation of bacteria, (4)

internal physiology, (5) organic matter cycling, (6) sediments,

(7) nutrients and elemental cycling, (8) the level of

interactions with the other components of the Earth system

and (9) modelling approaches including spin-up protocols

and tuning/calibration. The latter includes external inputs/

outputs and biophysical interactions. The resulting master ta-

ble of model properties is provided in Supplementary mate-

rials (Table S1).

Tables 1, 2 and 3 map the key updates made between

CMIP5 and CMIP6 (full details are available in Table S1).

Table 1 suggests that most of the changes have tried to address

at least one missing process of major importance for marine

biogeochemistry, as highlighted in IPCCAR5 ([2], page 499),

that is, representation of the lower trophic level including bac-

teria, organic matter cycling including sinking particles or

variation in stoichiometric ratios.

Table 1 includes a brief overview of the key updates in

ocean physics between CMIP5 and CMIP6 because marine

biogeochemistry is prominently driven by ocean circulation

(large-scale circulation and mesoscale eddies) and vertical

mixing.

Table 1 tracks not only updates in the horizontal and verti-

cal resolution of physical ocean models but also changes in

related ocean physical parameterization. As suggested by

Griffies et al. [103], an increase in horizontal or vertical reso-

lution enables the representation of finer-scale ocean physical

processes (e.g. mesoscale eddies) in relation with the activa-

tion of more realistic ocean physical parameterizations (such

as vertical mixing, diurnal cycle or coupling with the

atmosphere).

The first common difference between CMIP5 and CMIP6

ESMs comes from the ocean-sea ice components. Indeed, it is

interesting to note that 8 ESM groups out of 12 use an

upgraded version of the ocean models or employ a new ocean

model (Table 1). These changes imply substantial updates or

revisions in ocean physical parameterizations that may have

an impact on large-scale circulation and vertical mixing.

In addition, another common difference between ocean

models used in CMIP5 and CMIP6 is the grid resolution. It

is interesting to note that all of the ocean models, with the

exception of MPI-ESM1-2-LR, now resolve ocean dynamics

at a minimum horizontal nominal resolution of 100 km. The

highest horizontal nominal resolution in the available multi-

model ensemble is 50 km (GFDL-ESM4). Despite this gener-

al increase in horizontal resolution, only GFDL-CM4 uses an

eddy-permitting ocean model (~ 25 km). In addition, the

current generation of ocean models also better represent ver-

tical physical processes with a typically finer vertical

resolution.

Another common difference between the two generations

of models is the complexity of the marine ecosystem descrip-

tion and related parameterizations. Here, the complexity en-

compasses the diversity of model trophic web (i.e. the number

of specific model phytoplankton and zooplankton types), the

representation of bacteria, ecosystem functioning including

macro- and micro-nutrient limitation (e.g. iron), and the vari-

ation in modelled stoichiometric ratios of carbon, nitrogen and

other elements (e.g. photosynthetic pigment). Greater com-

plexity does not necessarily imply a better representation of

cycles and processes associated with each biogeochemical

species, as it may introduce new degrees of freedom and/or

non-linear (or at least not well controlled) interactions be-

tween parameterizations.

Table 1 shows that ocean biogeochemistry models span a

wide range of complexity levels. The simplest models use

ocean carbon cycle models based on the OCMIP protocol

[20] that do not include marine biota or nutrients.

Meanwhile, the most complex models include a broad trophic

structure that groups marine organisms into plankton func-

tional types based on their biogeochemical role, with mecha-

nistic representations of nutrient limitation and variable stoi-

chiometric ratios.

Table 1 also highlights noticeable changes in biogeochem-

ical parameterizations between CMIP5 and CMIP6. They

concern 10 biogeochemical models out of 12 reviewed in this

study. These changes may be related to the change in model

complexity or to a revised set of parameterizations (e.g.

nitrogen fixation, remineralization, grazing, flux feeding; see

Table S1).

We map updates and changes in ocean biogeochemical

models along three major axes; axis 1. The trophic food

web, the plankton internal physiology (e.g. variable stoichi-

ometry, chlorophyll pigment) and nutrients cycling (iron cy-

cle, nutrients cycles). This axis aims to track updates in bio-

geochemical dynamics and ecosystem functioning; axis 2.

The external sources of nutrients; axis 3. The interactions of

marine biogeochemistry with climate or ocean physics. The

latter two axes track the level of integration of the marine

biogeochemical model in the modelled Earth system.

It is important to stress that an increase or a decrease along

one of those three axes does not necessarily imply an improve-

ment in model performance or skill. In most cases, it reflects

progress in process understanding (physical, biogeochemical

or both), the inclusion of new Earth system interactions or the

representation of climate feedbacks is required to investigate

future scenarios.

Table 1 shows that the current generation of CMIP6 dis-

plays a greater diversity of marine biogeochemical models

than CMIP5.
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COBALTv2 (in GFDL-ESM 4), for instance, displays the

highest trophic complexity level with 3 explicit phytoplankton

classes, 1 implicit phytoplankton class, 3 explicit zooplankton

classes and 1 explicit heterotrophic bacteria class; however,

this model still employs a relatively simple parameterization

of iron cycling. In comparison, PISCESv2-gas (in CNRM-

ESM2-1) or PISCESv2 (in IPSL-CM6A-LR) includes 4 ex-

plicit plankton types (2 phytoplankton and 2 zooplankton), but

two iron ligands and 5 iron forms [104]. MARBL-BEC (in

CESM2) also includes an iron ligand and has opted for in-

creasing ecosystem complexity by introducing variable C:P

stoichiometry, based on PO4 concentrations [105], while

maintaining 4 plankton types. It is interesting to note that,

while limiting the number of nutrients, CanESM5-CanOE

have evolved toward a more comprehensive treatment of ma-

rine biogeochemistry with 4 explicit plankton types and using

variable stoichiometry [89]. In contrast with a general increase

in complexity, NOAA-GFDL has started to use a reduced

complexity marine biogeochemical model embedded in the

high-resolution ocean model of GFDL-CM4. This approach

implies a trade-off between computational costs and essential

biogeochemical processes to represent the ocean carbon cycle

as explained in Galbraith et al. [105]. Such diversity tends to

mirror progress in the understanding of the impact of variable

stoichiometric ratios on ecosystem dynamics and carbon as-

similation by phytoplankton cells [106–110].

Table 1 shows that all CMIP6 models except GFDL-CM4

have evolved toward a more comprehensive treatment of ele-

mental cycling including nitrogen, oxygen and iron cycling.

This moderate increase in model complexity is supported by

recent observations in phytoplankton functioning, nutrient

limitation or plankton physiology [111–116] and the availabil-

ity of a larger array of observational data (bio-ARGO and

GEOTRACES) supporting the model evaluation and develop-

ment (e.g. Tagliabue et al. [117]). On the other hand, this

increase in complexity is also encouraged by the growing

range of applications to which ESMs are being dedicated

(e.g. marine resource applications as investigated in Lotze

et al. [59] or Park et al. [64]).

Finally, Table 1 shows that all CMIP6 models have

progressed toward a better representation of marine organic

carbon cycling, sinking particles and marine sediments. In

most cases, this component of marine biogeochemistry is pa-

rameterized using either a sediment box module or a meta-

model based on downward fluxes of organic matter. Indeed,

for several CMIP6 marine biogeochemical models, a more

complex representation of sinking particles and organic matter

pools (refractory classes or flux attenuation parameterization)

replaces the generalized pools of organic matter used in the

CMIP5 predecessors.

Table 1 also sheds light on noticeable changes in the rep-

resentation of sediment interactions. Most of the reviewed

CMIP6 ESMs now simulate this compartment with

biogeochemical parameterization (e.g. balance, meta-model,

sediment box) or with a comprehensive sediment module

(12-layer sediments module).

Table 2 also shows that the representation of the external

sources of nutrients (i.e. the third axis of our model complex-

ity breakdown) has grown in complexity between CMIP5 and

CMIP6. It mirrors a more comprehensive treatment of bound-

ary conditions between ESM components (atmosphere, rivers,

glaciers, etc.). Most of the current generation of ocean biogeo-

chemical models now consider inputs of biogeochemical ele-

ments via atmospheric deposition or from rivers. The iron

delivery from sediment mobilization, hydrothermal sources

or ice melting is additionally considered by a small set of

models. This reflects recent advances in understanding the

global iron cycle [111–116]. In contrast, despite a better un-

derstanding of the role of submarine water discharge in ocean

nutrient supply [118–121], this particular boundary condition

is not considered in the current generation of ocean biogeo-

chemical models.

Besides, it is interesting to note that a couple of CMIP6

ESMs now includes a more comprehensive treatment of

interactions between the marine biogeochemistry and the

other Earth system components. For instance, GFDL-ESM 4

simulates interactively most of the primary source of iron

for marine biogeochemistry (atmospheric dust deposition,

iceberg melting and river supply), enabling the representation

of biogeochemical couplings observed in the real world (e.g.

[122]).

Table 2 highlights that the current generation of ESMs

displays a wider range of Earth system feedbacks or interac-

tions. In our review, we have decomposed Earth system inter-

actions involving marine biogeochemistry along two axes: (1)

the air-sea exchange of greenhouse gases or reactive chemical

compounds interacting with Earth’s radiative budget (and

hence climate); (2) the represented Earth system interactions

involving marine biogeochemistry (including the air-sea ex-

change of greenhouse gases or reactive chemical compounds

and biophysical interactions); that is, what is really contribut-

ing to the Earth system model climate. This latter has been

mapped into 4 feedbacks: climate-carbon cycle feedbacks

(F1), biogenic aerosol-cloud feedbacks (F2), non-CO2 bio-

geochemical cycle feedbacks (F3) and phytoplankton-light

feedbacks (F4).

The influence of ocean dimethylsulfide (DMS) emissions

on cloud albedo is an example of the biogenic aerosol-cloud

feedback (F2). DMS is a breakdown product of

dimethylsulfoniopropionate (DMSP), a metabolite in many

phytoplankton with a role as a cellular osmolyte/antioxidant

[123, 124]. It is exchanged with the atmosphere and is in-

volved in the formation of sulfur aerosols once it is oxidized

there. As the other sulfate aerosols, DMS may be involved in

the formation of cloud condensation nuclei (CCN). The po-

tential importance of ocean DMS emissions for the climate
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system is still largely debated [125] because modern observa-

tions do not support its prominent role in the formation of

CCN [126–128]. However, long-term measurement [129]

and mesocosm experiments (e.g. [17]) suggest that global

changes may impact the rate of ocean DMS emissions.

Recent modelling studies argue for a potential role of ocean

DMS in future climate change (e.g. [130, 131]). Ocean NHx

emissions are also involved in biogenic aerosol-cloud feed-

backs (F2). Kirkby et al. [132] suggest that NHx can also play

an important role in the formation of secondary nitrate aero-

sols in the atmosphere. Similarly to DMS, these aerosols can

serve as CCN and contribute to changes in cloud albedo. Non-

CO2 biogeochemical cycle feedbacks (F3) involve ocean

emissions of non-CO2 greenhouse gases (e.g. N2O or meth-

ane) or any chemical compounds contributing to the genera-

tion of greenhouses gases (e.g. methane, carbon monoxide).

The phytoplankton-light feedbacks (F4) represent the suite of

biophysical mechanisms that involve the influence of the ma-

rine biota on the upper ocean physics through the vertical

redistribution of heat.

Table 2 confirms that all ocean biogeochemical models

account for the climate-carbon cycle feedback since CMIP5

(Earth system feedback F1 in Fig. 1). In addition, Table 1

shows that the current generation of ocean biogeochemical

models includes an air-sea gas exchange for a larger number

of radiatively active biogeochemical compounds such as

DMS, nitrous oxide (N2O) and ammonia (NHx). The inclu-

sion of climate active gases or greenhouse gases other than

CO2 in the current generation of ocean biogeochemical

models is a result of the increased recognition of the impor-

tance of these compounds in Earth system interactions with

aerosols, atmospheric chemistry and, potentially, with clouds.

In particular, the inclusion of ocean NHx or N2O emissions

in ocean biogeochemical models has been driven by a better

understanding of the global nitrogen cycle and its role in cli-

mate change. In particular, the development of databases such

as MEMENTO (https://memento.geomar.de/) has enabled

better validation and calibration of N2O modules in global

ocean biogeochemical models [133–138].

However, the inclusion of Earth system feedbacks as illus-

trated in Fig. 1 has not in all cases progressed between CMIP5

and CMIP6. For example, biophysical interactions with the

ocean radiative transfer (F4 in Fig. 1) are overlooked by more

than half of the marine biogeochemical models examined,

although this feedback is well documented and relatively well

understood [139, 140].

Our review of available ESMs suggests that the current

generation of marine biogeochemical models has not much

evolved toward comprehensive couplings between Earth sys-

tem components and ocean biogeochemistry or toward im-

proved treatment of biophysical and biogeochemical feedback

with respect to their predecessors (F1 and F4 in Fig. 1). The

full impact of ocean biogeochemistry on climate and its role in

Earth system feedback remains far from being entirely repre-

sented in the current generation of Earth system models, as it

involves different spatial and temporal scales that models are

not currently able to reach and also processes still poorly

understood.

Finally, our review suggests that the modelling approaches

have evolved between CMIP5 and CMIP6. These latter have

been monitored with two key indicators: (1) the length of the

spin-up simulation and (2) the use of calibration/tuning for

marine biogeochemical parameters. These two key indicators

were discussed in published literature (e.g. Séférian et al. [76]

or Hourdin et al. [141]), reflecting, in general, an improved

knowledge in model characteristics (strength and deficiency).

Table 3 and Table S1 highlight that most of the modelling

groups have expanded the duration of the spin-up for CMIP6.

This represents an important effort of the scientific community

to converge toward recommended standards (e.g. [142]).

Only GFDL and IPSL have reduced the duration of their

spin-up protocol for computing reasons: they manage to fulfil

CMIP6 standard in a few hundreds of years. On the other

hand, it is noticeable that several modelling groups have in-

cluded a step of model calibration or tuning in CMIP6. Our

review suggests that this step has been motivated by various

reasons: bias reduction for key biogeochemical fields in

CNRM, GFDL or NorESM or bias compensation to reduce

the impact of known biases in simulated surface chlorophyll

for ocean DMS and organic aerosols emissions in UKESM.

There is no consensus between modelling groups on how

model calibration or tuning takes place in the model prepara-

tion. Depending on modelling group, the calibration or tuning

is either included in the model development or during the

spin-up procedure (Table S1).

Tracking Model Performance Across Two
Generations of Models

Figures 2, 3, 4 and 5 illustrate the performance of the current

generation of ESMs taking part in CMIP6, together with their

predecessor CMIP5 models, for a range of climatological bio-

geochemical properties that are central to the carbon cycle and

ecosystem applications: the sea-to-air flux of CO2, ocean chlo-

rophyll, nitrate, silicate, oxygen and iron (see Methods in

Supplementary materials). For Figs. 2, 3 and 4, observation-

based estimates of each property are shown at the top of the

figure, followed by the biases found across the current and last

generation models. We note that, in several cases,

observation-based estimates are derived from significant pro-

cessing of sparse observations or from algorithms relating the

quantity of interest to directly observed quantities (e.g. sea-to-

air CO2 flux, satellite chlorophyll). As such, the observations

themselves are also subject to uncertainty which will be

discussed in the context of each comparison.

102 Curr Clim Change Rep (2020) 6:95–119



In Fig. 2a, the sea-to-air flux of the critical greenhouse gas,

CO2, is shown, with a data product based on the mapping of

observational pCO2 data drawn from the Landschützer et al.

[143] product (1995–2014). The key geographical features of

this are strong outgassing (i.e. a net sea-to-air flux) in upwell-

ing regions, most clearly in the tropics and along the equato-

rial region of the Pacific Ocean, and ingassing (i.e. a net air-to-

sea flux) at temperate and subpolar latitudes. These features

reflect processes that are governed by temperature, patterns of

deep water formation, surface biological production and the

thermohaline circulation.

In general, both CMIP5 and CMIP6 generations of models

show a mixture of positive and negative biases across the

globe with disagreement in the sign of the carbon fluxes over

some regions. Common patterns are slightly negative biases

both in the equatorial Pacific (i.e. weak outgassing) and in the

North Atlantic (i.e. excessive ingassing). Both generations of

models show a mix of relatively small positive and negative

biases, except for the CMIP5 CanESM2 which shows the

largest model-data error across the model ensemble.

However, the comparison with observations has been

substantially improved in CanESM5. More generally,

Fig. 2a highlights that the improvement in simulated sea-to-

air carbon flux is clearer when looking at the direction of the

carbon flux. This improvement seems to be linked to an im-

proved representation of ocean vertical mixing (see skill

scores of the ocean mixed-layer depth below). Indeed, all

CMIP6 models exhibit smaller domains where the direction

of the sea-to-air carbon flux disagrees with observations, ex-

cept for MPI-ESM1-2-LR, which used the same ocean model

and displays the same pattern of model-data disagreement for

CMIP5 and CMIP6.

Figure 2 b shows surface chlorophyll, compared with

satellite-based estimates derived from ESA-CCI-OC ocean

colour data [144]. The key geographical features are relatively

high concentrations in productive temperate, subpolar and up-

welling regions, and extremely low concentrations in the un-

productive subtropical gyres. The latter are dominated by pe-

rennially low-nutrient conditions, while the former experience

frequent, or seasonal, introduction of nutrients by upwelling

or deep mixing. While these general biome scale patterns are

robust across satellite algorithms, we note that estimates

Fig. 1 Schematic representation of Earth system interactions and

feedbacks between the ocean biogeochemistry and climate. F1

represents the well-established climate-carbon cycle feedbacks; F2 and

F3 sketch the dominant pathways for the biogenic aerosol-cloud feed-

backs and the non-CO2 biogeochemical cycle feedbacks; F4 depicts the

phytoplankton-light feedbacks (that is a biophysical interactions)
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Fig. 2 Model-data

intercomparison of a open ocean-

sea-air carbon fluxes (fgco2,

g C m−2 year−1) and b open ocean

surface chlorophyll (chl,

mg Chl m−3) as simulated by

ocean biogeochemical models

embedded within CMIP6 Earth

system models (the right column)

and their former version as used

for CMIP5 (the left column). a

The first top panel shows

observation-based estimates from

Landschützer et al. [143] aver-

aged for the period 1995–2014

(see Methods in Supplementary

materials). The other panels show

model-data biases averaged for

the same period. Coloured areas

are indicative of the model-data

absolute difference in magnitude

of sea-air fluxes. Red regions in-

dicate areas in models where the

magnitude of the sea-air flux is

greater than that observed,

whereas blue regions indicate the

reverse. b The first top panel

shows satellite-based ocean chlo-

rophyll estimates from ESA-CCI-

OC [144] averaged over 1998–

2014. The other panels show

model-data departure averaged

over the period 1998–2014
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Fig. 3 Model-data

intercomparison of a surface

nitrate concentrations (no3,

μmol L−1) and b surface silicic

acid concentrations (si, μmol L−1)

as simulated by ocean

biogeochemical models

embedded within CMIP6 Earth

system models (right columns)

and their former version as used

for CMIP5 (left columns). a and b

The first top panel shows the

optimal interpolation of nitrate

(no3) and silicate (si) measure-

ments as provided in the World

Ocean Atlas Database 2013

(Garcia et al. [145]). The other

panels show model-data depar-

ture averaged over the period

1995–2014 (see Methods in

Supplementary materials)
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Fig. 4 Model-data

intercomparison of oxygen

concentrations at 150 m (o2,

μmol L−1) as a proxy for oxygen

minimum zones (OMZs) and as

simulated by ocean biogeochem-

ical models embedded within

CMIP6 Earth system models (on

the right column) and within their

former version used for CMIP5

(on the left column). The first top

panels in a and b show the ob-

served oxygen concentrations at

150 m from the World Ocean

Atlas 2013 (Garcia et al. [145]).

The other panels in a show oxy-

gen concentrations at 150 m as

simulated by CMIP5 and CMIP6

models averaged over the period

1995–2014, while panels in b

show model-data departure aver-

aged over the period 1995–2014

(see Methods in Supplementary

materials)
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diverge in the Southern Ocean [146], where global satellite-

based chlorophyll algorithms have been found to significantly

underestimate observations [147].

Several CMIP6 models compare more favourably with ob-

servations than their CMIP5 predecessors. All models

displaying a pattern of generally negative bias in CMIP5

now exhibit large areas of both small positive and small neg-

ative biases. Models overestimating surface chlorophyll con-

centrations in CMIP5 now display reduced biases (<

0.4 mg Chl m−3). This improvement is small for MPI-

ESM1-2-LR, which still overestimates surface concentrations

of chlorophyll. Some CMIP6 models, such as CESM2, GISS-

E2-1-G-CC and NorESM2-LM, display on the contrary larger

model-data errors than their predecessors. Given the large di-

versity across the models, it is difficult to determine whether

changes in physical ocean models or changes in ocean bio-

geochemical models are behind these changes.

However, it is interesting to note that three CMIP6 models

(CNRM-ESM 2-1, IPSL-CM6A-LR and UKESM1-0-LL),

which share a common ocean physics model, overlap in their
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Fig. 5 Model-data scatterplots for surface dissolved iron concentrations

(log-log scale). Observational data are derived from the average of the 0–

10 m of the measurement compilation used in Tagliabue et al. [117].

Model concentrations are taken from the first ocean layer. Red dots and

blue triangles indicate CMIP6 and CMIP5 models respectively. The red

dashed line shows the 1:1 line; the red and blue solid lines highlight the

model-data mismatch in terms of global mean concentrations for CMIP5

and CMIP6models (seeMethods in Supplementary materials). The glob-

al mean for observations and models are given in brackets. Model-data fit

(squared correlation, R2) is given in parenthesis with squared correlation

coefficients for CMIP5 and CMIP6 models
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patterns of positive and negative biases in spite of differences

in marine biogeochemistry submodels (spatial correlation of

model-data errors R2 = ~0.5).

It is notable that most of the models reviewed here overes-

timate surface chlorophyll estimates in the Southern Ocean.

This bias, however, is likely due in part to the underestimation

of Southern Ocean chlorophyll by the global satellite chloro-

phyll algorithms [147]. The substantial positive Southern

Ocean bias in GFDL-ESM 4, for example, is significantly

diminished when compared against Johnson’s Southern

Ocean-specific satellite-based chlorophyll algorithms (e.g.

[148]).

Figure 3 a and b show the distribution of surface nitrate

(NO3) and silicic acid (H4SiO4), which are represented in both

CMIP5 and CMIP6 models. Figure 3 a shows that only

GFDL, IPSL andMIROCmodels have consistently improved

their mean states between CMIP5 and CMIP6 for nitrate con-

centrations. In some cases, model generations show the same

spatial patterns of biases, while others, most noticeably

UKESM1-0-LL (where entirely new marine biogeochemistry

has been incorporated), show a large overestimation of surface

nitrate concentration over the tropics.

A comparison of simulated surface concentrations of silicic

acid with modern observations shows that all models except

GISS and CESM models have improved their representation

of the surface distribution of silicic acid (Fig. 3b). The most

striking improvement is seen between HadGEM2-ES and

UKESM1-0-LL. Such an improvement is explained by the

switch in the biogeochemical model component between

CMIP5 and CMIP6, from Diat-HadOCC to MEDUSA-2.0

(see [96], for further details). Figure 3 b sheds light upon

another systematic bias in the Southern Ocean where all the

models display large model-data errors independent of their

generation. It suggests that processes other than ocean resolu-

tion or the complexity of the marine biogeochemical model

may be at the origin of this systematic model deficiency. The

pattern of error differs among models. UKESM1-0-LL, MPI-

ESM 1-2-LR and GISS-E2-1-G-CC display a uniform bias in

simulated silicic acid concentrations, whereas all the other

models show a mixture of positive and negative biases in

simulated concentrations.

Figure 4 a presents the pattern of oxygen concentrations at

a depth of 150 m where the signature of the oxygen minimum

zone (OMZ) is expected to be visible. Note that 9 of 12

models simulated O2 in CMIP5, and one further model added

O2 for CMIP6.

In general, CMIP6 models improve upon their CMIP5 pre-

decessors in their representation of oxygen at 150 m (Fig. 4b).

Model errors in the Southern Ocean have been reduced in

CMIP6 with respect to CMIP5, highlighting a better represen-

tation of the deep ocean ventilation in the Southern Ocean or

more accurate biogeochemical characteristics of outcropping

water masses. Model-data errors have also been reduced in

CMIP6 in large domains of the Indian Ocean where large

OMZs occur although all models display a systematic overes-

timation of oxygen at 150 m in the Arabian Sea. The same

feature is also observed in the tropical Pacific where a model-

data error has been reduced in CMIP6 with respect to CMIP5.

Contrasting with the other ocean domains, models’ perfor-

mance has not improved in the Atlantic Ocean. For example,

in the tropical Atlantic, some models have shifted in the sign

of the model-data errors: from a negative bias in CMIP5

(stronger-than-observed OMZ) to a positive bias in CMIP6

(weaker-than-observed OMZ) or the opposite. In both cases,

the absolute magnitude of the model-data errors in this region

remains similar between model generations. This implies a

systematic bias in ocean biogeochemical models which seems

independent from ocean resolution or complexity of marine

biogeochemistry models. Besides, our review of model per-

formance highlights that open ocean hypoxia remains poorly

represented in ocean biogeochemical models; the CMIP6

models still tend to overestimate this marine biogeochemical

feature with respect to their CMIP5 predecessors. This is es-

pecially clear in the southern tropical Pacific, where all models

except CESM2 and GFDL-ESM 4 overestimated the level of

hypoxia of the OMZ (Fig. 4).

Improvement in GFDL-ESM 4 is explained by a suite of

updates and changes in model physics (i.e. mixing and

Southern Hemisphere climate) and biogeochemical parame-

terizations (i.e. the use of a revised remineralization scheme

for organic matter depending on oxygen and temperature of

Laufkötter et al. [148]). In addition, COBALTv2 has lower net

primary productivity than TOPAZv2 which allows the high-

nutrient low-chlorophyll region to spread further meridionally

in the tropical Pacific and reduce the eastern equatorial nutri-

ent trapping and associated oxygen decline.

The surface distribution of dissolved iron is also an impor-

tant feature of marine biogeochemistry. Its availability con-

trols marine biological production in several ocean regions

[149]. As for oxygen, Table 1 highlights that marine iron

cycling is not represented in all biogeochemical models.

Nonetheless, this number has increased in CMIP6 (Table 1).

It translates the current scientific consensus which recognizes

the need to resolve the iron cycling in biogeochemical model

in order to better simulate the marine biogeochemical dynam-

ics, e.g. for glacial-interglacial climate change [150] or for

variability and response to climate change [151].

Figure 5 illustrates, however, that the performance of the

current generation of models with respect to iron does not

improve much with respect to that of the previous generation.

Indeed, the model-data fit estimated with squared correlation

coefficients remains < 0.25. This fit has not progressed much

from CMIP5 to CMIP6, except possibly for IPSL and CNRM

models which both employed PISCESv1 [40, 41] for CMIP5

and PISCESv2 [91] for CMIP6. As highlighted in Aumont
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et al. [91], PISCESv2 includes a more detailed representation

of the ocean iron cycle compared with PISCESv1.

The poor agreement between the observed and simulated

distribution of dissolved iron relative to macronutrients

(Fig. 3) partly reflects differences in the nature of the datasets.

The relatively large number of nitrate measurements globally,

for example, has allowed construction of robust climatological

patterns [145] that model climatologies can be compared

against. The relative paucity of dissolved iron measurements,

in contrast, requires a comparison of modelled climatologies

against patchy individual measurements. Despite this, Fig. 5

shows that some CMIP6 models better simulate the global

average concentration of dissolved iron than their predeces-

sors. This is particularly clear for UKESM1-0-LL, MPI-ESM

1-2-LR and GFDL-ESM 4. It is interesting to see the various

modelling approaches for representing marine iron cycling.

UKESM1-0-LL and MIROC-ES2L, for instance, use respec-

tively Dutkiewicz et al. [152] and Moore and Braucher [153]

parameterization for marine iron cycling that removes dis-

solved iron concentrations above an ad hoc threshold. Other

ocean biogeochemical models use mechanistic iron cycling

schemes that avoid the needs of ad hoc thresholds (e.g.

PISCES-v2 and PISCES-v2-gas employs Völker and

Tagliabue [154] formulation and TOPAZv2 applies an empir-

ical relationship to dissolved organic carbon (DOC) to derive

ligand concentrations).

Table 4 provides a large-scale picture of the model’s ability

to simulate key downward biogeochemical fluxes involved in

global carbon and nutrients cycling. Most of the CMIP6 ma-

rine biogeochemical models better simulate the magnitude of

the surface and 100 m biogeochemical fluxes than their

CMIP5 predecessors. Indeed, CESM2, CNRM-ESM2-1,

GISS-E2-1-G-CC, IPSL-CM6A-LR, MPI-ESM 1-2-LR and

NorESM2-LR have improved the representation of at least

one biogeochemical fluxes with respect to their CMIP5 pre-

decessors; BCC-CSM2-MR, CanESM5, GFDL-ESM 4 and

MIROC-ES2L display comparable performance; only

CanESM5-CanOE, MRI-ESM 2-0 and NorESM2-LM have

respectively degraded the representation of either the vertical-

ly integrated net primary productivity or the carbon export at

100 m compared with their CMIP5 predecessors.

Despite the general improvement, Table 4 highlights that

several CMIP6 models fall outside the range of remote-

sensing estimates of primary production ([157, 158, 161]). It

suggests that the current generation of marine biogeochemical

models still has difficulties to model underlying processes

involved in the carbon fixation by phytoplankton (such as

nutrient colimitation, nitrogen fixation, remineralization), re-

quired to accurately simulate the magnitude of the vertically

integrated net primary productivity. At the same time, it is also

important to acknowledge that there are still large uncer-

tainties in remote-sensing-based estimates of primary produc-

tion, e.g. 38.8–42.1 Pg C year−1 in the most recent estimates of

Kulk et al. [158] and 47.5–52.1 Pg C year−1 according to

Behrenfeld et al. [157].

Figures 6 and 7 track changes in performance between

CMIP5 and CMIP6 marine biogeochemical models.

Figure 6 highlights how far the CMIP6models have improved

their capability to simulate observed spatial patterns with re-

spect to their CMIP5 predecessors; Fig. 7 summarizes the

overall model performance including information on model

performance to reproduce observed distribution (pattern and

magnitude).

Both Figs. 6 and 7 show that CMIP6 models have im-

proved the representation of the ocean physics (here the ocean

mixed-layer depth). The cross-generation picture of the model

performance for marine biogeochemistry is more contrasted.

Globally, Figs. 6 and 7 show that most of the CMIP6 models

outcompete their CMIP5 predecessors. However, this im-

provement remains modest. Except for some models

displaying a noticeable improvement for one or two biogeo-

chemical fields (surface nitrate for CESM2, surface chloro-

phyll for CNRM-ESM2-1, surface silicic acid for GFDL-

ESM 4), most of the CMIP6 model display a slight increase

in model-data spatial correlation (up to + 0.2, Fig. 6) or an

overall reduction in model-data RMSE of about 20%

(Fig. 7). Besides, this improvement does not concern all

models. For instance, GISS-E2-1-G-CC shows a noticeable

degradation in performance for all of the biogeochemical

fields analyzed here.

Conclusions

Summary of 5 Years of Ocean Biogeochemical Model
Development

Our review of available Earth system models highlights that

the current generation of marine biogeochemical models used

for CMIP6 displays a greater diversity than the previous one

used for CMIP5. Several marine biogeochemical models have

evolved toward a more comprehensive representation of ma-

rine biogeochemistry (i.e. CESM, CNRM, GFDL, IPSL,

MIROC, UKESM), typically including an expanded array of

biological taxa (e.g. diazotrophs) or elemental cycling (e.g.

oxygen and iron cycles), variable stoichiometry, sediments

(e.g. sediment box module) and the representation of (non-

CO2) trace gases relevant to atmospheric chemistry. On the

opposite, some groups have limited the increase in model

complexity between CMIP5 and CMIP6 (i.e. BCC, GISS,

MPI, MRI, NorESM). Finally, it is interesting to note that

some groups have started to investigate the use of reduced

complexity marine biogeochemical model (i.e. GFDL) or to

intercompare in a traceable framework the impact of rising

complexity on the simulated marine biogeochemistry

(CanESM).
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When assessed against observations, most of the CMIP6

models generally outperform their CMIP5 predecessors in

many regions and for most of the marine biogeochemical

fields reviewed here (Figs. 6 and 7 and Table 4). However,

this model review has also highlighted several systematic

model-data errors that are persistent even in CMIP6 models

(e.g. oxygen concentrations at 150 m in tropical Atlantic, nu-

trient trapping in the Southern Ocean).

Our review also shows that the modelling approaches

have evolved between CMIP5 and CMIP6. Indeed, most

modelling groups have spun-up their model over a lon-

ger period for CMIP6 with respect to CMIP5 in order

Table 4 Comparison between observational and model estimates of biogeochemical fluxes over the modern period. For both CMIP5 and CMIP6

models, biogeochemical fluxes are calculated over the 1995–2014 period (see Methods in Supplementary materials)

Observational estimates are derived from the following database: aLandschützer et al. [143] product average over 1995–2014 and adjusted for the pre-

industrial ocean source of CO2 from river input to the ocean consistently with the methodology employed in [155] that used a river flux adjustment of

0.78 Pg C year−1 [156]; bmaximal range of remote-sensing estimates from Behrenfeld et al. [157] and Kulk et al. [158]; cDunne et al. [159] and
dTréguer and De La Rocha [160]. When required, the modelled net ocean carbon uptake is corrected with the net riverine-induced outgassing diagnosed

from the piControl simulation. Coloured cells indicate the relative deviation in model global estimates with respect to the observation median best

estimates; hatched coloured cells indicate where model global estimates fall within the observational uncertainty range. Grey cells indicate missing or

unrepresented biogeochemical fluxes
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to fulfil the drift criterion as proposed by Jones et al.

[142]. In contrast, the use of tuning and calibration for

marine biogeochemical models for CMIP remains a less

common feature at the time of CMIP6.

Finally, our review of model mean state performance

against their model properties (resolution, complexity) sug-

gests that neither increasing resolution nor increasing com-

plexity leads automatically to model improvement. Instead,

improvement is a mixture of improved ocean physical pro-

cesses and better representation of biogeochemical processes.

In the context of improving confidence in future climate

projections, it is important to stress that the model mean state

performance is not the only mean to understand multi-model

uncertainty, comparisons against seasonal to multi-annual var-

iations in observed quantities may ultimately prove most crit-

ical to building confidence in future climate projections (e.g.

[13, 163]).

What’s Next?

In this final section, we identify some directions where marine

biogeochemical models could continue to improve or to

progress.
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Fig. 6 Scatter plot confronting the performance of CMIP6 models to

replicate the geographical structure of observed fields with respect to

that of their CMIP5 predecessors. The performance metrics are the

model-data spatial correlation computed from yearly averaged data and

model outputs. The variables of interest are mixed-layer depth (oml), air-

sea CO2 flux (fgco2), surface chlorophyll (chl), oxygen concentration at

150 m (o2) and surface concentrations of nitrate (no3) and silicic acid (si).

The green (red) shading flags an improvement (degradation) of the model

performance to replicate the observed geographical structure for a given

field. The ocean mixed-layer depth is computed similarly in all models; it

is based on a density criterion of 0.03 kg m−3. The ocean mixed-layer

depth simulated by the various Earth system models is evaluated against

the observational dataset of de Boyer Montégut et al. [162]
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The first step change to expect in the next generation of

models is the emergence of high-resolution ocean biogeochem-

ical models fit to investigate centennial-scale simulation. This

step change may be supported in a number of ways: (1) the

availability of greater computational resources; (2) the use of

hybrid-resolution numerical schemes to decrease the cost of bio-

geochemicalmodels (e.g. [164]); (3) actually reduced complexity

of marine biogeochemical models (e.g. such as miniBLING;

[105]); (4) the use ofmachine learning to either acceleratemarine

biogeochemicalmodels or to reduce the numerical cost necessary

to improve their performance (i.e. via tuning). These (and poten-

tially other) step changes will help to understand the extent to

which mesoscale or sub-mesoscale ocean physics might change

the response of marine biogeochemistry to rising CO2 and

climate change—a missing factor in such models already

highlighted from CMIP5 and IPCC AR5 [2].

A second important step change is related to the phyto-

plankton physiology and evolution. This change may have

two benefits. First, several recent studies show that the inclu-

sion of a more comprehensive treatment of plankton physiol-

ogy may improve model performance, in particular some sys-

tematic biases in the Southern Ocean (e.g. [108, 165]). Then,

this improvement is arguably a first step toward the represen-

tation of adaptation and fitness in ocean biogeochemical

models [166, 167]. This omission remains an important caveat

for multi-stressors studies (e.g. [9]) or time-of-emergence

studies [168] as current models effectively assume no change

in the underlying properties of modelled plankton.
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Fig. 7 Portrait diagram highlighting the performance of CMIP6 models

(one representative per modelling groups) with respect to their CMIP5

predecessors. The variables of interest are mixed-layer depth (oml), air-

sea CO2 flux (fgco2), surface chlorophyll (chl), oxygen concentration at

150 m (o2) and surface concentrations of nitrate (no3) and silicic acid (si).

The skill score metric, Z-score, is computed for a given model and for a

given field as follows: Z-score¼ RMSECMIP6 Mð Þ−RMSECMIP5 Pð Þ
RMSECMIP5 Pð Þ � 100, where

RMSECMIP6(M) is the global area-weighted average model-data root-

mean-squared error (RMSE) of the model of the current generation con-

tributing to CMIP6 and RMSECMIP5(P) is the RMSE of its predecessor

that has contributed to CMIP5. Greenish (reddish) colours and negative

(positive) Z-scores indicate improved (degraded) field representations in

CMIP6 model versions; darker colours indicate a greater change from

CMIP5 to CMIP6. Grey indicates missing data for one or both genera-

tions of models. Air-sea CO2 flux (fgco2) was adjusted for riverine-

induced outgassing as in Table 4. The ocean mixed-layer depth is com-

puted similarly in all models; it is based on a density criterion of

0.03 kg m−3. The ocean mixed-layer depth simulated by the various

Earth system models is evaluated against the observational dataset of de

Boyer Montégut et al. [162]
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Future developments should be pursued in the context of

the internal cycling of micronutrients involved in phytoplank-

ton physiology and metabolism such as iron, zinc or copper.

Our review confirms that the current generation of marine

biogeochemical models are still struggling to reproduce the

major features of the oceanic iron distribution although the

observations of dissolved iron in the ocean are growing rap-

idly [149] and are made widely available by GEOTRACES

[169]. A key challenge for iron is that the dissolved iron com-

monly measured only appears to represent a trace residual of

the underlying fluxes [170], pointing to the need for more

process studies and observations of fluxes. It is possible that

iron isotopes may yield further insight into the role of external

inputs and internal cycling in shaping iron distributions in the

observations and models. Finally, the development of addi-

tional model components dealing with other trace metals, such

as cobalt [171], zinc [172], manganese [173] and copper

[174], may also prove beneficial in constraining the magni-

tude and dynamics of external inputs in particular.

An expanded array of biological taxa may also be expected

in the next generation of ocean biogeochemical models. A

potentially important change in the ocean ecosystem model-

ling paradigm is the inclusion and integration of mixotrophs

which are an important grazer of bacterioplankton, and which

also feed on phytoplankton, microzooplankton and

(sometimes) mesozooplankton. Mixotrophic bacterivory

among the phytoplankton may be important for alleviating

nutrient stress and may increase primary production in oligo-

trophic waters. Some modelling studies indicate that

mixotrophy has a profound impact on marine planktonic eco-

systems and may enhance primary production, biomass trans-

fer to higher trophic levels and the functioning of the biolog-

ical carbon pump [175].

This expanded array of biological taxa may take the con-

cept of the marine biogeochemical model up to the marine

ecosystem model, which will enable the representation of

feedbacks of the marine trophic food web on marine biogeo-

chemical cycles. The work of Lefort et al. [57] provides an

example of this type of marine ecosystem model realizing a

comprehensive coupling between a marine biogeochemical

model (PISCES) with a marine trophic food web model

(APECOSM).

A third important step change is related to the couplings

between Earth system components and ocean biogeochemis-

try. Our review highlights that models have evolved toward a

more comprehensive treatment of biological boundary condi-

tions (e.g. atmospheric deposition, riverine inputs, sediments,

ice sheets, geothermal sources) but that these latter are cur-

rently largely represented using climatological data rather than

dynamic connections. Progress toward more complete cou-

plings between Earth system components such as rivers, ice

sheet/iceberg calving and ice shelves or atmospheric aerosols

can help to better simulate interactions between marine bio-

geochemistry, biogeochemical cycles and climate.

In the same manner, a more comprehensive treatment

of biophysical and biogeochemical feedback could be

realized in the next generation of marine biogeochemi-

cal models. The latter involves, for instance, ocean

emissions of greenhouse gases or biogenic volatile or-

ganic compounds (BVOCs) that are already simulated

by a small number of models (see Table 5). However,

our understanding of the global cycles of DMS, N2O

and CH4 (including, specifically, the processes that pro-

duce them) is much less developed compared with CO2.

Therefore, better treatment of biophysical and biogeo-

chemical feedback requires a larger array of observa-

tional data sets in order to improve our understanding

of the processes underlying these ocean emissions.

From the perspective of tracking future model im-

provement, it is important to stress that our capacity

to assess model performance resulting from any of the

potential advances discussed above is contingent upon

continued improvement in observational constraints.

Existing constraints were adequate for detecting large

skill differences between CMIP5 and CMIP6 models,

but the overall improvement in models necessitates

more precise comparisons to detect skill differences.

Such comparisons are challenged by data sparsity and

Table 5 Ocean natural emissions of non-CO2 trace gases simulated by CMIP6 models

DMS (Tg S year−1) N2O (Tg N year−1) NHx [Tg N year−1)

Observational estimates 17.6–34.4a 1.9–9.4b 2–5c

CNRM-ESM 2-1 24.38 3.97 -

GFDL-ESM 4 - - 3.10

UKESM1-0-LL 16.19 - -

MIROC-ES2L 18.46 4.31 -

MPI-ESM 1-2-LR - 8.89 -

NorESM2-LM 20.0 - -

aLana et al. [176]; bBuitenhuis et al. [177]; c Paulot et al. [178]
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uncertainties in algorithms designed to derive global

fields from sparse data or infer properties of interest

from remotely sensed variables. Continued improvement

in the quality and quantity of data-based constraints is

critical.

That being said, our review of the available pairs of

CMIP5-CMIP6 marine biogeochemical models strongly sug-

gests that careful consideration is needed when selecting mod-

el complexity with regard to the fitness-for-purpose of models

(i.e. carbon cycle feedbacks, multiple Earth system feedbacks,

multi-stressors, adaptation and biodiversity). Indeed, when

confronting model complexity against model mean state per-

formance, our work suggests that complex models do not

necessarily outperform simple models. This is consistent with

the earlier study of Kwiatkowski et al. [179], which directly

led to the choice of marine biogeochemistry model in

UKESM1-0-LL, where across many Earth system relevant

metrics, the simplest model performed best. In this sense,

our review shows that simple models (e.g. OCMIP nutrient

restoring or NPZD type) remain viable when investigating

carbon cycle feedbacks, although more complex models do

still permit a better linkage with the marine biodiversity or a

broader array of feedbacks and potentially more realistic Earth

system behaviour.
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