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Abstract

Query optimizers rely on fast� high�quality estimates of re�
sult sizes in order to select between various join plans� Self�
join sizes of relations provide bounds on the join size of any
pairs of such relations� It also indicates the degree of skew
in the data� and has been advocated for several estimation
procedures� Exact computation of the self�join size requires
storage proportional to the number of distinct attribute val�
ues� which may be prohibitively large� In this paper� we
study algorithms for tracking �approximate� self�join sizes
in limited storage in the presence of insertions and deletions
to the relations� Such algorithms detect changes in the de�
gree of skew without an expensive recomputation from the
base data� We show that an algorithm based on a tug�of�
war approach provides a more accurate estimation than one
based on a sample�and�count approach which is in turn more
accurate than a sampling�only approach�

Next� we study algorithms for tracking �approximate�
join sizes in limited storage� the goal is to maintain a small
signature of each relation such that join sizes can be accu�
rately estimated between any pairs of relations� We show
that taking random samples for join signatures can lead to
inaccurate estimation unless the sample size is quite large�
moreover� by a lower bound we show� no other signature
scheme can signi�cantly improve upon sampling without
further assumptions� These negative results are shown to
hold even in the presence of sanity bounds� On the other
hand� we present a join signature scheme based on tug�of�
war signatures that provides guarantees on join size estima�
tion as a function of the self�join sizes of the joining rela�
tions� this scheme can signi�cantly improve upon the sam�
pling scheme�

� Introduction

The skew of a data set represents how far the frequency
distribution of the items that occur in the data set is from
being uniform� The skew represents important demographic
information about the data� and is used to guide the compu�
tation in several applications of modern database systems�

In a relational database� the size of the self�join on an at�
tribute in a relation indicates the degree of skew in the dis�
tribution of attribute values� For a relation A� the self�join
size �also called the second frequency moment� on an at�
tribute in A with value domain D is

P
i�D

a�i � where ai is
the frequency of attribute value i in A� Ioannidis and Poos�
ala �IP�	
 have advocated using self�join sizes for error es�
timation in the context of estimating query result sizes and
access plan costs� Haas et al �HNSS�	
 advocate its use for
selecting between sampling based algorithms for estimating
the number of distinct attribute values in a relation�

Self�join sizes of relations provide bounds on the join
size of any pairs of such relations� as follows� Consider the
join of relations A and B on joining attribute�s� with value
domain D� For i � D� let ai and bi be the frequency of
the ith value in A and B� respectively� Then the join size�
jA �� Bj �P

i�D
aibi� satis�es

jA �� Bj � SJ�A� � SJ�B�



�

where SJ�A� � jA �� Aj and SJ�B� � jB �� Bj are the self�
join sizes on the joining attributes� To see this� note that for
any real numbers x and y� �x�y�� � �� Thus x��
xy�y� �
�� i�e�� �x� � y���
 � xy� Hence

P
i�D

aibi �
P

i�D
�a�i �

b�i ��
 � �
P

i�D
a�i �

P
i�D

b�i ��
 � �SJ�A� � SJ�B���
�
For many distributions� such as zip�an and exponen�

tial� the self�join size uniquely determines the parameter
of the distribution� For example� consider an exponential
distribution� in which the ith most popular value occurs
with frequency n�� � ����i in a relation� A� of size n�
Then SJ�A� �

P
i
�n��� ����i�� � n���� ���P

i
�����i �

n��� � ������� � �� � n��� � ����� � ��� It follows that
� � �n� � SJ�A����n� � SJ�A���

In the statistics literature� the self�join size is referred to
as the repeat rate or Gini�s index of homogeneity needed in
order to compute the surprise index of the sequence �see�
e�g�� �Goo��
��

The self�join size can be computed in one pass over the
data by computing a full histogram of the data� and then
summing the squares of the frequency counts for each at�
tribute value� However� this requires storage proportional
to the number of distinct attribute values� which may be
prohibitively large�

In this paper� we study algorithms for tracking �approx�
imate� self�join sizes in limited storage in the presence of in�
sertions and deletions to the database� Alon et al �AMS��

proposed two algorithms for tracking self�join sizes in the
presence of insertions� which we denote as sample�count and



tug�of�war� and presented upper bounds on the space re�
quired to guarantee a desired accuracy with high probabil�
ity� We consider the practical aspects of these algorithms�
by considering also deletions� implementation issues� and ex�
perimental evaluation� comparing these two approximation
algorithms to a naive sampling approach� across a range of
data sets� Our experiments demonstrate the practical utility
of the proposed algorithms� by showing that good estimates
are obtained while using only a small fraction of the memory
required for an exact self�join size� We compare the accu�
racy of the three approximation algorithms� demonstrating
that unless the self�join size is predominantly determined
by very few items� the naive sampling approach may not
be very useful� In contrast� both approximation algorithms
presented by Alon et al provide accurate estimations� Our
experiments indicate that tug�of�war is more accurate than
sample�count on a wide variety of data sets� although the ac�
curacy of sample�count is often close and sometimes better
than that of tug�of�war�

Next� we study algorithms for tracking �approximate�
join sizes in limited storage� the goal is to maintain a small
signature of each relation such that join sizes can be accu�
rately estimated between any pairs of relations� We show
that taking random samples for join signatures can lead to
inaccurate estimation unless the sample size is quite large�
Moreover� by a lower bound we show� no other signature
scheme can provide signi�cantly better estimation guaran�
tees without further assumptions� These negative results are
shown to hold even in the presence of sanity bounds�� On
the other hand� we present a join signature scheme based
on tug�of�war �self�join� signatures that provides guarantees
on join size estimation as a function of the self�join sizes of
the joining relations� this scheme can signi�cantly improve
upon the sampling scheme�

The performance and accuracy bounds of the algorithms
in this paper are valid for any data distributions�

Synopsis data structures and tracking algorithms� The sig�
nature schemes studied in this paper are examples of syn�
opsis data structures� data structures whose size is substan�
tively smaller than the full data set and provide typically
approximate answers to queries� There are many existing
examples of synopsis data structures �BDF���� GM��b
� In
brief� a synopsis data structure has the following advantages
over a non�synopsis �e�g�� linear space� data structure� �a� it
may reside in main memory� enabling query responses and
data structure updates that avoid disk accesses altogether�
�b� it can be transmitted remotely at minimal cost� �c� it has
minimal impact on the overall storage costs of a system� �d�
it leaves space in the memory for other processing �available
main memory is a precious resource for external memory al�
gorithms�� and �e� it can serve as a small surrogate for data
sets that are currently expensive or impossible to access� On
the other hand� the answers are typically only approximate�
not exact� This is acceptable in many cases� such as the
scenario considered in this paper of size estimation within a
query optimizer�

One can consider synopsis data structures that are static
or dynamic �i�e�� incrementally maintained in the presence of
data insertions and deletions�� Tracking in limited storage

�Sanity bounds stipulate a lower bound on the quantity being es�
timated� such that estimation errors are analyzed only for quantities
above this lower bound �see� e�g�� �LN��� LNS��� GGMS��	
� presum�
ably the range of interest to the application making use of the esti�
mate� Since estimating small quantities is often considerably more
di�cult than estimating large quantities� the use of sanity bounds
may improve considerably the estimation guarantees�

considers this latter case� Tracking algorithms can detect
changes in the quantity to be estimated without an expen�
sive recomputation from the base data� and can also be used
to compute an �approximate� answer�estimation in one pass
and limited storage� On the other hand� they incur a cost
at the time the data is updated� In a typical �o�ine� data
warehouse scenario� data loading occurs in batch mode� in
between batches of queries� tracking algorithms can be well�
suited for such scenarios� In scenarios where data updates
occur intermixed with queries� the tracking algorithm must
have very low overhead in order to avoid creating a concur�
rency bottleneck� or otherwise must be applied periodically
in batch mode� In this latter case� the accuracy guarantees
are weakened accordingly to account for updates not yet
propagated to the tracking algorithm�

We view the results in this paper as a step towards the
further understanding and study of synopsis data structures
and tracking algorithms�

Related work� �BDF���
 presents a survey of data reduc�
tion techniques for massive data sets� �GM��b
 presents a
formal framework for evaluating synopsis data structures
and a survey of some of the results in this area� There
has been a �urry of recent work in approximate query an�
swering �e�g�� �VL��� BDF���� GMP��a� GMP��b� HHW���
GM��a� AGPR��� HH��� AGP��� MS��
�� The work in
�HHW��� AGPR��� HH��
 has looked at the problem of
providing approximate answers to queries seeking aggregates
�e�g�� sum� avg� of attribute values for the tuples satisfying a
predicate that occur in the join of multiple relations� Thus
although joins are involved� the goal in these works is to
estimate the aggregate� not the join size�

There is an extensive literature on join size estimation
�e�g�� �H�OT��� LNS��� HNSS��� LN�	� GGMS��
�� These
papers consider the traditional approach of estimating the
join sizes without the bene�t of precomputed signatures�
and hence incur large overheads at estimation time� For
example� sampling�based approaches take samples of the
databases at the time of estimation� such sampling is slow
due to the random disk accesses involved� In contrast� our
tracking approaches do not incur disk accesses at estimation
time� Also� they adapt incrementally to database updates�
in contrast to previous approaches that recompute from
scratch at each estimation time� �Some of our analysis holds
for this traditional scenario as well�� Poosala �Poo��
 pro�
posed join size estimation using signatures that are the Com�
pressed histogram of the relation� �Such histograms can be
maintained incrementally using the algorithm in �GMP��b
��
However� there are no good guarantees on the accuracy of
such estimations� Manku et al �MRL��
 presented tracking
algorithms for computing approximate medians and other
quantiles in limited storage�

Outline� The rest of the paper is organized as follows� In
Section 
 we describe the sample�count and tug�of�war al�
gorithms� implementation issues for both algorithms� and
extensions to handle deletions� We also present a new lower
bound for the naive sampling approach� Section � presents
our experimental study of the three algorithms for self�join
estimation� Section � presents our new results for join size
estimation� Finally� concluding remarks appear in Section 	�



� Tracking self�join sizes

In this section we describe the two algorithms for approxi�
mating self�join sizes in limited storage presented in �AMS��
�
For each algorithm� we provide extensions to handle dele�
tions and present trade�o�s in implementing the basic steps
of algorithm� Let A � �v�� v�� � � � � vn� be a sequence of n val�
ues on which we are to estimate the self�join size� where each
vi is a member of D � f�� 
� � � � � tg� The basic idea in both
algorithms is a natural one� In order to estimate the self�join
size� SJ�A�� a random variable is de�ned that can be com�
puted under a given space constraint� whose expected value
is SJ�A�� and whose variance is relatively small� The desired
result is then obtained by considering su�ciently many such
random variables� partitioning them into groups� computing
the average within each group� and then taking the median
of the group averages�

��� Algorithm sample�count

The number of memory words used by the algorithm is
s � s� � s�� where s� is a parameter that determines the ac�
curacy of the result� and s� determines the con�dence� The
algorithm computes s� random variables Y�� Y�� � � � � Ys� and
outputs their median Y � Each Yi is the average of s� random
variables Xij � � � j � s�� where the Xij are independent�
identically distributed random variables� Each of the vari�
ables X � Xij is computed from the sequence in the same
way as follows�

� Choose a random member vp of the sequence A� where
the index p is chosen randomly and uniformly among
the numbers �� 
� � � � � n� suppose that vp � l � � D��

� Let r � jfq � q � p� vq � lgj � � �� be the number of
occurrences of l among the members of the sequence
A following vp �inclusive��

� Let X � n�
r � �� �

Extensions� Note that in the tracking scenario� the sequence
A is observed as a series of insertions� and we may be re�
quired at any point to answer a self�join size query on the
sequence to date� Moreover� the length� n� of the sequence
is not �xed in advance� but is increasing with each insert�

We can adapt this algorithm �particularly the �rst step�
to handle the tracking scenario� as follows� We start with
n � �� select v� as our random member� and set r to be
�� In general� after n� � inserts� we have �for each variable
Xij� some value for our random member vl and for r� When
the next element vn is inserted� we replace vl by that ele�
ment with probability ��n� In case of such a replacement�
we reset r to be �� If no replacement� vl stays as it is� and
r increases by � if vn � vl and otherwise does not change�
The cost of adapting the s sample points is O�s�� and this
correction process may be too expensive if executed for ev�
ery new sequence member� A more e�cient implementation
avoids the adaptation after every insertion using standard
techniques that trade o� correction frequency versus estima�
tion e�ectiveness between corrections�

For the implementation of the second step� we use the
following approach in order to avoid incrementing k counters
each time a value v is inserted that occurs k times among the
s selected sample points �large k will be expected for highly
skewed data�� For each value v in the �current� sample� we
maintain a count kv of the number of sample points with
value v and an aggregate counter� Cv� corresponding to the

sum of the kv r�counters associated with sample points with
value v� For each sample point� we also store the value of
Cv at the time the sample point was inserted� The values
kv and Cv are stored in a lookup table using v as the lookup
key� On the arrival of a new sequence member with value
v� we retrieve kv and Cv� and increment Cv by kv� If the
new member is selected to be in the sample� then we also
increment kv and store the value of Cv with the sample
point� This results in O��� time with high probability to
process the new insert� regardless of the input set and of the
sample size s� Note that the individual r�counters are not
kept� When they are needed in order to produce an estimate�
the kv counters for a value v are calculated in O�kv� time
by reversing the steps used to generate Cv�

To handle deletions� we assume that the adversary can�
not adapt the sequence in response to the random choices
made by our algorithm� We �rst observe that for the purpose
of our estimation algorithms� we can replace each sequence
member by its value �so that sequence members with the
same value are indistinguishable�� Thus� whenever there is
a deletion with value v� we can assume without loss of gen�
erality that the member to be deleted is the one with value
v that was the last one to be inserted �and not yet deleted��
Using this assumption� we can represent each sequence of in�
sertions and deletions by a canonical sequence which consists
of insertions only� but possibly contains nill values� Let �A
be a �pre�x� sequence consisting of insertions and deletions�

We obtain its canonical sequence A� by scanning �A from left
to right� whenever we see delete�v�� we replace it with a nill
value� and in addition we �nd the nearest member to the
left of it with value v and replace it with a nill value as well�
The non�nill values in A� constitute the multi�set of values
that remain in the relation after processing the sequence �A�
Let A be the subsequence of A� when the locations with the
nill values are ignored�

We now show how the fast implementation of the second
step of sample�count can be extended to handle deletions as
well� In response to a delete�v�� we reverse the operations
that were done when the last remaining member with value
v was inserted� If the value v is in the sample �which can
be determined by table lookup�� we retrieve kv and Cv� and
decrementCv by kv� If Cv is now smaller than one of the �Cv

at time selected�� then remove that sample point and decre�
ment kv� since we know that the member was selected into
the sample upon the occurrence of the value v which is now
deleted� This results in O��� time with high probability to
process the new delete� Moreover� we have reduced the sce�
nario with deletions to one with only insertions� and we can
immediately apply the corresponding theorem in �AMS��
�
to obtain�

Theorem ��� The estimate Y computed by the above algo�
rithm satis�es�

Prob
�
jY � SJ�A�j � �t����

p
s�
�
� �� 
�s��� �

Note that we handle deletions as they occur� since in
the tracking scenario of this paper� we must be prepared at
all times to provide an answer to self�join size estimation
queries on the sequence to date� Moreover� note that the
delete operation may remove sample points without replac�
ing them� dropping the number of sample points below s�
As long as the number of delete operations in any pre�x of
a sequence �A is at most ��	 of the length of �A� then Cher�
no� bounds can be used to show that with high probability
the number of remaining sample points after processing the



sequence �A is at least s�
� As a result� we obtain accuracy
that is provably close to that obtained for insertions only� in
which the number of sample items is guaranteed to be s�

Note that the sample�count algorithm is reminiscent of
the algorithm in �GM��a
 for maintaining �counting sam�
ples�� Counting samples are used to track the top�k most
popular values in a data set� and not the self�join size� They
permit a value to be selected for the sample at most once�
whereas it is crucial for self�join size estimation that a value
can be selected for the sample many times� The top�k list
attempts to report the top k values and their frequency�
whereas the self�join size reports a single estimator� This
allows the latter to apply the averaging and median tech�
niques described above within the limited storage�

��� Algorithm tug�of�war

The tug�of�war algorithm can be illustrated as follows� Sup�
pose that a crowd consists of several groups of varying num�
bers of people� and that our goal is to estimate the skew in
the distribution of people to groups� That is� we would like
to estimate SJ�A� for the set fvigni��� where vi is the group
to which the i�th person belongs� We arrange a tug�of�war�
forming two teams by having each group assigned at random
to one of the teams� Equating the displacement of the rope
from its original location with the di�erence in the sizes of
the two teams� it is shown in �AMS��
 that the expected
square of the rope displacement is exactly SJ�A�� and that
the variance is reasonably small�

In more detail� the number of memory words used by
tug�of�war is s � s� � s�� where s� is a parameter that de�
termines the accuracy of the result� and s� determines the
con�dence� As in sample�count� the output Y is the median
of s� random variables Y�� Y�� � � � � Ys� � each being the aver�
age of s� random variables Xij � � � j � s�� where the Xij

are independent� identically distributed random variables�
Each X � Xij is computed from the sequence in the same
way� as follows�

� Select at random a ��wise independent mapping i ��
�i� where i � f�� 
� � � � � tg and �i � f��� �g�

� Let Z �Pt

i��
�imi� where mi is the number of mem�

bers with value i�

� Let X � Z��

Extensions� To implement the �rst step� we need to select
s independent hash functions� h�v� � �v � f��� �g� which
can be done in O�s� time� In practice it may be often rea�
sonable to use hash functions that may not be ��wise in�
dependent but easier to compute� In the second step� we
maintain s program variables that hold the partial sums
Z �

Pn

j��
h�vj� �

Pn

j��
�vj � where n is the current se�

quence length� For each incoming sequence member with
value i we compute the s independent mappings �i� and add
them to the corresponding program variables Z in O�s� time�

To handle deletions� given an input sequence �A as above� we
imitate running algorithm tug�of�war on A by the following
simple correction� In response to a delete�v�� we reverse the
operations that were done when the last remaining mem�
ber with value v was inserted� for each program variable Z
we subtract �v� It follows from the corresponding theorem
in �AMS��
 that�

Theorem ��� The estimate Y computed by the above algo�
rithm satis�es�

Prob �jY � SJ�A�j � ��
p
s�� � �� 
�s��� �

��� Algorithm naive�sampling

We contrast algorithm sample�count and algorithm tug�of�
war with the following naive sampling heuristic �not consid�
ered in �AMS��
�� denoted below as algorithm naive�sampling�
We sample s elements �without replacement� from the se�
quence� and compute the self�join size� SJ�S�� of the sample
set S� by �rst computing a simple histogram of at most s
buckets on the values that occur in the sample set� and then
summing the squares of the bucket counts� We then scale
SJ�S� into an estimator X whose expected value is SJ�A��

X � n�
�SJ�S�� s�n�n� ��

s�s� �� �

We have the following lower bound on the sample size
required to provide a good quality estimate of the self�join
size� This lower bound applies even for static relations �i�e��
the di�culty arises even when there is no tracking require�
ment��

Lemma ��� Algorithm naive�sampling requires a sample of
size  �

p
n� to estimate the self�join size to within less than

a factor of 
 with high probability�

Proof� Let F contain n items of di�erent values� Let
G contain n�
 pairs of items such that each pair contains
items with the same value� Members of di�erent pairs have
di�erent values� The estimator for F will be n� Since F and
G are nearly indistinguishable to samples of size o�

p
n�� the

estimator for G will also be n with a sizable probability p�
On the other hand� SJ�G� � 
�SJ�F � � 
n� so the estimator
will be a factor of 
 o� with probability at least p�

��� Comparison of the algorithms

In both algorithms sample�count and tug�of�war� a single
random variable is expected to provide the right estimate�
However� in order to guarantee that for any input set� al�
gorithm sample�count produces an accurate estimate with
high probability� we need to have a sample of size O�

p
t�� In

theory� algorithm sample�count is inferior to algorithm tug�
of�war in both its space requirement and its simplicity of
implementation� However� recall that algorithm tug�of�war
is more demanding in its update time� which is proportional
to the sample size� More importantly perhaps� the analysis
given by �AMS��
 provided theoretical bounds that apply in
general to any input set� This leaves open the question as
to which of the methods would demonstrate better perfor�
mance in actual use� The experimental studies in the next
section attempt to partially consider this issue�

� Experimental Results

We have implemented the algorithms sample�count� tug�of�
war and naive�sampling� and tested their performance on
various data sequences� We used di�erent data sets ranging
from uniformly distributed random items to the sequences
of words taken from the book Wuthering Heights and from
Genesis� The data sets were either random according to
some �xed distribution �like Poisson�� excerpts from books�



Table �� Data sets and their characteristics

data set length dom� size self�join size type Fig�

path ��� ��� ��� ��� ���� ��� arti�cial �
zip��	 �
�� ��� 
� ��� 
�	����e � �� statistical 
��
zip��� 	��� ��� �� ��� ������	e � �� statistical �
uniform �� ���� ��� �
� ��� ���	���e � �� statistical 	
mf
 ��� ��� �� ��� �������e � �� statistical �
mf� ��� ��� 
� ��� ���� ��� statistical �

selfsimilar �
�� ��� 
�� �������e � �� statistical �
poisson �
�� ��� �� �������e � �� statistical �
wuther �
�� �	
 ��� 	�� ����	��e � �� text ��
genesis ��� ��� 
� ��� 
������e � �� text ��
brown
 �		� ��� ��� �	� 	�����
e � �� text �

xout� ��
� ��
 �
� ��� ����


e � �� geometric ��
yout� ��
� ��
 �
� ��� ���	�
�e � �� geometric ��

or geometric coordinates taken from spatial data� We also
created an arti�cial data set designed to favor tug�of�war
over sample�count�

Table � summarizes the data sets considered in this pa�
per� For each data set� we list its length �n�� its domain size
�t�� the actual self�join size� and its type� either arti�cial �
arti�cially created� statistical � obtained using a statistical
package� text � excerpts from well�known literary works� or
geometric � coordinates taken from a spatial data set�

The performance was measured for sample sizes 
i� for
i � �� �� 
� � � � � �� �i�e�� from � to ��� ����� An example plot
is given in Fig� �� Plots for the other data sets appear in
Figs� �!�� at the end of the paper� In each plot� the labels on
the x axis show the base two logarithm of the sample size�
The labels on the y axis show the ratio of the estimated
size to the actual size of the self�join� i�e�� the estimate nor�
malized by the actual� The actual join size is shown as a
horizontal line at y � �� For each sample size� we plot the
normalized estimate produced by algorithms sample�count�
tug�of�war� and naive�sampling� For all three algorithms� by
the law of large numbers� the normalized estimate must tend
to � as the sample size grows� since the expectation of each
estimator equals the self�join size� Each plotted point corre�
sponds to one run of an algorithm� this seemed appropriate
since each estimator is already based on the aggregation of
many independent experiments�

��� Summary of the results

Algorithms sample�count and tug�of�war are always clear
winners� although in rare cases naive sampling performs al�
most as well as either sample�count or tug�of�war� Both
sample�count and tug�of�war perform well even with a very
modest number of sample points relative to the data set
sizes� They appear to reliably estimate the self�join size of
di�erent kinds of sequences� both synthetic �from the Uni�
form� Zipf� Poisson� Self�similar� Multi�fractal distributions�
and real �Wuthering Heights� Genesis� Brown Corpus� Spa�
tial data��

In around half of the plots� the tug�of�war algorithm con�
verges noticeably faster than the sample�count algorithm�
For most of the remaining plots� the di�erence between the
two is modest� The most dramatic case in which sample�
count produces better estimates than tug�of�war is for the
Uniform distribution�

The �path� data set was created in order to verify the
theoretical analysis that there are data sets for which the

sample�count algorithm converges particularly slowly �i�e��

"�
p
t� sample points are needed for an accurate estimate��

The data set has ������ values that occur exactly once� and
one value that occurs ��� times� The estimates for this
pathological case are displayed in Figure �� and indeed the
performance closely matches the theoretical prediction�
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Figure �� A pathological example� in which the three algo�
rithms are run on a data set with ������ values occurring ex�
actly once� and one value occurring ��� times� The x�axis
depicts the base two logarithm of the sample size� The y�axis
depicts the normalized value of the estimator� i�e�� the ratio of
the estimator to the actual self�join size� The horizontal line
represents the target normalized value of �� For each of the �
algorithms� the normalized value of the estimator is plotted as
a function of the sample size used to compute the estimator�
for sample sizes 
i� i � �� �� 
� � � � � ���

��� A closer look into the distribution of tug�of�war esti�
mates

Another approach to measuring the reliability of the tug�of�
war estimator is to consider the distribution of the individual
estimators X � Xij � Each such individual estimator X is
the result of squaring the sum Z �

Pn

j��
h�vj�� for a single

pseudo�random choice of a hash function h � f�� � � � � tg ��



f��� �g�� In Fig� 
� we plot ��� individual estimators for a
sequence generated according to the Zipf distribution with
parameter ��	� �The data set characteristics� including the
actual self�join size� are given in the second row of Table ���
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Figure 
� ��� di�erent individual estimators Xij produced by
the tug�of�war algorithm run on data from the Zipf Distribu�
tion with parameter ��	� The estimators have been sorted in
increasing order� The value of the estimator is plotted as a
function of the estimator number� Each estimator is based on
a single sample point� The actual self�join size is depicted by
a dashed horizontal line segment extending from the y�axis�

� Signature schemes for join size estimation

In this section� we study signature schemes for join size es�
timation� The goal is to maintain a small signature for each
relation independently such that at any point we can esti�
mate the join size of any two relations� In the traditional
approach of join size estimation without the bene�t of pre�
computed signatures� it is well�known that join size esti�
mation is ine�ective when the join size to be estimated is
small� Thus previous work on estimating join sizes has ad�
vocated the use of �sanity bounds� �LN�	� LNS��
� the goal
is to develop procedures that provide an accurate estimate
whenever the join size is at least B and otherwise report
that the join size is less than B� and to minimize the B�
�Typical values for B are n��� or n log n�� Sanity bounds
are appropriate for join size estimation� there is a strong
motivation to estimate the join size accurately only when
the join size is large� since in such cases the resources that
would be consumed to perform the join are large�

We consider join size estimation in the presence of an a
priori sanity �lower� bound on the join size and present the
�rst results showing that the simple random sampling ap�
proach has essentially the best estimation guarantees �worst
case guarantees� over all possible relations� among all possi�
ble signature schemes� Since the estimation guarantees are
not satisfactory� we propose a more re�ned analysis that
takes into account the self�join sizes of the participating re�
lations� We assume now two bounds� a lower bound on the
join size and an upper bound on the self�join size� and ask
if in this case� one can do better than random sampling#

�Recall that the overall estimator is obtained by computing av�
erages of groups of these individual estimators� and then taking the
median of the group averages� Thus we expect these individual esti�
mators to have much larger variance than our overall estimator�

We show that indeed one can do better by presenting
a signature scheme that gives provably better join size es�
timation for many settings of these two parameters� This
algorithm is based on the tug�of�war approach outlined in
the previous section� It also provides further motivation for
tracking self�join sizes�

For simplicity� throughout this section we assume that
all join sizes to be estimated are for pairwise equality joins
on the same attribute� The results extend immediately to
the case where the joins are on the same set of joining at�
tributes� Extensions to handle the more general scenario
of joins with di�erent joining attributes are also straightfor�
ward� although typically additional space is required to keep
track of the additional attributes�

��� Analysis of random samples as signatures

First we study the simple signature scheme of randomly se�
lecting each tuple from a relation with probability p� and
storing the value of the joining attribute for that tuple as
the signature for the relation� To estimate the join size of
two relations F and G� we compute the size of the join of
their signatures and scale the result by p��� �This procedure
is called t cross in �HNSS��
��

We can view the tuples in F and G as nodes in the two
sides of a bipartite graph $ � �$V �$E�� There is an edge
between a node f � F and a node g � G if and only if tuples
f and g have the same value on the joining attribute� Then
j$E j � jF �� Gj� the join size of F and G� The join size of
their samples is the number of edges spanned in $ by the
nodes in the samples�

Lemma ��� Let $ be any graph on n nodes� Assume we
select nodes of $ randomly� each with probability p � �

n
� Let

X denote the random variable whose value is the number of
edges that are spanned by the nodes in the sample� Then
E�X� � j$E jp� and Var�X� � j$E jp� �

Pn

i��
d�i p

�� where
di is the degree of node i in $�

Since
Pn

i��
d�i � n

Pn

i��
di � 
nj$E j� we can bound

Var�X� in Lemma ��� by �nj$E jp�� Note that if E�X�� �
�Var�X� for a constant � � �� we can apply the Cheby�
chev inequality to obtain a �small� constant factor error
with �high� constant probability� Var�X� � E�X���� if
�j$E jnp� � j$E j�p���� i�e�� p � ��n�j$E j� This shows that
a sample of expected size np � ��n��jF �� Gj is su�ciently
large�

We conclude�

Lemma ��� Suppose we have an a priori lower bound B
on the join size� The simple sampling signature scheme es�
timates the join size with constant relative error with high
probability if the random sample has size at least cn��B� for
a constant c � � determined by the desired accuracy and
con�dence�

Note that random samples of each relation can be main�
tained incrementally with small overheads as new data is
inserted or deleted into the relation �Vit�	� GMP��b
� and
hence one can track join sizes in limited storage using this
approach�

��� Lower bounds on signature schemes for join size esti�
mation

We prove that� to within constant factors on the signature
size� the simple sampling algorithm in the previous subsec�
tion cannot be improved �measured by worst case analysis�



with no further assumptions� The lower bound applies to all
possible signature schemes� including static signatures that
may or may not have e�cient incremental maintenance�

We say an estimate is �good with high probability� if it
is within� say� a �% relative error with ��% probability�

Theorem ��� Let & be any scheme which assigns bit strings
to database relations� so that there is a random or determin�
istic pairing function D such that given two relations F and
G of size n the formula D�&�F ��&�G�� gives a good estimate
on the join size of F and G with high probability� when an
a priori lower bound B� n � B � n��
� is given on the
join size� Then the length of the bit string that & assigns to

relations of size n must be at least �n�p
B���B�

Proof� We use a standard lower bound technique devel�
oped by Yao for a wide range of randomized models� Let
m � n�p

B� De�ne t � ��m��B and �x a set T of t pos�
sible values for the joining attribute� denoted types� Let D�

be the uniform probability distribution on uni�type relations
over T � namely� with probability ��t we select the relation
comprising m tuples of type i� where � � i � t� We de�ne
another distribution D� in the following way� Let S be a
family of subsets of f�� 
� � � � � tg such that� ��� All sets in S
have size m��B � t���� �
� jSj � 
m

��B � 
t���� ��� For
all S�� S� � S� S� �� S�� we have jS� 	 S�j � m��
B � t�
��
One can show the existence of such a set system using the
probabilistic method� For each S � S� we de�ne a relation
S� of size m comprising B�m tuples of each type in S� Let
S� be the set of relations so de�ned� We de�ne D� to be the
uniform distribution on relations in S��

To ensure that all join sizes are at least B� we augment
each relation in D� and D� to also have

p
B tuples of type

�� Thus the total size of each relation is n�
Let F be a relation randomly chosen from D� and let

G be a relation randomly chosen from D�� The join size
of F and G is either B or B � m�B�m� � 
B� Applying
Yao�s technique it su�ces to show that any deterministic
scheme that assigns strings of length at most �m��B��� fails
to estimate the join size with small error with probability
bounded away from � for a random pair F � D�� G � D��
Consider partitioning the relations into classes according to
the bit string assigned them by &� For each relation in D��
the pairing function gives the same estimate for all relations
in D� in the same class� However� for each class� there can
be at most one relation in D� for which the estimate has less
than 	�% error for more than �	% of the relations in D��
To see this� consider S�� S� � S such that the corresponding
relations in D� map to the same class� and let T

� � ft �
�S� � S�� 
 �S� � S��g� For each D� whose type is in T ��
the join size is B for one of S� and S� and 
B for the other�
thus any estimate will have at least 	�% error for at least
one of them� By the properties of S� we have jT �j � 
�t����
t�
�� � t���� and hence for one of them� the estimate will
have at least 	�% error for more than t�
� � 	% of the
relations in D�� Since the number of distinct bit strings is

at most 
m
��B�
� we get that for a constant fraction of the

pairs F � D�� G � D� the scheme fails to estimate the join
size with small error�

Thus if B is o�n��� then the bit strings must be at least
n���� � o����B long� Comparing Lemma ��
 and Theo�
rem ���� we have that �i� the sampling signature scheme
with an expected "�n��B� values stored is good with high
probability� and �ii� no signature scheme is good with high
probability unless it has  �n��B� bits stored�

This lower bound implies estimation guarantees that are
not satisfactory in many cases� Thus in the next subsection�
we propose a more re�ned analysis that takes into account
the self�join sizes of the participating relations� We assume
now two bounds� a lower bound on the join size and an
upper bound on the self�join size� and ask if in this case� can
one do better than random sampling# We show that indeed
one can do better by presenting a signature scheme that
gives provably better join size estimation for many settings
of these two parameters�

��� The tug�of�war join signature scheme

Recall that our goal is to maintain a small signature for
each relation independently such that at any point we can
estimate the join size of any two relations� Our new sig�
nature scheme is based on tug�of�war signatures� and pro�
vides guarantees on join size estimation as a function of
the self�join sizes of the joining relations� Speci�cally� the
scheme gives an estimator for the join size of any two rela�
tions F and G whose error is �with high probability� at mostp

 � SJ�F � � SJ�G�� where SJ�F � and SJ�G� are the self�join

sizes of F and G� The signature that enables this estimator
for any two relations is only log n bits per relation� Us�
ing this signature as a building block� we construct a larger
signature of k log n bits comprising k independent log n bit
signatures per relation� An estimator based on taking the
arithmetic mean of the k individual estimators reduces the
error by a factor of

p
k�

Let D � f�� 
� � � � � tg be the domain of the joining at�
tribute� Let F and G be two relations of n tuples each�
For i � �� � � � � t� let fi and gi be the number of tuples in
F and G whose joining attribute value is i� The join size
jF �� Gj �Pt

i��
fi � gi�

Let f�igti�� be four�wise independent f��� �g�valued ran�
dom variables� For F andG we create the signatures S�F � �Pn

i��
�ifi and S�G� �

Pn

i��
�igi� respectively�

The estimator for jF �� Gj is simply S�F � � S�G��
Lemma ��� Let S�F � and S�G� be tug�of�war join signa�
tures for relations F and G� Then

E�S�F � � S�G�� � jF �� Gj ���

Var�S�F � � S�G�� � 
 � SJ�F � � SJ�G�� �
�

where SJ�F � and SJ�G� are the self�join sizes of F and G�

Proof�

E�S�F � � S�G�� � E�

tX
i��

��i figi �
X

��i��j�t

�i�jfigj�

�

tX
i��

figi � jF �� Gj�

since E��i�j� � � for � � i �� j � t� To prove Equation �
�
de�ne

X � S�F � � S�G�� E�S�F � � S�G�� �
X

��i��j�t

�i�jfigj �

Since E�X�� � Var�S�F � � S�G��� we have�

Var�S�F � � S�G�� �
X

��i��j�t

f�i g
�
j �

X
��i��j�t

figifjgj � ���



Now fromX
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X
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and Equation ���� we conclude that

Var�S�F � � S�G�� � 


�X
��i�t

f�i
X
��j�t

g�j �
X
��i�t

f�i g
�
i

�

� 
 � SJ�F � � SJ�G��

Note that the tug�of�war signature scheme described in
this section is a better join size estimator than the random
sample estimator� because already it is a better estimator
for the self�join �as demonstrated earlier in this paper ! see
Lemma 
����

The performance of the tug�of�war signature scheme can
be enhanced by repeating the basic scheme k � � times and
taking the arithmetic mean of the results� We denote this
scheme by k�TW� The signature size of the k�TW is k log n
per relation�

Theorem ��� Let F and G be two relations such that jF ��
Gj � B�� SJ�F � � B�� and SJ�G� � B�� Then the k�TW
estimator with

k �
c � SJ�F � � SJ�G�

B�
�

� cB�
�

B�
�

estimates jF �� Gj within constant relative error with high
probability� for a constant c � 
 determined by the desired
accuracy and con�dence�

Proof� By Lemma ���� the variance of the ��TW estimator
is upper bounded by 
 � SJ�F � � SJ�G� � 
B�

� � Since the
k�TW estimator is the arithmetic mean of k independent
��TW estimator� we can upper bound its variance by 
 �
SJ�F � � SJ�G��k � 
B�

��k� We also have a B
�
� lower bound

on the square of the expectation� The theorem follows from
the Chebychev inequality�

Note that for each ��TW� the f�igti�� can be determined
by selecting at random from a family of ��wise independent
hash functions� Thus for k�TW� we select independently
at random k such hash functions� Let Zi be the signature
for the ith hash function hi� For each insertion into the
relation of a new tuple with joining attribute value x� for
i � �� � � � � k� we add hi�x� �� � or ��� to Zi� for each
deletion from the relation of an existing tuple with joining
attribute value x� we subtract hi�x� from Zi� Thus we can
use k�TW signatures to track join sizes in limited storage
�namely k log n bits per relation��

A remark on signatures for a priori join pairs� We have
considered in this paper the set�up in which the signature
for an individual relation F is computed in isolation and

must provide good quality estimates for jF �� Gj for any
other relation G� This rules out adapting approaches used
in traditional join size estimation that supplement sampling
in one relation with indexed lookups of the number of tuples
with a joining attribute value in the other relation� such as
the adaptive sampling of �LN�	
 and the bifocal sampling
of �GGMS��
 �procedures with indexed lookups are called
t index in �HNSS��
�� An alternative scenario to consider is
to be given a set of join pairs and compute a signature for
each pair� and to incrementally maintain these signatures�
The practical problem then is that the size of the signa�
tures and the work for incremental maintenance may scale
with the number of pairs� For example� the construction in
the lower bound of Theorem ��� shows that large signatures
are required to obtain good estimates with high probability�
even when restricting the set of joins to be relations from
D� joining with relations from D��

� Conclusions

This paper has considered the problem of tracking �approx�
imate� join and self�join sizes in limited storage in the pres�
ence of insertions and deletions to the relations� The goal
is to maintain a small synopsis of the data in each relation�
kept up�to�date as the data changes� in order to provide a
high quality estimate of a join or self�join size� on demand
at any time�

For self�joins� we discuss three algorithms� sample�count�
tug�of�war� and naive�sampling� focusing on extensions to
handle deletions� implementation issues� and experimental
evaluation� Extending our previous work �AMS��
� we present
analytical bounds demonstrating that� for the same size syn�
opsis� tug�of�war is more accurate than sample�count which
is more accurate than naive�sampling� Our experimental re�
sults on a variety of real and synthetic data sets support this
relative ordering in accuracy� although the gap between tug�
of�war and sample�count is often small� and indeed� some�
times sample�count is more accurate� The naive�sampling
algorithm� on the other hand� does considerably worse than
the other two�

For joins� our goal is to maintain a small synopsis �a
join signature� of each relation such that join sizes can be
accurately estimated between any pairs of relations� We
show that taking uniform random samples for join signa�
tures can lead to inaccurate estimation unless the sample
size is quite large� namely "�n��B�� where n is the size of
each relation and B is an a priori sanity lower bound on the
join size� Moreover� by a lower bound we show� no signa�
ture scheme can provide good estimation guarantees unless
it stores  �n��B� bits� Thus no other scheme can signi��
cantly improve upon random sampling without further as�
sumptions� Finally� we present a signature scheme based on
tug�of�war signatures that provides guarantees on join size
estimation as a function of the self�join sizes of the joining
relations� This scheme can signi�cantly improve upon the
sampling scheme across a range of self�join sizes� Moreover�
the join signature for a relation can be maintained incre�
mentally in the presence of insertions and deletions to the
relation�

Future work includes performing an experimental study
of the tug�of�war join signature scheme� and extending the
work to more general scenarios such as three�way joins�
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Figure �� Accuracy comparison on data from the Multi�fractal
distribution with parameters 
��������������� The normalized
value of the estimator produced by each algorithm is plotted as
a function of the base two logarithm of the sample size used�
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Figure �� Accuracy comparison on data from the Selfsimilar
Distribution� The normalized value of the estimator produced
by each algorithm is plotted as a function of the base two
logarithm of the sample size used�
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Figure �� Accuracy comparison on data from the Poisson Dis�
tribution� The normalized value of the estimator produced by
each algorithm is plotted as a function of the base two loga�
rithm of the sample size used�
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Figure ��� Accuracy comparison on words from the book
Wuthering Heights� The normalized value of the estimator
produced by each algorithm is plotted as a function of the base
two logarithm of the sample size used�
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Figure ��� Accuracy comparison on words from the book of
Genesis� The normalized value of the estimator produced by
each algorithm is plotted as a function of the base two loga�
rithm of the sample size used�
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Figure �
� Accuracy comparison on words from the Brown Cor�
pus� The normalized value of the estimator produced by each
algorithm is plotted as a function of the base two logarithm of
the sample size used�
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Figure ��� Accuracy comparison on the x�coordinates of data
from a spatial point set� The normalized value of the estimator
produced by each algorithm is plotted as a function of the base
two logarithm of the sample size used�
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Figure ��� Accuracy comparison on the y�coordinates of data
from a spatial point set� The normalized value of the estimator
produced by each algorithm is plotted as a function of the base
two logarithm of the sample size used�


