
1222 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 21, NO. 10, OCTOBER 2002

Tracking Leukocytes In Vivo With Shape and Size
Constrained Active Contours
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Abstract—Inflammatory disease is initiated by leukocytes (white
blood cells) rolling along the inner surface lining of small blood ves-
sels called postcapillary venules. Studying the number and velocity
of rolling leukocytes is essential to understanding and successfully
treating inflammatory diseases. Potential inhibitors of leukocyte
recruitment can be screened by leukocyte rolling assays and suc-
cessful inhibitors validated by intravital microscopy. In this paper,
we present an active contour or snake-based technique to automat-
ically track the movement of the leukocytes. The novelty of the pro-
posed method lies in the energy functional that constrains the shape
and size of the active contour. This paper introduces a significant
enhancement over existing gradient-based snakes in the form of a
modified gradient vector flow. Using the gradient vector flow, we
can track leukocytes rolling at high speeds that are not amenable
to tracking with the existing edge-based techniques. We also pro-
pose a new energy-based implicit sampling method of the points
on the active contour that replaces the computationally expensive
explicit method. To enhance the performance of this shape and size
constrained snake model, we have coupled it with Kalman filter so
that during coasting (when the leukocytes are completely occluded
or obscured), the tracker may infer the location of the center of the
leukocyte. Finally, we have compared the performance of the pro-
posed snake tracker with that of the correlation and centroid-based
trackers. The proposed snake tracker results in superior perfor-
mance measures, such as reduced error in locating the leukocyte
under tracking and improvements in the percentage of frames suc-
cessfully tracked. For screening and drug validation, the tracker
shows promise as an automated data collection tool.

Index Terms—Active contours, cell tracking, inflammatory dis-
ease, leukocytes, video microscopy.

I. INTRODUCTION

T
RACKING leukocytes in vivo is becoming increasingly

important among medical research groups that are

studying inflammatory disease [1], [2]. Leukocyte rolling is

largely mediated by the selectin family of adhesion molecules

with contributions from integrins and integrins [1].

Analysis of leukocyte rolling is an important tool in dis-

covering potential novel anti-inflammatory treatments. For

example, E-selectin inhibitors have been shown to reduce the

number and increase the velocity of rolling leukocytes in a

model of inflammation in living animals [3]. Increased rolling
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velocity under otherwise identical hemodynamic conditions

is indicative of weaker, fewer or shorter-lived bonds between

the rolling cell and the endothelial lining of the inflamed

blood vessel. Currently the analysis of rolling velocities is

laborious and requires tens of hours of user-interactive image

processing work after each experiment. Rolling velocity is a

key predictor of inflammatory cell recruitment [4]. The most

powerful description of leukocyte rolling velocities is a velocity

distribution, preferably for hundreds of cells [5].

In addition to its use in intravital microscopy, a robust and

automatic tracking algorithm would also expand the scope of

flow chamber assays. A flow chamber [6] consists of a trans-

parent parallel-plate apparatus perfused at low Reynolds num-

bers to match wall shear stresses observed in blood vessels in

vivo. The vessel wall is modeled as an isolated protein sup-

porting leukocyte rolling in a planar lipid bilayer [7] or directly

immobilized on glass or plastic [8] or by endothelial cells grown

on the lower plate of the flow chamber [9]. Centroid trackers are

successful at tracking leukocytes rolling on transparent substrata

like protein-coated plastic [8], but when rolled over endothelial

cells the tracking becomes difficult [10]. This difficulty is due to

the structural clutter and obstructions introduced by the optical

properties of the endothelial cells.

Flow chamber experiments are widely used to screen for

compounds that may inhibit leukocyte interaction with in-

flamed blood vessels. Glycotech, Inc. (Rockville, MD) offers a

single-channel flow chamber for such uses in drug screening.

More recently high-throughput approaches are being developed

by using hydrodynamic focusing (CelTor, Inc., Santa Clara,

CA). In these systems, cells are visualized using phase contrast

microscopy, a technique that can yield a “bright” or “dark”

image of the cell, dependent on the position of the focus

of the objective relative to the rolling cell. These and other

approaches would benefit from a robust tracking algorithm that

can track leukocytes even in the presence of clutter, obstruction

and change of focus. The most challenging application is

intravital microscopy where rolling cells are observed in living

microvessels (in vivo) under conditions of inflammation. These

experiments add motion artifacts to the challenge of image

processing, and no currently existing algorithm is successful at

tracking rolling leukocytes in vivo.

In this paper, we present an active contour or snake [11] based

tracking of the leukocytes from video sequences. As an ex-

ample, a portion of a video sequence is shown in Fig. 1. The

imaging technology and the in vivo experimental setup have

been described in [12]. As a result of the mismatch of refrac-

tory indices of the rolling cell and the surrounding plasma, con-

trast/intensity change/reversal occurs quite often in such video
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Fig. 1. (a)–(f) Consecutive image subframes from a video sequence showing
leukocyte movement in a mouse venule.

sequences. For example, a rolling leukocyte appearing bright in

one frame might appear dark in a subsequent frame. This is a dif-

ficult situation to tackle as both the contrast and the brightness

change simultaneously. In such situations, it is not even feasible

to depend on the illumination invariant statistical moments [13].

So, we pursue an edge-based model here. The model exploits

the fact that the cell shapes are approximately circular/elliptic

and the scale of the leukocytes does not change significantly

during the course of a video sequence. We have adopted an ac-

tive contour based technique with shape and size constraints on

the contour model.

The contributions of this work are as follows.

1) An energy functional has been designed for shape and size

constraints, and the constraints have been derived through

the energy minimization principle for the active contours

in terms of geometric primitives such as circles and el-

lipses from the basic principles of the calculus of variations

[14], [15]. We have also shown that these constraints easily

fit the conventional contour evolution techniques without

any additional computational burden. The motivation be-

hind the inclusion of the geometric primitive shape con-

straint is that the leukocytes are approximately circular or

elliptic in shape. It has been shown experimentally that

these constraints prove to be quite useful in the tracking ap-

plication at hand that involves severe image clutter, occlu-

sion, and jitter due to the motion of the living specimen.

2) A new energy minimization based technique has been

proposed to handle the sampling and resampling of

the discrete contour points for the shape- and size-con-

strained model. The proposed sampling technique is

implicit in the snake model so that one does not need

to explicitly sample the contour under evolution inter-

mittently as is presently done in conventional method

of contour evolution. This implicit sampling technique

saves an number of operations that are required in

resampling explicitly a contour with points.

3) The existing edge-based active contour tracking poses a

limit on the speed of the leukocytes for a given video

frame rate. We have introduced a technique by which we

can track leukocytes moving at twice the speed previously

possible. Starting with the partial differential equation

(PDE) based generalized gradient vector flow (GGVF)

snake evolution [16], [17], we have shown that adding

a Dirichlet type boundary condition [18] on the basic

GGVF-PDE makes it possible to increase the maximum

speed for successful tracking. This enhancement is partic-

ularly suitable for tracking cells that exhibit microbursts

in velocity [19].

We compare the performance of tracking with the proposed

method to that of centroid [20] and correlation [21], [22]

based tracker to show that tracking performance by the pro-

posed method improves upon that of the existing methods. To

compute the accuracy of the trackers, the leukocyte positions

computed by the automated trackers are compared to the

manually determined positions given by a single observer.

The organization of the paper is as follows. In Section II we

describe the necessary background for an active contour model

employed in tracking leukocytes in vivo. We derive Euler equa-

tions for different shape-size constrains in the active contour and

describe the energy minimization for the sampling of the con-

tour points. In Section III we describe the use of Euler equa-

tions for the constraints in the conventional snake evolution

paradigm. In Section IV, we present certain properties of the

proposed snake model with shape/size constraints that are re-

quired in the leukocyte tracking application at hand. We also

compare these properties with snakes without constraints. In

Section V, we have discussed two useful enhancements. In Sec-

tion VI, we illustrate the capability of tracking leukocytes with

the proposed snake model coupled with Kalman filtering tech-

nique. In Section VII, we compare the performance of the pro-

posed snake-based tracker to that of the correlation and centroid

tracker. Section VIII concludes this work.

II. BACKGROUND

Active contours or snakes are parametric or nonparametric,

closed, or open curves that can move on the image plane and

capture an object boundary [11]. Snakes have been employed

for object tracking [23]–[25]. Other significant tracking work in-

cludes “Kalman snakes” [26] and another more general snake

technique that handles non-Gaussian models [27]. Constraints

for general shape have been introduced for active contour evo-

lution by Lai and Chin in a statistical framework [28]. In this

paper, we introduce circularity/elliptic shape and size constraints

and incorporate the constraint into an active contour model. The

active contour energy is minimized using standard steepest de-

scent method and avoids computationally expensive techniques

such as dynamic programming [29]. As an application, we em-

ploy a primitive (geometric) shaped snake to track the leukocytes

in vivo in venules found in the mouse cremaster (Fig. 1).

A. Snake Energy

The snake evolution technique centers on minimizing an en-

ergy functional (a cost functional) that is defined in terms of

the coordinates of the snake or the active contour and the image

data. Minimizing the energy functional, one obtains the snake

position that is desirable with respect to the defined constraints.

The proposed snake used for tracking leukocytes is a parametric

snake [11] with specialized shape constraints tailored to the ap-

plication at hand. The total energy of the proposed snake can be

written as follows:

(1)
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where is the conventional internal energy of the snake,

is the external or image energy [11], [16], [17], [30], ,

, and are, respectively, the shape, size, posi-

tion and sampling constraints and are defined in the subsequent

sections. The nonnegative terms give the relative strengths of

the respective energy components and are selected empirically.

The exact weights used in our experiments are given in Sec-

tion VII. Methods from variational calculus [14], [15] are em-

ployed to obtain Euler equations from (1) and then those equa-

tions are used to obtain the solution, i.e., the contour location.

B. Internal and External Energy

For the internal energy of the snake we have chosen the

“bending/stretching” energy term as described by Kass et al.

[11]. For the external energy we have adopted the GGVF field

introduced by Xu and Prince [16], [17]. GGVF snakes have

some advantages, such as the ability 1) to move the active

contour into thin and long object cavities, 2) to attract the active

contour toward object edges from a sufficiently large distance,

and 3) to stop at the weak object edges. Other snakes such as

the pressure force snake [31] and the distance potential type

snake [32] do not exhibit these desirable properties [16].

In the following section, we introduce different constraints

required for our application.

C. Shape, Size, Position, and Sampling Constraints

The leukocytes to be tracked maintain an approximately el-

liptic shape [10], which is circular in the simplest case. In addi-

tion, the leukocytes do not vary significantly in size from image

frame to frame in the video sequences. These facts call for cer-

tain shape and size constraints on the snake that can be used

to capture the cells in each of the frames. In the process of

tracking, the cells often are occluded by tissue or by other cells.

For this reason we need to predict the cell (leukocyte) center in

the frames under coasting (when we have temporarily “lost” the

cell). Along with the shape/size constraints we need a predicted

position for the snake during coasting, which is embedded in

the snake position constraint. As for a comparison, in a pre-

vious work by Sato et al. the leukocyte tracking is performed

by leukocyte trace determination through the generation of spa-

tiotemporal images. Then, the broken leukocyte trace is inter-

polated with a motion constraint [33]. Instead, here, we use the

direct motion information (available from tracker) for motion

prediction in case of coasting.

One important aspect of parametric snake evolution is the dis-

cretization of the continuous contour. These discrete points on

the snake are called snaxels. During the course of evolution the

snaxels either grow apart or come close to each other. To avoid

nonuniform sample spacing, one needs to resample the contour

intermittently during the evolution. Unfortunately the resam-

pling process represents a significant computational expense.

We have introduced an active contour model that eliminates the

need for the explicit resampling and reparameterization of the

snaxels. The resultant addition to the snake energy functional is

referred to as the sampling constraint.

We now present the shape, size, and position constraints in

continuous framework. Let us require that the snake is a closed

contour characterized by the continuous valued parameter

, which is a reasonable assumption for a cell. (Note:

the energy functional developed in this paper is not valid for

open contours.) A snaxel within this snake has the coordinates

( ). Let us further incorporate a term that denotes the

ensemble of -coordinates of all the snaxels, i.e., ,

. Similarly we use to denote all the -coordinates

of all the snaxels. We can represent a snake with the compact

notation ( ), and we now proceed to introduce the constraints

and the corresponding Euler equations.

D. Shape Constraint

Let specify the energy term for shape constraint. If we

utilize a circular shape for the cells, is expressed as

(2)

where , , and are defined as

(3)

The energy term (2) penalizes the deviation of the curve from

a circle, which has a mean radius and a center at

the center of mass (CM) of the curve. The energy functional

expressed is indeed amenable to the analysis in a continuous

framework given the assumptions of the continuity on the curve,

and all the integrands defined in (2) and (3) are continuous

and integrable. To obtain the snake position that minimizes the

constraint energy (2), we use the calculus of variations [15] and

arrive at the following two Euler equations (see Appendix for

the derivation)

or, equivalently, as

(4)

Solving (4) for and one obtains the snake position that

minimizes (2).

E. Size Constraint

The shape constraint alone does not adequately describe the

leukocytes. We will show experimentally, in a subsequent sec-

tion, that both the size and the shape constraints are necessary
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for the tracking application. The size constraint is incorporated

as the deviation of the average radius from the initial

radius. The energy functional is as follows

(5)

where is the expected radius and is as defined in (3).

The Euler equations that characterize the solution ( ) to min-

imize (5) are given as follows (derivation given in Appendix ):

(6)

F. Elliptic Shape Constraint

Using an elliptic shape model results in a more versatile shape

model at the cost of a more complicated energy term. An ellipse

has an orientation, whereas a circle has no orientation. Here, we

do not allow the snake shape to deviate significantly from an el-

lipse. This naturally gives rise to the energy functional shown in

(7) at the bottom of the page, where is the orientation of the

semimajor axis of the ellipse with the -axis, and are the

two radii of the ellipse, and and are the center coordinates.

So, it is clear from the formulation that we penalize the snake if it

deviates from the best-fitted ellipse. Now, the obvious question

arises: how do we compute the best-fitted ellipse? Finding the

best-fitted ellipse for a set of data points is a classical problem

in pattern recognition and can be handled in a number of ways

[34], [35], [36]. A previous work [10] fits ellipse to the edge

points (chosen by thresholding the gradient magnitude) in de-

tecting leukocytes in vivo. Instead, we employ the nonitera-

tive, fast, direct least squares method of [36]. Once we obtain

the values of the intermediate parameters [ ] as

[ ] by the direct least squares technique, the next

task is to obtain Euler equations from the functional (7) and we

give them as follows (see derivation in the Appendix ):

(8)

If , i.e. if the ellipse is a circle, then (8) reduces to the

already derived (4) for circular shapes.

G. Position Constraint

As discussed, we want the CM of the evolving snake to be

close to a predicted center position ( ). So, the deviation

of the snake center from this desired center is penalized and,

hence, the contribution to the snake energy functional is

(9)

and the corresponding Euler equations are as follows (derivation

given in Appendix ):

and (10)

H. Sampling Constraint

To implement active contour evolution, one needs to derive

the discrete model from the continuous framework of con-

tours. Implementation in the discrete domain is performed

by choosing a number of ordered points from the contour,

so that these points can approximately represent the entire

continuous contour. The continuous parameter used so far

to denote the snake point position ( ) is indexed by

, with being the total number of snaxels

in the snake. So, we have a discrete contour point or snaxel

as ( ). Employing vector notation we can write the snaxel

positions collectively as ( ), where this time for the discrete

version, and . In

general, during the snake evolution, some portion of the snake

will be stretched while the other portion will be shortened. So,

compression as well as rarefaction of the snaxels occurs during

evolution. These actions require a resampling of the contour

under evolution. This resampling is usually done explicitly by

choosing sample points uniformly during the snake evolution

[16]. The cost of such explicit sampling is , with being

the number of snaxels.

In this paper, we propose an implicit sampling technique for

the parameterization of contours in contrast to the explicit pa-

rameterization method in practice. The idea of implicit param-

eterization is merely to keep approximately uniform contour

sampling along the snake. For the application at hand, this is

quite suitable as the target shape for the snake is approximately

circular/elliptic. So, we introduce a term in the energy functional

that makes a snaxel maintain equal distance from its immediate

left and right neighboring snaxels on the contour. The advantage

of such a technique is avoiding the resampling intermittently

(7)
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during snake evolution. The energy functional will now force

the snake to maintain proper distance between sampled snaxels.

So far, we have defined all the energy terms in the continuous

framework. Sampling, however, requires the associated energy

functional to be defined on a discrete framework. For samples

(snaxels) on a circular contour, the and snaxel main-

tain the following relationships:

(11)

where is the average radius of the snake, as already defined in

(3). Also, we note that and . We now introduce

the following energy functional:

(12)

where the vectors and are shorthand for the right-hand

sides of (11) and are written as

(13)

Equation (12) can be written in the following matrix-vector

form:

(14)

where and are defined as

(15)

and and are -by- matrices as follows:

. . .
. . .

. . .

. . .
. . .

. . . (16)

The energy is in the quadratic form, so one can now easily obtain

the gradient of the energy functional as follows:

(17)

III. DISCRETIZATION AND IMPLEMENTATION OF THE

EULER EQUATIONS

We show that the derived Euler equations for different con-

straints fit the conventional snake implementation seamlessly.

It is indeed an interesting point to note that all the Euler equa-

tions derived so far are linear. This is in agreement with the

spirit of the original snake evolution equation derived by Kass

et al. [11]. This property makes it very easy to incorporate all

the constraints stated so far in the conventional snake evolution

technique.

The steepest descent technique for evolving snakes gives the

following equations:

and (18)

where the superscript and denote the successive time

steps. Following an implicit or backward time difference dis-

cretization method for numerical stability [18] on (18), one ob-

tains the update or evolution equation as [11], [30]

(19)

where ( ) denote snaxels of the snake at iteration ,

is the -by- identity matrix, is a -by- pentadiagonal,

positive–definite stiffness matrix. For a closed snake, it takes

the form [30]

. . .
. . .

. . .
. . .

. . . (20)

and ( ) is the external force vector at the

snaxel locations ( ) at the iteration. The external force

is obtained typically from image gradient or GGVF [17].

To incorporate the shape, size, and position constraints, the

following changes are made to the snake evolution (19).

1) Once the parameter is indexed by , (4) can be dis-

cretized for the snaxel. As there are such equation

pairs for snaxels, we can write them out in the ma-

trix-vector form and compute the gradient for the shape

constraint energy

where

and with

and where
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By a similar implicit method of discretization as per-

formed obtaining (19) from (18), we incorporate the

shape constraint in the snake evolution (19) as outlined

here: is added to each of the diagonal elements of

of (19), and is added to the

element of in (19) and is

added to the element of in (19).

2) For the size constraint (6), and

are added to the element of

and , respectively.

3) For position constraint (10), and

are added to each of the elements of and , respectively.

4) The elliptic constraint (8) is incorporated in a similar

way—the relative weight of the energy functional

is added to each of the diagonal elements of of (19).

is added to the element of and

is added to the element of of (19).

5) Finally, we incorporate the parameterization energy term

very easily in the snake evolution equation. Equation

(17) and (18) suggest that we add the matrix [

defined in (16)] to the positive–definite matrix of (19)

following an implicit method of discretization [18]. It is

interesting to note that addition of still leaves

as a positive definite matrix as itself is a nonnega-

tive–definite matrix. This guarantees the stability in the

matrix inversion involved in the evolution (19). Further-

more, we add the vector to the vector and,

similarly, to .

It is indeed interesting to note that steps 1)–5) do not change

the positive–definite property of the matrix ( ), so that one

can invert it by making use of Cholesky decomposition [37] for

solving the snake (19). Furthermore, as the number of snaxels

remains constant during the snake evolution (because of the im-

plicit sampling constraint) the matrix needs to be inverted just

one time.

IV. PROPERTIES OF THE PROPOSED SNAKE MODEL

This section describes certain properties of the proposed

snake model. These properties prove to be quite useful for the

leukocyte tracking application. We start with the comparison

with snakes with no shape or size constraints. We also show

experimentally that both the shape and the size constraints are

necessary for tracking leukocytes. It is also demonstrated that

the snake initialization does not have to be very close to the

leukocyte boundary to capture the cell.

Fig. 2. (a) Synthetic circle. (b) Same image showing a portion of the full circle.
(c) Result (in white) of GGVF snake evolution on (b). (d) Result (in white) of
GGVF snake evolution along with shape and size constraints.

Fig. 3. (a) Leukocytes in vivo. (b) Result of GGVF snake evolution on (a).
(c) Result of GGVF snake evolution along with shape and size constraints on
(a). Initial and final snakes are shown in white and black.

A. Comparison With Snakes Having No Constraints

With experimental results, we show here that for the applica-

tion at hand, the shape and size constraints are requisite. This

model makes use of the a priori knowledge about the size and

the shape of the leukocytes. Xu and Prince have established that

the GGVF type snake outperforms many other kinds of external

energy models such as the gradient, pressure force [31], and dis-

tance force [32] snakes in capturing objects [16]. So, we select

( ) appearing in (19) as the GGVF type ex-

ternal force in the proposed snake model.

The synthetic experimental results show that the shape and

size constraints are very much required in capturing a leukocyte

in vivo. Figs. 2 and 3 illustrate the potential of the shape and

size constraints, respectively, in a synthetic and in a real envi-

ronment. Fig. 2(a) and (b) are, respectively, the synthetic circle

and the occluded circle image. Fig. 2(c) shows that without the

constraints the GGVF snake fails to form a round shape from

the part of the existing round shape. Fig. 2(d) shows that with

shape and size constraints the round shape is correctly recov-

ered. The next set of figures proves the same point in reality.

Fig. 3(a) shows several rolling leukocytes in vivo. The GGVF

snakes without shape and size constraints cannot recover the

cell shape [Fig. 3(b)]. On the other hand, when coupled with

shape and size constraints the cell-shape is correctly recovered

[Fig. 3(c)].

B. Usefulness of Both the Shape and the Size Constraints

For the leukocyte tracking application, the size or the shape

constraint alone does not suffice. The following examples show

that both the shape and size constraints are equally important.

Fig. 4(a) shows four leukocytes in an image frame. Fig. 4(b)

shows that the snake fails to lock onto a cell when only shape

is effective. Fig. 4(c) reveals that the snake does not capture the

same cell properly when only size constraint is in effect. On

the other hand, Fig. 4(d) shows that the cell is captured properly

when both size and shape constraints are acting. In all these three

cases, the initial snake positions are the same.
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Fig. 4. (a) Leukocytes from a video sequence. (b) Snake evolution with only
shape constraint on (a). (c) Snake evolution with size constraint only. (d) Snake
evolution with both shape and size constraints. In all these three cases the
underlying external force is GGVF. The initial and the final snakes are shown
in white and black.

Fig. 5. (a) A leukocyte. Snake evolution with the initial snake to the left (b),
right (c), bottom (d), and top (e) of the leukocyte. In all these four cases, the
initial snake is shown in white and the final snake position is shown in black.

C. Insensitivity to Initial Snake Position

The cell boundary capturing process, to a great extent, is insen-

sitive to the initial snake position as the following experiments

show. Fig. 5(a) shows the cell to be captured. The Fig. 5(b)–(e)

show different initialization (in white) of the snake for the same

leukocyte. The same figures also show that snake evolution with

GGVF along with the shape and size constraints leading to shape

recovery (black contours). These figures illustrate the fact that

as to some extent the initialization of the snake can be varied

and one can still obtain the desired cell.

V. ENHANCEMENTS

Certain enhancements prove to be for the application of

tracking leukocytes in vivo. This section describes the tech-

niques that aid in the capture of leukocyte boundaries.

A. Multistage Snake Evolution Approach

Fig. 6(a) demonstrates the failure of the snake to capture the

cell when the initial snake is away from the actual boundary.

The evolution sequence [with initial contours shown in white

in Fig. 6(a)] shows that final evolved circle is formed near the

initial contour CM. This bias toward the initial CM can be over-

come by a multistage snake evolution. In the multistage snake

evolution process, the snake is evolved in the first stage ac-

cording to the GGVF forces. After the snake evolution in the

first stage, the snake clings to the object boundary and possibly

to some clutter. In the next stage, the relative weights for the

shape and size constraints are increased. In summary the multi-

stage algorithm for an image frame may be stated as follows.

Step 1) Compute GGVF field for the current frame within a

window around the center of the cell in the previous

frame.

Step 2) (stage one): Eliminate shape and size constraint from

the snake model and evolve the snake only using the

GGVF field until convergence.

Step 3) (stage two): Reinstate the shape and the size con-

straint in the snake model and evolve the snake on

the GGVF field until convergence starting from the

snake position obtained at the end of Step 2).

Fig. 6. (a) Evolving a snake on Fig. 5(a) with final and initial snakes shown in
black and white, respectively. (b) After Step 2) of multistage snake evolution.
(c) After Step 3). (d) After Step 4).

Fig. 7. (a) Maximum frame-to-frame displacement of a leukocyte under
GGVF snake tracking. (b) GGVF field.

Step 4) (stage three): Increase the shape and size weight in

the snake model and evolve the snake until conver-

gence on the GGVF force field starting from the po-

sition obtained at the end of Step 3).

The effectiveness of the approach is illustrated in Fig. 6. In

Fig. 6(b), the snake starts with the same initial condition as in

Fig. 6(a) shown in white. Fig. 6(b) also shows the end of stage 1

in black. In Fig. 6(c), the start (white) and end (black) of second

stage evolution is shown where the snake starts with its position

taken from Fig. 6(b). Similarly in Fig. 6(d), the third and final

stage of evolution result is shown. We now observe in Fig. 6(d)

that the snake has correctly locked onto the cell, as shown by

the black contour.

B. Increasing the Maximum Allowed Speed of Cells in

Tracking

We have chosen GGVF [17] as the external force for the snake

based tracking, as GGVF allows the initial contour position to

deviate from the cell edge position. One of the shortcomings

of the GGVF external force is that unless the initial snake in-

cludes the medial axis of the object, the snake does not capture

the object [38]. Fig. 7(a) shows the initial snake (white circular

contour) and a synthetic rolling leukocyte (solid black) with an

arrow giving the direction of the cell movement. Corresponding

to this cell the GGVF force is shown in the Fig. 7(b). We notice

that the GGVF is directed toward the boundary of the synthetic

cell. If the initial snake does not contain the medial axis, which,

in this case, is the center of the circle [as in Fig. 7(b)], the ex-

ternal force field will force the snake to collapse on one side of

the cell boundary.

A common practice in active contour based tracking is to

use the position of the captured object from the previous frame

as the initial snake for the subsequent frame [27]. So, if one

uses GGVF for the external force in object edge-based tracking

with this initialization strategy, then the maximum cell move-

ment from one frame to the next frame is less than the radius of

the leukocyte. Beyond this maximum displacement the GGVF

snake will fail to capture the object. To overcome this difficulty

we have imposed a Dirichlet type boundary condition (BC) on
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Fig. 8. (a). Maximum displacement in tracking with the proposed BC.
(b) Corresponding external force field.

Fig. 9. (a) GGVF snake is drifting away from the cell and getting stuck in
clutter. (b) The snake with Dirichlet BC is approaching and capturing the
leukocyte (b). In both these cases, the initial snake positions are the same, the
initial and the final positions are shown in black and the intermediate positions
are shown in gray.

the GGVF-PDE. Let the region bounded by the initial snake be

with boundary, and let the rectangular image domain be

, with boundary . If the estimated leukocyte center velocity

direction is then the GGVF-PDE along with our proposed BC

can be written as (21), shown at the bottom of the page, where

( ) is the GGVF field to be solved from (21), is the edgemap

for the image [16]: , is a positive parameter con-

trolling the smoothness [17].

Adding the boundary condition based on the initial position

of the snake to the PDE makes it possible to capture the cell

in cases where the initial snake that does not encompass the cell

center. In doing so, we assume that the size of the leukocyte does

not significantly decrease from frame to frame, as this condition

could lead to missing a smaller cell that is contained inside the

initial snake. A synthetic example is given in Fig. 8(a), showing

a synthetic cell (solid black), an initial snake (white circular

contour), and the direction of cell movement. Fig. 8(b) shows the

corresponding GGVF obtained from (21). As seen in Fig. 8(b),

the force field directs the snake toward the cell boundary. Fig. 9

illustrates the efficacy of this Dirichlet type BC on capturing the

leukocyte in an in vivo image.

VI. METHODS: TRACKING LEUKOCYTES IN VIVO

We now give the procedure for tracking leukocytes in vivo

with the proposed snake. In a given frame of a video sequence,

a user selects a leukocyte he/she wishes to track over the rest

of the sequence. This is the only point where the user inter-

action is required. Experimentally, for most leukocytes, if the

user-selected center is within 3–4 pixels of the actual leukocyte

center then the snake captures the leukocyte correctly. The user

actually places a small circular contour (typically, a circle with

half the cell radius) on the leukocyte to be tracked. This initial

contour is then allowed to evolve on the first image frame with

the elliptic or circular shape and size constraints. In addition for

capturing the leukocyte in the first frame an enhanced GGVF as

described in Section V is utilized. This time the GGVF is ob-

tained by setting the Dirichlet BC as the unit outward normal

to the initial contour. This makes the tracking procedure quite

robust to the initial user interaction, as the initial contour placed

by the user does not necessarily have to include the cell center;

instead the initial contour should only be within the leukocyte

boundary [38]. In the next frame, we use this computed snake

position for initialization. However, from the second frame on-

wards for a fast rolling leukocyte the velocity direction becomes

the Dirichlet BC as described previously.

The rolling leukocytes often are occluded for a number

reasons. For a few frames, the cell may be hidden under other

leukocytes and tissue structures, or it may leave the focal

plane. Given possible occlusion and given that there are other

cells/clutter present near the rolling leukocyte being tracked,

the snake may encompass the incorrect object. So, we need to

validate the resultant snake on each frame. Such a validation

technique has another very important use. The proposed method

utilizes gradient descent and, thus, can become locked onto

the local minima in the energy functional. These suboptimal

solutions may, in some cases, correspond to false acquisition

of leukocytes. We employ a straightforward technique for the

purpose of validation: matching the shape of the present snake

with that of the snake on the previous frame. Our experiments

have shown that for the particular application at hand, graylevel

matching/correlation fails as the cells and the surrounding have

similar graylevel values. There is another technical difficulty

with graylevel matching for this particular application. As the

change in refractive index between the surrounding flow and the

cells is being used to encode the graylevel, a cell may transform

from brighter to darker in appearance or vice-versa instanta-

neously. Such changes render graylevel correlation ineffective.

when

when

when (21)
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Fig. 10. (a) Leukocyte from a video sequence. (b) The same leukocyte with
the snake from previous frame overlaid. (c) Shape template corresponding to
the overlaid snake of (b). (d) GGVF of (a).

Fig. 11. (a)-(g). Video sequence showing seven frames. In each frame, the
white contour is the initial snake and the black contour is the final snake or
the captured leukocyte. This is an example where the snake tracks a partially
occluded cell.

We use “shape correlation” between a shape template and

the acquired active contour. The shape template is formed from

the shape of the snake that encompasses the cell in the pre-

vious frame. Let ( , ) denote the evolved snake position in

the previous frame. We can draw a closed polygon on a plane

with ( , ), which results in a binary image. The shape tem-

plate is simply the gradient of this binary image. So, the shape

template is a vector, not a scalar, template. We correlate the nor-

malized (unit magnitude) GGVF field of the current frame with

the shape template. For example, Fig. 10(a) shows a leukocyte

and Fig. 10(b) shows the snake from the previous frame overlaid

on the image of Fig. 10(a). The shape template for the overlaid

snake is shown in Fig. 10(c). Fig. 10(d) reveals the normalized

GGVF field arising from Fig. 10(a) that is to be correlated with

the shape template.

In the example shown in Fig. 11(a)–(g), we demonstrate that

the proposed snake can track a partially occluded rolling leuko-

cyte. Here, the shape and size constraints facilitate the inference

of an occluded cell boundary.

Another implementation concern in tracking is the coasting

phase. If a cell coasts for quite a few frames, then the snake may

finally lose track. To tackle this situation, we utilize a Kalman

filter [39]. The filter that is employed here uses the constant ve-

Fig. 12. Video sequence. (a) Normal tracking; (b) coasting starts; (c) coasting
continues; (d) coasting terminates. (e) The snake reacquires the cell after
coasting. White and black contours show initial and final snakes, respectively,
in each frame. Dotted lines depict coasting.

locity assumption. In case of coasting, the Kalman filter predicts

the snake position in the next frame. We place the previous snake

in the next frame as predicted by the Kalman filter. Kalman filter

gains are experimentally set for the leukocyte tracking applica-

tion by means of extensive training on such sequences.

A coasting example is shown in Fig. 12(a)–(e), where the ef-

fectiveness of the Kalman filter is demonstrated. The leukocyte

observed here coasts for three consecutive frames. Dotted black

contours show coasting, and solid black contours show that the

snake has locked onto the cell when it is no longer coasting.

Once coasting commences, we want CM of the final snake not

to be much deviated from the position predicted by the Kalman

filter. So, the position constraint is used here.

VII. TRACKING RESULTS

In this section, we give the results of tracking with the pro-

posed shape/size constrained snake model. We also compare

these results with correlation and centroid trackers. To com-

pute the error in tracking we utilize interactively determined

cell positions. Next, we apply all three trackers on the same

video sequences to track the same cell and compare to the stored

cell center positions. The video frames were recorded at a spa-

tial resolution of 320 240 pixels (where the pixel-to-micron

ratio is 3.11 pixels/micron in the horizontal direction and 3.10

pixels/micron in the vertical direction) and a temporal resolu-

tion of 30 frames per second. No preprocessing was performed

on the frames before tracking. We provide two types of error

measures for tracking.

1) Root mean square error (RMSE) of the tracked cell center

positions in microns. The RMSE is computed over all the

frames in a tracking video sequence. Manually determined

cell positions are used to compute the position error.

2) Percentage of frames tracked. If a computed cell center

is within one cell radius of the manually observed cell

center, then we consider that frame as “tracked.” The per-

centage is computed as the ratio of number of frames

tracked to the total number of frames in the sequence.

We have tracked two types of sequences: TNF- treated and

untreated sequences. The sequences with TNF- treated vessels

exhibit slower rolling (slower cell velocities). The untreated ves-

sels contain leukocytes rolling rapidly (up to 100 m s) and are,

thus, more challenging to track. These sequences are 31 to 167
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Fig. 13. Comparison of the position RMSEs in tracking the treated vessel sequences with the three trackers.

Fig. 14. Comparison of the percentages of frames tracked in the treated sequences.

Fig. 15. Position RMSE in sequences obtained from untreated venules.

Fig. 16. Percentage of frames tracked in untreated sequences.

frames in duration at 30 frames per second. We set a maximum

number of frames based on the maximum cell velocity and the

available field of view. Our experience shows that typical rolling

leukocytes that are not adherent are visible for 1–3 s with a fixed

field of view of approximately 100 m in width. The values of

the weight parameters used in (1) for the experiments are set

as: , , , , , .

Fig. 13 shows the comparison of RMSE in all three methods

on 16 treated video sequences. RMSE values with snake tracker

are seen to be quite low compared to the RMSE with the other

two trackers. Fig. 14 shows the percentage of frames tracked

in the 16 treated vessel sequences. The snake tracker is seen to

have tracked 100% of the frames in all but one sequence where

the resulting percentage is 98.89%. Our current implementation

requires a maximum of 1 s per video frame in computational

expense using a 1.5-GHz, Pentium IV PC.

Figs. 15 and 16 show similar performance comparisons in the

untreated vessel sequences. Because of the rapid rolling of the

cells, the tracking task is more difficult in this case, and the dif-

ficulty is reflected in the performance of all three trackers. The

snake tracker significantly outperforms the other two trackers

– the average frames tracked for the snake tracker is over eight

standard deviations above the mean for the centroid tracker (in

terms of the standard deviation for the centroid tracker). For

the correlation tracker, the average frames tracked by the snake

tracker is almost three standard deviations above the correlation
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TABLE I
COMPARISON OF TRACKER PERFORMANCES IN TERMS OF AVERAGE AND STANDARD DEVIATIONS OF THE RMSES AND THE PERCENTAGES OF FRAMES TRACKED

tracker mean. In Table I we have listed the average and stan-

dard deviations of RMSE measures as well as the percentages

of frames tracked, separately for the treated and untreated video

sequences.

VIII. CONCLUSION

This paper has introduced a shape and size constrained snake

model that has been successfully used in tracking leukocytes in

vivo. We have derived the evolution equations for the proposed

contour model from the very basic principles of calculus of

variations. An energy-based scheme has been proposed that

eliminates the need for resampling of the parametric snake

during evolution. The novelty in the proposed methods also lies

in the fact that all the derived shape constraint equations as well

as the resampling equations perfectly fit into the conventional

linear snake evolution equation. We have also enhanced the

tracking performance by modifying GGVF-PDEs with Dirichlet

boundary conditions. This modification has increased the

tracking capability in terms of reducing the frame rate or equiv-

alently increasing the velocity of leukocytes. Kalman filtering is

used to provide coasting of occluded leukocytes. Finally we have

compared the leukocyte tracking performance of the proposed

method with the performance of two standard methods and these

comparisons show the superiority of the proposed method in

terms of the number of frames tracked and the position error.

Our new method, therefore, will be useful for tracking rolling

leukocytes in vivo for drug validation, as well as for tracking

rolling leukocytes in flow chamber systems that are widely

used for screening for novel anti-inflammatory compounds.

APPENDIX

Here, we derive the Euler equations for the shape, size, and
position constraints from the basic principle of calculus of vari-
ations [14], [15]. In the derivation, we make use of the following
two results from integral calculus. They appear as a lemma and
as a corollary in [14] along with proofs.

Lemma 1 (du Bois–Reymond) [14]: If the function is con-

tinuous on [ ] and , for all functions
having continuous first derivative in [ ] with the boundary

conditions, , then is constant on [ ].
Corollary 1 [14]: If the function is continuous on [ ]

and , for all functions having continuous
first derivative in [ ] with the boundary conditions,

, then on [ ].

A. Euler Equations for the Shape Constraint

To obtain the first variation of the energy functional (2) we
follow the procedure of [15]. Thus, we consider a small neigh-
borhood ( ) of the contour ( ), where is vector of

terms where , and similarly, is vector con-
taining the terms, where , where .
By adding the neighborhood ( ) to the original contour
( ) we obtain a variation of the energy functional (2), and we
may think of it as a function of and ; see (22), as shown at
the bottom of the page. In finding the variation of (2) with re-
spect to the active contour ( ), the necessary conditions are

(23)

(22)
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Applying (23) to (22), we obtain

(24)

where the function is defined via

constant (25)

To obtain the Euler equations, we first prove that the sum of
second and third integrals in (24) is zero. Let us rewrite

as , where is

defined by or
equivalently by and

.
With this redefinition, the sum of the last two integrals of (24)

can be written as

So, (24) takes a simplified form

(26)

At this point, we are able to apply Lemma 1 to (26) if we let
and pro-

vided the function meets the prescribed conditions in the
Lemma 1. Equation (25) indeed suggests that is continuous
and WLOG: . Thus, we apply Lemma 1 to
find that is a constant, yielding
the first Euler equation in (4). The second equation in (4) is
found in a similar way.

B. Euler Equations for the Size Constraint

To obtain the Euler equation for (5) we proceed the same way

as we have done before for the shape constraint. Considering the

variation of the contour ( ) in a small neighborhood charac-

terized by ( ), we derive a new function of and as

(27)

Applying a similar strategy, the necessary conditions for ob-

taining Euler equations are

(28)

Now, applying (28) to (27), one finds that

(29)

From (29), we find that

(30)

where all terms in (30) are already defined in (3) and (25). Fi-

nally, imposing the conditions and , we obtain

(31)

Now, substituting (31) into (29), we obtain

(32)

At this point, by applying Lemma 1, we can obtain one Euler

equation. The other Euler equation is derived in a similar way

to complete (6).

C. Euler Equations for the Elliptic Shape Constraint

For the derivation of the Euler equations of (7), we form

the following new function taking into account the variation

of the contour ( ) in a small neighborhood characterized by

( ); see (33), as shown at the top of the next page. As be-

fore, the necessary conditions for the existence of extrema are

as follows:

(34)

Applying (34) on (33), we obtain the two Euler equations in (8).
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(33)

D. Euler Equations for the Position Constraint

Applying the same kind of variation on (9), we compute a

function of and as before

(35)

For an extremum, the necessary conditions are

(36)

Applying (36) on (35), we obtain

(37)

The application of Corollary 1 to (37) leads to the Euler equa-

tions in (10).
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