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A
utomated tracking and analysis of moving objects in image sequences has been and continues to

be one of the major themes in digital image analysis research. This is not surprising in view of

its many applications in video surveillance, multimedia services, automated vehicle guidance and

driver assistance, remote sensing and meteorology, and medical imaging. It is also a recurring theme in

molecular biology. By their very nature, biomolecular systems are dynamic, and it is one of the major chal-

lenges of biomedical research and pharmaceutical industries in the postgenomic era to unravel the spatial

and temporal relationships of these complex systems and to devise strategies to manipulate them. Results

in this area can be expected to have profound social and economic impact in the near future, as they can be

harnessed to improve human health and well-being [1]. Studies into biomolecular dynamics generate ever

increasing amounts of image data. To be able to handle these data and to fully exploit them for describing bi-

ological processes on a quantitative level and building accurate mathematical models of dynamic structures,

computerized motion analysis is rapidly becoming a requisite [2].

Over the past decades, a number of image analysis techniques have been developed in support of such

studies, the details of which were often buried in the small print of the methods sections of papers published

in the biology and biophysics literature. The majority of these techniques were based on rather rudimentary

principles, however. The purpose of this article is to stimulate the application of more advanced computer

vision techniques to tracking in biological molecular imaging, by surveying the literature and sketching

the current state of affairs in the field for a signal and image processing audience. After describing the

basic principles of visualizing molecular dynamics in living cells and giving some examples of biological

molecular dynamics studies, we summarize the problems and limitations intrinsic to imaging at this scale.

Then we discuss the main ingredients of the commonly used tracking paradigm and subsequently reconsider

its competence by comparing it to certain aspects of visual motion perception in human beings, keeping in

mind the complexity and variability of biological image data. We conclude by summarizing the main points

of attention for future research and the challenges that lie ahead.
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STUDYING BIOLOGICAL MOLECULAR DYNAMICS

Currently the most important imaging tool for studying dynamic processes in living cells still is light mi-

croscopy [3]. The use of light microscopes for biological experimentation and investigation goes back to

Antoni van Leeuwenhoek (1632–1723), who discovered the motion of bacteria, sperm cells, blood cells and

more, using a simple magnifying lens. It is only since relatively recently, however, that light microscopy

became mature enough to allow in vivo imaging of molecular complexes and even single molecules (see also

Vonesch et al., this issue). Apart from substantial improvements in optics hardware and the development of

increasingly sensitive electronic imaging sensors, a key factor was the discovery, cloning, and expression of

the jellyfish green fluorescent protein (GFP). This enabled visible fluorescence to be encoded into a specific

gene of interest, which, in turn, enables one to tag and optically detect virtually any protein of interest in

living cells. In recent years, many GFP variants have been developed with different spectral properties,

enabling simultaneous detection of differently labeled proteins and studying their interaction [4].

Combined with time-lapse imaging, these developments have provided powerful tools to study the dy-

namic properties and functions of proteins. An example of this is fluorescence recovery after photobleaching

(FRAP). With this technique, the fluorescence in a region of interest in the cell is selectively quenched by

intense illumination. Subsequent analysis of the degree and rate of fluorescence recovery in this region al-

lows to determine kinetic parameters (diffusion coefficients, mobile fraction, binding/dissociation rates) of

the labeled protein [3]. A complementary example is fluorescence loss in photobleaching (FLIP), in which

a region is repeatedly bleached while the loss of fluorescence in other regions is monitored. This allows

to study the continuity of regions within cells, as only connected regions will show a loss of fluorescence.

While these techniques are useful for determining ensemble average parameters, more detailed studies into

the different modes of motion (immobile, directed, confined, tethered, normal or anomalous diffusion) of

subpopulations of intracellular components require single-particle tracking [5] (the subject matter of this

article), which aims at tracking and motion analysis of individual particles.

A few examples of biological molecular dynamic processes and images (see Figure 1) acquired for

studies into these phenomena may help one to appreciate the challenges of tracking. One of the intracellular

structures being investigated intensively in biology is the cytoskeleton, which consists of several subsystems

of densely interwoven and highly plastic networks of filamentous polymers. One category of cytoskeleton

polymers is constituted by the microtubules. These are required for a variety of cellular functions and their

dynamic behavior is regulated by many factors. Insight into these processes are obtained, for example,

from studies using GFP fused to proteins that associate with the distal ends of growing microtubules [6].

Another largely unresolved mystery being actively researched is the molecular machinery involved in DNA

repair and replication. It consists of a collection of protein complexes that act in a sequential but highly

coordinated fashion [7]. Quantitative motion analyses may unveil how exactly this cast of proteins interacts.

Continuing with DNA-associated phenomena, we mention the study of telomere dynamics. Telomeres are

the nucleoprotein complexes at the natural ends of chromosomes, which distinguish them from DNA breaks

which activate repair mechanisms, and together with specialized binding proteins are crucial for maintaining

chromosome stability, topology, and integrity [8]. Many of the molecular mechanisms involved still remain

to be discovered. As a final example we mention the study of androgen receptors [9], proteins generally

found in the cytoplasm that specifically bind androgens to form complexes that migrate to the nucleus to

induce the transcription of specific segments of DNA. The transcriptional activity, subnuclear distribution,

and nuclear mobility of these complexes are under continuing investigation.

These and numerous other studies generate vast amounts of image data, where the dynamics of hun-

dreds or thousands of particles need to be analyzed quantitatively and as completely as possible to reveal

functional behavior and to detect rare events suggestive of functional heterogeneity. This may lead to the for-
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FIGURE 1 Examples of images acquired for different biological molecular dynamics studies based on

GFP labeling and fluorescence microscopy. Top left: Plus-ends of microtubules in a mouse embryonic

fibroblast cell (single frame, ± 65 × 65 µm, from a 2D time-lapse study, 2 seconds between frames). Top

right: Proliferating cell nuclear antigen (PCNA) in the nucleus of a Chinese hamster ovary cell (single

frame, ± 25 × 25 µm, from a 2D time-lapse study, 30 seconds between frames). Bottom left: Telomeres

in the nuclei of several HeLa cells (single plane, ± 0.9× 0.9 mm, from a single stack, 10 planes per stack,

from a 3D time-lapse study, 10 minutes between stacks). Bottom right: Androgen receptors in the nucleus

of a Hep3B cell (single frame, ± 30×30 µm, from a 2D time-lapse study, about 6 seconds between frames).

See the acknowledgements at the end of this article for credits.

mulation of comprehensive models of molecular processes. Obviously, manual tracking is labor intensive,

costly, inaccurate, and poorly reproducible, and usually only a small fraction of the data can be analyzed in

this manner. This calls for renewed efforts in developing computational image analysis tools.
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FUNDAMENTAL PROBLEMS AND LIMITATIONS

Achieving robustness and high accuracy in tracking and motion analysis in images obtained by light mi-

croscopy is hampered by three factors. The first is the limited spatial resolution of the microscope. Even an

optimally designed and employed microscope, which to a good approximation can be modeled as a linear

shift-invariant system with a finite point-spread function (PSF), suffers from diffraction. The Fraunhofer-

diffraction limited PSF (normalized to unit magnitude at the origin) of a confocal microscope with circular

aperture and operating under design conditions is given by [10]
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x2 + y2 denotes radial distance to the optical axis, z is the axial distance to the focal

plane, i the imaginary unit number, J0 the zeroth-order Bessel function of the first kind, NA the numerical

aperture of the objective lens, and λ the wavelength of the light emitted by the specimen. This function

(see also Figure 2) is band-limited, in both the lateral (in-plane) and the axial (across-plane) direction, with

radial cut-off frequencies of ω
r

= 2α and ω
z

= 2γ, respectively. Although the blurring due to the PSF

can be reduced afterwards to some degree by deconvolution (see Sarder and Nehorai, this issue), it rules out

morphological analysis of individual molecules and impedes studying their interaction.

The second confounding factor is noise. Even if all sources of noise due to system imperfections are

reduced to a minimum, the signal-to-noise ratio (SNR) is still limited because of the randomness introduced

by the quantum nature of light. This randomness follows a Poisson distribution and is therefore not indepen-

dent of the signal. Moreover, in most experiments the signal is kept to a minimum, since high illumination

rapidly quenches fluorescence and may disrupt the cellular and molecular processes being studied. And for

the very same reason, the number of images taken is usually minimized as well. As a result, both the SNR

(see again Figure 1) and the temporal resolution are usually quite low.

A third complicating factor is the large variability of biological image data. Foremost this has to be

attributed to the intrinsic heterogeneity of molecular systems. In addition, a lack of standardization in the

acquisition protocols among studies may result in imagery of the same molecular process with quite different

appearance and quality. The quality of images may not even be constant within one experiment, for example

because of a degradation of the fluorescent probes over time (photobleaching). This is in sharp contrast with

medical investigations, where routine clinical studies are based on standardized imaging protocols, leading

to more consistent image quality. All these factors put high demands on the design of automated image

analysis techniques. This applies not only to tracking and motion analysis, but to other biological image

analysis problems as well (see Vonesch et al., this issue).

COMMON TRACKING PARADIGM

Computational image analysis tools for (semi-)automated tracking of single molecules or molecular com-

pounds within living cells have been developed and reported since the early 1980s. The basic concepts

underlying the vast majority of published methods are virtually the same, however. The commonly used

approach to motion tracking consists of at least the following steps (see also Figure 3): preprocessing the

image data, detecting individual particles per time point, linking particles detected at successive time points,

and analyzing the results. We discuss the state of the art for each of these steps.
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FIGURE 2 Left: Cross-sectional view of the theoretical PSF (strongly contrast-enhanced to show its

ringing structure) of a confocal microscope operating under optimal conditions. Right: The PSF (solid

lines) and its least-squares Gaussian approximation (dotted lines) in both the lateral (top plot) and axial

(bottom plot) direction. The standard deviations are σ r = 0.349 r0 and σz = 0.365 z0, respectively, with

r0 and z0 being the first roots of the PSF in the respective directions.

PREPROCESSING THE IMAGE DATA

One of the most important factors influencing tracking algorithm performance is the SNR. It has been

demonstrated by experiments on artificial data [11] that the accuracy of commonly used tracking algorithms

degrades rapidly as the SNR drops below 20dB and becomes unacceptable below 12dB. (Note that due

to the signal dependence of the noise, different definitions of SNR exist, depending on how the noise is

measured. Here we define the noise level as the standard deviation of the intensities within the object, not

the background.) Such levels are, however, not uncommon in fluorescence imaging. Moreover, it has been

shown [12] that on short time scales, localization inaccuracies caused by noise in the images may make

particle diffusion processes appear anomalous even if they are normal. It is therefore of crucial importance

to enhance the SNR for subsequent particle tracking by applying noise reduction techniques. Since the most

dominant noise source possesses Poisson rather than Gaussian characteristics, nonlinear filtering techniques

are frequently used for this purpose. Examples range from simple median filtering [13] to more sophisticated

anisotropic nonlinear diffusion filtering techniques [14, 15].

Quantitative motion analysis of particles within a living cell obviously requires that the global motion

of the cell itself is known as well [2]. Clearly, tracking is considerably easier when cells retain their position

and morphology throughout an image sequence. If this condition cannot be imposed at the time of image

acquisition, one may attempt to enforce it retrospectively. One approach to accomplish this is to apply

(nonrigid) image registration, a vigorously studied problem in medical imaging, receiving more and more
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FIGURE 3 Schematic of the steps commonly involved in molecular dynamics studies. Depending on

the type of particles and parameters studied, image data is acquired in either 2D, 3D (the case shown),

or even 4D (multi-channel 3D) over time. Preprocessing of the raw data, such as deconvolution, noise

reduction, and spatial alignment of the successive images, is usually required to considerably improve

tracking results. Detection of relevant particles in the images is most effectively done by fitting a predefined

model to the data. Once detected, a host of features can be computed for each particle, which may serve to

divide particles into classes, if applicable. Feature values are also required for computing correspondence

probabilities in the subsequent linking step. The resulting particle tracks may be verified and, if necessary,

corrected using efficient spatiotemporal representations. Finally, a variety of dynamics parameters may be

computed from the tracks. Ultimately these should lead to new insights, which, in turn, will stimulate the

acquisition of new data, as alluded to by the circular structure of the drawing.

attention also in biological imaging [16]. This is done either by maximizing the similarity of the gray-

level distributions of successive images in the sequence according to some predefined criterion [13] or by

computing global position and orientation features derived from the distributions [17]. Another approach is
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to explicitly segment and track the boundaries of the cells over time. Here, the matching may be performed

by iterative closest point algorithms or by optimizing deformable models (more information on tracking at

the cellular level can be found in the article by Zimmer et al., this issue).

DETECTING SUBRESOLUTION PARTICLES

In order to have an idea of the type of motion analysis studies that can be carried out using light microscopy,

it is important to know the level of accuracy that can be attained in pinpointing single molecules. The resolu-

tion of a microscope is inversely proportional to the cut-off frequency of the optical transfer function (OTF),

which for high-NA imaging (using oil immersion lenses) amounts to about 200nm laterally and 600nm axi-

ally. Compared to the size of proteins (on the order of nanometers) this is rather poor and prohibits studying

morphologic properties and dynamic phenomena within a fluorescent spot. The location of the correspond-

ing subresolution particle, however, can be determined to much greater accuracy. When considering optical

factors only, the fundamental limit of the localization accuracy is approximately given by [18]

ǫ =
σ√
N

,

where σ denotes the standard deviation of a Gaussian approximation of the PSF in any spatial direction and

N the number of detected photons coming from the particle during the time period over which fluorescent

signal is integrated. For practical values of the parameters involved, this amounts to an accuracy in the order

of a few nanometers. When including the effects of spatial discretization (sampling), and noise sources

other than the quantum nature of light, the localization error may increase to a few tens of nanometers.

These numbers, which have been confirmed by empirical studies [11], are at least one order of magnitude

below the extension of the PSF and thus the resolution power for separating two objects.

A number of fundamentally different approaches exist to estimating the positions of particles from

individual images of a series. Most particle tracking algorithms published to date are based on either one

or a combination of these. The computationally simplest approach is to calculate the centroids, or cen-

ters of (intensity) mass, of relevant spots. This requires segmentation of the image to suppress irrelevant

background structures, usually done by thresholding based on intensity or other image features. Another,

computationally more demanding approach is local image registration, where for each spot in one image the

local intensity distribution serves as a template to be matched with neighboring distributions in the next im-

age. This requires choosing and optimizing a similarity measure, for which normalized cross-correlation or

the sum of (squared) intensity differences are often used. A conceptually somewhat similar but still distinct

approach is to fit a predefined mathematical model of the spot intensity distribution. Usually this comes

down to least-squares fitting of a Gaussian approximation of the PSF.

These approaches were quantitatively compared under different controlled conditions using artificial

2D time-lapse image sequences [11]. It was demonstrated that for subresolution particles, Gaussian fitting is

the best method by several criteria, which intuitively is explained by the fact that in this context it constitutes

the (near-)matched filtering approach to detection. Given the superiority of this approach, attempts have

been made to extend it to simultaneous detection and localization of multiple particles separated by less than

the PSF extension (appearing as overlapping spots in the images), using Gaussian mixture models. These

consist of a linear combination of kernels, the number and parameters of which are optimized simultaneously

(in either a bottom-up or a top-down fashion) according to some goodness-of-fit criterion. It has been

demonstrated experimentally [19] that such methods are indeed capable of separating spots significantly

below the inverse of the OTF cut-off frequency. Importantly, with this approach, the resolution is no longer

dependent primarily on the PSF extension, but is essentially determined by the SNR of the image data.

Resolving particles under these circumstances means how high a localization accuracy can be achieved to
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decide whether the coordinate difference between two particles is statistically significant. As shown by the

cited studies, Gaussian fitting breaks down at an SNR of about 12dB. Other studies [20] seem to indicate

that multiscale approaches are potentially more robust against noise.

LINKING DETECTED PARTICLES

Once particles have been detected in all relevant frames of a sequence, a correspondence between them

needs to be established. In most practical situations this is by no means trivial, as the number of detected

particles will generally not be constant over time. Limitations in the image acquisition process may cause

not all particles to be captured and resolved at all times: particles may enter or exit the field of view, they

may approach each other to distances that are no longer resolvable so that they merge into a single spot, or,

conversely, a spot that seemed to represent a single particle in one frame may turn out be a cluster of particles

splitting off in the next. In addition, limited detector performance at low SNRs almost certainly leads to

varying degrees of under- or oversegmentation (depending on the parameter settings). In combination, these

factors seriously complicate the development of linking strategies.

As in any correspondence problem, the linking of particles detected in successive frames requires the

specification of a distance measure, where ‘distance’ may be defined in terms of spatial proximity as well

as similarity in appearance or conformity to expectation. The latter types of features may be computed

from the image data, such as size (volume or surface area), integrated intensity or intensity curvature, or

they may be derived from the evolving trajectory, such as velocity (magnitude as well as orientation) or the

difference in extrapolated position [14]. Together with spatial proximity, these features may be combined

into a single distance measure either deterministically or by using fuzzy-logic based approaches [2]. In

some applications, where it is known a priori that each particle belongs to only one of a finite number of

categories, some of these features may be used in a classification procedure which first separates particles

into biologically meaningful subsets [19], to be kept separated in the linking stage.

Methods for linking corresponding particles in successive frames can roughly be classified into “local”

and “global”. The former type of methods operate in a per-particle fashion: each particle in one frame is

linked to a particle in the next (or previous) frame that minimizes a predefined distance measure. (Often

this involves specifying a maximum allowable distance, indicating track initiation or termination.) This is

the most frequently used approach to linking and may yield satisfactory results in scenes with relatively

low particle densities and well-separated spots. In more complex situations with much higher densities

and overlapping spots, the linking problem cannot be solved unambiguously without involving neighboring

or even all detected particles and finding the optimal correspondences for them simultaneously. Global

correspondence search strategies are well-known in image processing [21]. However, many of these perform

poorly when applied to biological data because of too simplistic (mostly global) assumptions of particle

motion modes, which cannot cope with the intrinsic heterogeneity of motion within one particle trajectory

as well as among particles. In addition, these strategies are computationally more demanding.

ANALYZING TRACKING RESULTS

Before embarking on a thorough quantitative analysis of the results of fully automated tracking algorithms,

it is good practice to first examine and verify these qualitatively. Especially at low SNRs, detection and

linking errors may easily occur, even with current state-of-the-art algorithms, and require manual correction

afterwards. Simply browsing through the data in a frame-by-frame fashion, as was done in early studies, is

cumbersome and does not provide sufficient insight into the interrelations between detected features. In the

past couple of years, more effective ways to represent and visualize spatiotemporal data have appeared in the

literature (see Figure 4 for examples), based on (combined) volume and surface rendering techniques [2].
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FIGURE 4 Different visualizations of time-lapse image data and particle tracks using representations sim-

ilar to [14]. Left top: Montage of a number of frames from a 2D time-lapse image sequence. In this case

the sequence was artificially created by our particle track generator developed for controlled quantitative

validation of tracking algorithms. Left bottom: Spatiotemporal view of the particle tracks. The track co-

ordinates are known exactly (floating-point precision) at the sampling times and can be interpolated using

cubic splines to obtain continuous track representations. Right top: Combined visualization of frames and

tracks giving a qualitative impression of the accuracy and consistency of the tracking results. Note that

such representations are suitable only for 2D time-lapse data. Visualization of 3D time-lapse image data

requires animations or projections. Right bottom: Spatiotemporal view of particle tracks from an artificial

3D time-lapse image sequence (not shown), with the t-coordinate indicated along the trajectories by small

spheres. Since the spacing between time points is indicative of the velocity of a particle, this may serve as

a cue for consistency checking if velocities are known to vary only gradually.

Apart from assisting in the verification of tracking results, such visualizations also give first impressions of

possible trends in the data, which may motivate specific quantitative analyses.

Once tracking results are verified (and possibly corrected), a host of motion parameters can be derived

from them. Displacements, velocities, and accelerations are easily computed per particle and even per time

point or interval. Generally, these values are studied collectively over larger numbers of particles, lumping
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the intrinsic heterogeneity of particle behavior into histograms that reveal the most dominant modes of

motion. This also allows the discovery of rare phenomena, which can subsequently be studied in detail

by mapping back to the original data. Another frequently studied motion parameter is the mean squared

displacement (MSD), which summarizes particle displacement behavior over an entire trajectory. Averaged

over subpopulations, it enables the computation of their diffusion coefficients and exponents [5, 12]. An

important observation made recently [22] is that particle trajectories should really be studied in 3D over

time: 2D data analyses may lead to significant information loss and severe misinterpretation.

With the development of more robust automated tracking methods in cellular and molecular biology it

will become more and more possible to accumulate large trajectory databases that allow statistical distinc-

tion of behavioral heterogeneity from measurement noise at the single particle level [23]. The analysis of

behavioral heterogeneity defines an emerging paradigm in molecular biology, the goal of which is to identify

all possible states and the relevant state transitions of a system in its natural mode of action. This approach

is likely to reveal the mechanism of cellular homeostasis that underlies robustness in life. Knowing the state

space of a healthy molecular process, it will be much easier to understand abnormal behavior that leads to

disease and to define strategies that return the deviated system to its normal states. Therefore, comprehen-

sive and automated analysis of large scale experimental data is an urgent item on the biomedical research

agenda, placing image analysis and pattern recognition into the center of progress.

PARTICLE TRACKING RECONSIDERED

Since it must be our aim to minimize manual labor while improving sensitivity and objectivity, and ulti-

mately to replace human beings, in the analysis of cellular and molecular images, it is worth studying how

the discussed techniques compare to motion perception in the human visual system. Although less accurate

and reproducible in determining the precise coordinates of particles, expert human observers are still much

better at confirming the presence or absence of a particle at very low fluorescence levels and making corre-

spondences between frames at relatively high particle densities. It is an experimental fact that even at SNRs

as low as 1dB, in which case signals are virtually indistinguishable from the noise in the individual frames

of a time-lapse series, humans are still able to “see” a particle and to make rough estimates of its direction

and velocity when shown the series as a movie, at a suitable frame rate. Given the poor performance of

current approaches to computerized tracking under more severe practical conditions, one wonders about the

qualities of the human visual system that explain its superiority in such cases.

Recent experimental psychophysical and neurological studies have revealed important aspects of hu-

man vision that may provide clues. One aspect, especially relevant to larger objects, is that visual motion

perception involves multiple motion systems, of which the subsystem of local detectors that responds just

to moving luminance patterns is but the lowest-order and simplest. Higher-order systems involve texture-

sensitive units and differential salience-weighting of features determined by selective attention [24]. Another

important finding is that the detection of extended trajectories is mediated by a flexible network of detectors

that propagate activation among units tuned to similar directions of motion [25]. Effectively, the network

operates as a directionally-selective spatiotemporal integrator: motion detectors selective to all directions

of motion at many spatiotemporal scales exist at each location in the visual field. Temporal integration and

assumptions about temporal coherence are of crucial importance in detecting local motion of weak and/or

ambiguous spatial distributions [26]. Of equal importance are the cognitive processes involved in human

visual motion perception. Generally, expert biologists are able to make more sense out of the data than do

non-experts, through the use of a priori knowledge about the dynamics.

One of the striking characteristics of most past and current approaches to particle tracking, however,

is the rather strict discrimination between spatial and temporal information. Methods for detecting particles
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and estimating their positions per frame typically rely on spatial image features only and do not incorporate

information from other frames. Nor do they yield many clues regarding possible interframe correspon-

dences. In turn, methods for addressing the resulting linking problem are generally limited to considering

only two or three frames at a time. Alternatively, more integrated optic flow techniques have been pro-

posed [15], which consist in solving a spatiotemporal differential equation for every point in spacetime.

While useful for computing velocity fields and distributions, such techniques do not yield explicit particle

positions and correspondences without further processing, and they are suitable only in the case of dis-

placements between time frames that are relatively small compared to the size of the object [2]. Finally,

the use of prior knowledge to detect weak signals and to resolve ambiguous signals has so far been limited

mainly to restricting the allowed maximum particle velocity, or displacement between time frames. These

observations suggest interesting directions for future research.

FUTURE CHALLENGES

Advances in biological imaging technology continue to provide new opportunities in unraveling the com-

plex processes underlying the basic building blocks of life. Molecular biology research has only just begun

to study how proteins are spatially and temporally organized in larger functional units and how they be-

have under the influence of selective perturbations of the system by genetic and molecular interventions.

Answering these questions will be critical to understanding diseases and our ability of designing more ef-

fective drugs and therapeutic strategies. Since more and more research is being done in living cells, with

high-resolution time-lapse image data sets that are not only very large in size but also highly variable and

complex, research in this area is rapidly becoming dependent on automated techniques for image processing

and analysis. Commercial software packages with modules for particle tracking and motion analysis are

already available, but it is highly unlikely that a general-purpose algorithm, developed to provide a solution

to many different tracking problems, is going to be the best fit to any particular tracking problem. Further-

more, although there is still room for improving light microscopic imaging (witness the recent development

of 4Pi-confocal microscopy and image-interference widefield microscopy) and considerable progress can

be expected from new physical concepts capable of breaking the diffraction barrier [27], some of the fun-

damental imaging problems and limitations mentioned in this article will never be entirely eliminated. As

new biological questions continue to be posed and addressed with new imaging technology, there will be

a continuing demand for new and improved, dedicated tracking and motion analysis algorithms. Thus the

future is bright for researchers in signal and image processing.

From the above considerations, a number of possible research directions emerge as particularly chal-

lenging. Studies in human vision seem to indicate that integration is the keyword to developing more robust

tracking algorithms. Whereas some have proposed to generate continuous spacetime reconstructions of par-

ticle tracks after detection and linking [14], only very few attempts have been made so far to address the

tracking problem itself in a more integrated, spatiotemporal fashion [28,29]. Also very important appears to

be the possibility to incorporate prior knowledge of dynamic properties, that is of spatiotemporal geometry

and topology. This requires research efforts to become increasingly multidisciplinary, with imaging and im-

age processing experts working closely together with biologists in building flexible spatiotemporal models

capable of integrating accumulating knowledge about the dynamics of molecular complexes. A different line

of research is suggested by the fact that in some studies, images are of such low quality and high complexity

that even expert biologists are not able to track individual particles in a deterministic way. More proba-

bilistic approaches to tracking have already been successfully applied in other fields but are relatively new

in biological imaging [30]. Finally, we note the importance of developing rigorous validation procedures

and standardized protocols to generating test data in order to facilitate objective comparison of different



TRACKING IN MOLECULAR BIOIMAGING 12

algorithms. Ultimately, these efforts will contribute to the verification of biophysical models, leading to a

deeper understanding of the molecular mechanisms of life.
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