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1. Information about at depth behaviour of marine mammals is funda-12

mental yet very hard to obtain from direct visual observation. Animal13

borne multi-sensor electronic tags provide a unique window of observa-14

tion into such behaviours.15

2. Electronic tag sensors allow the estimation of the animal’s 3-dimensional16

(3D) orientation, depth, and speed. Using tag flow noise level to pro-17

vide an estimate of animal speed we extend existing approaches of 3D18

track reconstruction by allowing the direction of movement to differ19

from that of the animal’s longitudinal axis.20

3. Data are processed by a hierarchical Bayesian model that allows pro-21

cessing of multi-source data, accounting for measurement errors, and22

testing hypotheses about animal movement by comparing models.23

4. We illustrate the approach by reconstructing the 3D track of a 52-24

minute deep dive of a Blainville’s beaked whaleMesoplodon densirostris25

adult male fit with a digital tag (DTAG) in the Bahamas. At depth,26

the whale alternated regular movements at large speed (> 1.5 m/s) and27

more complex movements at lower speed (< 1.5 m/s) with differences28

between movement and longitudinal axis directions of up to 28◦. The29

reconstructed 3D track agrees closely with independent acoustic-based30

localizations.31
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5. The approach is potentially applicable to study the underwater be-32

haviour (e.g. response to anthropogenic disturbances) of a wide variety33

of species of marine mammals fitted with triaxial magnetometer and34

accelerometer tags.35

Keywords: dead reckoning, animal movement modelling, electronic tag,36

hierarchical Bayesian modelling, track reconstruction, triaxial37

magnetometer and accelerometer, flow noise38

1. Introduction39

The use of animal borne autonomous recording tags to collect information40

for inferences on movement, ecology, physiology and behaviour is becoming41

widespread, providing an unprecedented window into these biological pro-42

cesses and leading to otherwise unattainable discoveries, especially at sea43

where animal behaviour is hard to observe directly (Ropert-Coudert & Wil-44

son, 2005; Bograd et al., 2010).45

Initially used simply to identify animals, over time tags became equipped46

with thermometers and barometers, followed by accelerometers, magnetome-47

ters, gyroscopes, microphones, hydrophones, GPSs, and even video (e.g.48

Johnson et al., 2009; Burgess, 2009; Marshall et al., 2007; Rutz & Tros-49

cianko, 2013). Some tags provide direct information on location while others50

do not. For those that do, say via GPS or radio tracking, a common approach51

has been to use state space models or hidden Markov models to reconstruct52

two dimensional tracks (e.g. Jonsen et al., 2012; Beyer et al., 2013; Langrock53

et al., 2014). However, most marine mammals spend a large proportion of54

their time at depth, hence accounting for the depth component might be55

fundamental, depending on each study’s objectives (e.g. Tracey et al., 2014).56

Published tracks in 3 dimensions (3D) are based on some form of dead57

reckoning (Wilson et al., 2007): each position is predicted by updating the58

previous time step position considering an estimate of the animal’s current59

direction and speed. One option is to infer animal 3D speed from 3D orien-60

tation (computed from accelerometer and magnetometer data) and vertical61

speed (from depthmeter data). However, this is sensitive to error in depth62

measurements, notably when animal movement is close to horizontal. This63

has led to estimating speed from other sources than depthmeters, namely64

tag flow noise (e.g. Simon et al., 2009; Ware et al., 2011). All such methods65
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have required the assumption that the direction of animal movement coin-66

cides with the direction of its longitudinal (rostro-caudal for a whale) axis,67

i.e. the animal moves towards where it is pointing. If this does not hold, bias68

can be expected, and the resulting track will be unreliable (Johnson et al.,69

2009). Further, errors accumulate over time, a phenomena referred to as drift70

(Wilson et al., 2007). Additional drifting due to external factors can occur71

(e.g. Shiomi et al., 2008). Therefore, while tags are very useful to establish72

relative positions of animals, inferring absolute position is questionable with73

existing procedures: the term pseudo-track is used to reinforce the notion74

that absolute position is unknown (Hazen et al., 2009). Also for this reason,75

dead-reckoning tracks are often “anchored” to known positions (e.g. Zimmer76

et al., 2005; Hazen et al., 2009; Friedlaender et al., 2009). These are some-77

times referred to as geo-referenced tracks, to convey the notion of absolute78

position on the earth sphere. However, measurement error in positions is typ-79

ically ignored, and the way the pseudo-track is combined with these is not80

explicitly described (e.g. Davis et al., 2001; Mitani et al., 2003; Tyson et al.,81

2012). Nonetheless, implementation details can have considerable impact on82

the estimated track, as well as (if estimated) on its precision.83

We consider DTAGs (Johnson & Tyack, 2003) as an example. DTAGs84

include triaxial accelerometer and magnetometer sensors, a pressure sensor85

(sampling rate up to 50 Hz), and two hydrophones (up to 192 kHz) (Johnson86

& Tyack, 2003). Other tags (e.g. “OpenTag”, Loggerhead Instruments, Sara-87

sota, FL, USA) include triaxial magnetometers and accelerometers. Around88

20 marine mammal species (> 1000 deployments) including whales, dolphins89

and pinnipeds have been fitted with DTAGs (Mark Johnson, pers. comm.).90

Such tags have become widespread in marine mammal studies, allowing in-91

ferences about at depth behaviour and ecophysiology (e.g. Watwood et al.,92

2006; Shaffer et al., 2013). DTAGs were originally developed to infer be-93

haviour and relative movement rather than absolute location, having been94

used extensively for this purpose – e.g., recent work on feeding behaviour95

in baleen whales (e.g. Simon et al., 2012; Ware et al., 2014, and references96

therein). However, DTAG data have been used to reconstruct 3D dives of97

animals (e.g. Davis et al., 2001; Mitani et al., 2003; Johnson & Tyack, 2003;98

Madsen et al., 2005). Bespoke software is now available to process tag data99

into tracks (the R packages animalTrack, Farrell & Fuiman (2014), and100

TrackReconstruction, Battaile (2014), and to depict 3D tracks Trackplot,101

Ware et al. (2006)). An estimated position without an associated measure of102

uncertainty can be misleading, providing overconfidence in the reported esti-103
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mate. Nonetheless existing software does not provide uncertainty on position104

estimates, so these are never reported.105

Extending dead reckoning and georeferencing methods described earlier,106

we develop a new way to use magnetometer and accelerometer tag data to107

reconstruct 3D tracks and estimate associated uncertainty. We explicitly (1)108

incorporate measurement error, both from the tag and from estimated posi-109

tions, in the input data and propagate this error through to the estimated110

track; (2) include information about animal speed both from change in depth111

given orientation and from tag flow noise; and (3) utilize the additional in-112

formation from both sources of speed information to relax the assumption113

that the animal moves in the direction it is pointed. Our model is superfi-114

cially similar to well-known 2D random walk models by, e.g., Jonsen et al.115

(2005), Morales et al. (2004) and McClintock et al. (2012) in that, like them,116

we model animal speed (i.e. step length) and movement direction in dis-117

crete time and continuous space, and use Bayesian methods to link models118

to data. However, assumptions about animal movement differ. Random walk119

models make distributional assumptions about step length and direction (or120

turning angle), hence resulting track estimates are a combination of the as-121

sumed movement model and the input data (filtered through the observation122

process); by contrast we do not make such assumptions, hence our estimated123

tracks are a function of the data and observation process alone. In this sense,124

our approach is more “data focused”, but is also more reliant on having high125

frequency, high quality data to produce a realistic track. We return to these126

issues in the Discussion.127

We illustrate our method by reconstructing a 52-minute dive of a tagged128

Blainville’s beaked whale Mesoplodon densirostris (Laplanche et al., 2015),129

for which independent underwater localizations are available. These are not130

used in model fitting; instead we use them to evaluate the accuracy of the131

estimated track derived from tag data alone. Finally, we discuss the capabil-132

ities of the approach and possible improvements.133

2. Materials and methods134

2.1. Tag measurements and coordinate systems135

We consider three coordinate systems (or frames) to accurately describe136

animal movement and tag data: (1) the Earth frame, a cartographic pro-137

jected coordinate system (x-axis south-north, positive north; y-axis east-138

west, positive west; z-axis bottom-up, positive up; origin is some arbitrary139
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location at the sea surface), (2) the animal frame (x-axis, longitudinal axis,140

positive forward; y-axis, right-left axis, positive left; z-axis, dorso-ventral141

axis, positive up; origin is the geometric center of the animal), and (3) the142

tag frame (x-, y-, z-axes are internally defined; origin is the center of the tag)143

– this latter frame is required because the tag is not always placed with the144

same orientation on the animal.145

An animal’s 3D track is the time-series of its 3D location; more specifically146

the 3D Cartesian coordinates of the origin of the animal frame in the Earth147

frame, denoted x(t) = (x(t), y(t), z(t)) at time t. Animal 3D speed is the148

time derivative of x(t); the speed of translation of the animal frame in the149

Earth frame, denoted v(t) = (vx(t), vy(t), vz(t)). The orientation of a 3D150

object in space is unambiguously described in terms of heading h (rotation151

to the z-axis, h ∈ (−180◦, 180◦]), pitch p (y-axis, p ∈ (−90◦, 90◦]), and roll152

r (x-axis, r ∈ (−180◦, 180◦]) with respect to some frame of reference. The153

animal’s 3D orientation at time t is represented by its heading h(t) (positive154

Eastwards), pitch p(t) (positive upwards) and roll r(t) (positive rightwards),155

with respect to the Earth frame.156

Tag data are not directly available in the Earth frame. Accelerometer157

and magnetometer measure the Earth’s gravitationnal and magnetic fields158

in the tag frame. The conversion of Earth’s gravitationnal and magnetic fields159

between animal and Earth frames is achieved via rotation matrices described160

in the next section. The conversion of raw accelerometer and magnetometer161

data in the tag frame into the animal frame is achieved in a similar way.162

Description of the latter process, together with the processing of acoustic163

data into flow noise level, is deferred to Section 2.5.164

2.2. The statistical model165

We describe the full statistical model here. Approximations used in prac-166

tice for computational efficiency are described in Section 2.3.167

The objective is to use available tag data (Earth’s gravitationnal and168

magnetic fields in the animal frame, depth, flow noise level), and independent169

positional data, if available, to infer unknown, latent variables characterizing170

animal movement (x(t), v(t), h(t), p(t), and r(t)). Our implementation171

utilizes a hierarchical Bayesian model (HBM). The overall model structure172

is illustrated in Figure 1, relating latent and measured variables as detailed173

below. For clarity the model is presented in four sections: (1) estimation174

of animal orientation from accelerometer, magnetometer and depth-meter175

measurements; (2) estimation of speed from flow noise measurement and176
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direction of movement from a combination of speed, orientation and change in177

depth; (3) track estimation, and (4) incorporation of independent positional178

information.179

We define t0 and tend as the track start and end times, t ∈ [t0, tend].180

2.2.1. Animal 3D orientation181

The expected values A
a(t) and M

a(t) of the 3D Earth gravitationnal182

and magnetic fields in the animal frame (superscript a) at time t are183

A
a(t) = T (t)Ae

M
a(t) = T (t)Me,

(1)

where T (t) is a rotation matrix that switches from the Earth frame to the184

animal frame given by185

T (t) =





1 0 0
0 cos r(t) sin r(t)
0 − sin r(t) cos r(t)





×





cos p(t) 0 sin p(t)
0 1 0

− sin p(t) 0 cos p(t)





×





cosh(t) sinh(t) 0
− sinh(t) cosh(t) 0

0 0 1



 ,

(2)

and A
e and M

e are the values of the 3D Earth gravitational and magnetic186

fields in the Earth frame (superscript e) at the tagging location and time.187

Given the relative small scale of most studies, ours included, compared to188

these 3D Earth fields, these can safely be treated as constants. They can189

be either measured or derived from models of the gravitational and Earth190

magnetic fields.191

Measured (superscript obs) values of the Earth gravitational (Aa,obs(t)=192

and magnetic fields (Ma,obs(t)) in the animal frame at time t are modelled193

as multivariate Gaussian distributions (MVN)194

A
a,obs(t) ∼ MVN(Aa(t),ΣA(t))

M
a,obs(t) ∼ MVN(Ma(t),ΣM (t))

(3)

where ΣA(t) and ΣM (t) are time-dependent covariance matrices (see Ap-195

pendix S1 for details). The observed animal depth is196

zobs(t) ∼ Normal(z(t), σ2
z), z

obs(t) ≤ 0, (4)
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where z(t) is the unobserved true depth of the animal in the Earth frame197

and σ2
z is the depth-meter measurement error variance.198

2.2.2. Animal speed and direction of movement199

We explicitly relax what we refer in the following as the equal pitch as-200

sumption: that the direction of animal movement coincides with the direction201

of its longitudinal axis. Animal speed animal at time t is202







vx(t) = cosh′(t) cos p′(t)v(t)
vy(t) = − sinh′(t) cos p′(t)v(t)
vz(t) = sin p′(t)v(t),

(5)

where v(t) = ||v(t)||, h′(t), and p′(t) are the Euclidean norm, the heading203

(positive Eastwards), and the pitch (positive upwards) in the Earth frame of204

the speed vector of the animal at time t. Differences of orientations of the205

longitudinal axis and the speed vector are modeled as differences in respective206

pitch angles207

p′(t) ∼ Normal(p(t), σ2
p), p′(t) ∈ (−90, 90], (6)

where σ2
p is the variance of the pitch difference ∆p(t) = p(t) − p′(t). We208

refer in the following to this as the unequal pitch assumption and to ∆p(t) as209

pitch anomaly. A positive pitch anomaly occurs when the animal points its210

longitudinal axis higher than expected by its swimming direction, and vice211

versa (Figure 2). Pitch anomaly can be the result of a pitch and/or a heading212

movement in the animal frame depending on the roll. For reasons discussed213

later, we do not consider heading anomaly, hence assuming h(t) = h′(t).214

Animal speed is related to background noise level NL(t) at time t assum-215

ing216

v(t) ∼ Normal(av + bv log(NL(t)), σ
2
v), v(t) ≥ 0, (7)

where av and bv are regression parameters and σv is the residual standard217

error (Appendix S2).218

2.2.3. Animal 3D track219

Animal Cartesian coordinates at time t+∆t are computed from coordi-220

nates at time t and speed:221







x(t+∆t) = x(t) + vx(t)∆t
y(t+∆t) = y(t) + vy(t)∆t
z(t+∆t) = z(t) + vz(t)∆t

(8)
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2.2.4. Independent positional information222

In our application we only use information about the dive starting po-223

sition, assumed to have been observed with known error. We model this224

as225
{

xobs(t0) ∼ Normal(x(t0), σ
2
x(t0))

yobs(t0) ∼ Normal(y(t0), σ
2
y(t0))

(9)

where σ2
x(t0) and σ2

y(t0) are known variance terms. If the absolute start226

position is unknown, arbitrary values are provided for (xobs(t0), y
obs(t0)) with227

null variances (σ2
x(t0) = σ2

y(t0) = 0); estimated locations become relative to228

this position.229

Similarly, additional animal positions might be used to improve the track230

reconstruction process. When at the surface these could come from visual231

observations, animal-borne GPS or satellite receivers. When underwater,232

these could come from passive (or active) acoustic localizations.233

2.2.5. Priors234

Prior distributions are required on all top-level random variables in the235

hierarchical model. Observation variance parameters are assumed known,236

hence not requiring priors. We also assume the relationship between mea-237

sured noise level and speed is known with certainty (see Section 2.3 and238

Discussion). These variables are shown as grey boxes in Figure 1. The re-239

maining top-level variables are pitch, heading and roll at each time step, for240

which uniform distributions are assumed:241







p(t) ∼ Uniform(−90, 90)
h(t) ∼ Uniform(−180, 180)
r(t) ∼ Uniform(−180, 180)

(10)

2.3. Bayesian computation and approximating model242

The model described by equations (1)-(10) is not analytically tractable;243

however, samples from the posterior distribution of latent variables can be244

simulated via Markov chain Monte Carlo (MCMC). For this, we used Open-245

BUGS version 3.2.1, open-source version of WinBUGS (Ntzoufras, 2009).246

BUGS code is available as Appendix S3. Tag data preprocessing and output247

postprocessing were implemented in R (R Core Team, 2013).248

Initial runs showed that the full model was highly computer-intensive.249

Two procedures were implemented to reduce computing time, both of which250

mean we fit an approximation to the full model. Firstly, the model was251
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divided into three stages (and each stage was analyzed in turn): (i) compute252

animal 3D orientation (equations 1 - 4, 10); (ii) calibrate the speed-noise253

relationship (equation 7); (iii) compute animal 3D track (equations 5, 6, 8,254

9). Uncertainty was propagated across stages by modelling stage outputs255

as Gaussians, with mean and variance equal to the corresponding posterior256

values, using this distribution as input to the next stage. However, in moving257

from stage (ii) to (iii) the parameters of the speed-noise model were assumed258

known. Secondly, in computing stages (i) and (iii), the track was divided into259

1-minute pieces. Each piece was run in parallel using a high performance260

computing resource (HPR). Pieces were then joined and uncertainty from261

the end of each piece propagated to the beginning of the next (see Appendix262

S4 for details and discussion for possible impacts).263

MCMC convergence was assessed by computing the inter-chain variances264

of the simulated latent variable samples across 4 chains. For each chain, once265

convergence was reached, 10, 000 samples were simulated; these were thinned266

to 1, 000 independent samples per chain, with thinning guided by analyzing267

the autocorrelation function of the posterior samples. Reported point esti-268

mates are posterior means, standard errors are posterior standard deviations269

(reported as mean ± standard error), and reported interval estimates are 2.5270

% and 97.5 % posterior marginal quantile estimates.271

2.4. Alternative models for pitch anomaly272

The model assumes a fixed pitch anomaly standard deviation σp (see273

Discussion for a relaxation of this assumption). To investigate how pitch274

anomaly varied along the track we repeated the above analysis considering275

three different values for σp: 0
◦, 5◦ and 10◦. These represent three different276

models and we denote them M0, M5 and M10, respectively.277

Models were compared, for each track piece, using the Deviance Infor-278

mation Criterion (DIC Spiegelhalter et al., 2002), a goodness-of-fit index279

penalized for model complexity, similar in spirit to Akaike’s Information Cri-280

terion; smaller values are considered better (see Section 4 for a discussion281

of alternative model selection measures). Following Gelman et al. (2003) we282

estimated model complexity as pv = var{−2 log[p(θ|y)]}/2. The models do283

not share the same complexity: M0 is the least complex (p′(t) is perfectly284

known given p(t)), which is less complex than M5 (p′(t) estimated under285

the more relaxed constraint of equation (6) with σp = 5◦) which is itself less286

complex than M10 (even more relaxed constraint with σp = 10◦). In the287

Results, we report which model was favoured in each minute of the track.288
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2.5. Example dataset289

For illustration we used a Mesoplodon densirostris Blainville’s beaked290

whale adult male tagged on the 5th September 2007 (tag on position: 24.3839291

N, 77.5615 W) at AUTEC (Atlantic Undersea Test and Evaluation Center, an292

instrumented US Navy testing range in the Bahamas). AUTEC details and a293

different analysis of this DTAG data can be found in Ward et al. (2011). We294

illustrate the methods using the first deep dive, which lasted 51′20′′ (full tag295

deployment: 16 hours, 5 deep dives). Mesoplodon densirostris depth profiles296

have been modelled using behaviour states (Langrock et al., 2013), and deep297

dives can be divided in descent, foraging and ascent phases: here the whale298

fluked up and initiated its dive at arbitrarily fixed t0 = 0, ended its descent299

and started active searching for prey at tB = 7′50′′, stopped active searching300

for prey and initiated its ascent at tC = 35′30′′, and reached the surface at301

tend = 51′20′′.302

The magnetic field was computed by using the IGRF11 (11th Genera-303

tion International Geomagnetic Reference Field) Earth’s main magnetic field304

model (International Association of Geomagnetism and Aeronomy, Work-305

ing Group V-MOD, 2010). The magnetic field at the tagging location and306

time was Me = (25736, 3205,−35522) nT (declination: 7.15◦ W; inclination:307

54.08◦ down). The gravitational field wasAe = (0, 0,−9.79) m/s2. Arbitrary308

null values were provided for the location of the whale at the beginning of309

the dive (xobs(t0) = yobs(t0) = 0 m with σ2
x(t0) = σ2

y(t0) = 0 m).310

Raw tag-frame accelerometer and magnetometer data were converted into311

animal-frame accelerometer and magnetometer data as described by Johnson312

& Tyack (2003). Accelerometer, magnetometer, and depth-meter data were313

lowpass filtered by using a 1-second, squared-window rolling mean before314

being downsampled at 1 Hz (∆t = 1 s). Background noise level was evaluated315

as the median of the absolute value of the acoustic samples over a 1-second316

window before being downsampled at 1 Hz. This simple procedure is robust317

to the presence of transient signals, in our case echolocation signals emitted318

by the tagged animal.319

Eight independent acoustic localizations with low measurement error were320

available (at 7’40, 10’40, 10’44, 29’21, 29’22, 29’23, 29’24, and 29’33), ob-321

tained by cross referencing data from AUTEC range hydrophones with the322

known times of emission of clicks from the tag (see Ward et al. (2011) for323

details). These were ignored in the modelling, providing instead an inde-324

pendent comparison to our location results. For comparison, a conventional325

dead reckoning track was obtained based on a state space model formulation326
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with 4 states (x, y, z, speed) and 1 observation (depth). Heading and pitch327

were treated as known covariates, fitted via a Kalman filter, implemented in328

R.329

3. Results330

The dive track reconstruction (for all 3 models) on a single MCMC331

chain would have required 65 h of computation time on a single core of a332

Intel R© Xeon E5-2680v2 2.8Ghz 10-core processor. This was reduced to 75333

minutes using HPR (Appendix S4).334

Estimates of whale heading, pitch, and roll for the complete dive are335

provided as Appendix S5. The standard deviations of the whale head-336

ing, pitch, and roll estimates were 0.78◦ (average for the whole dive, 95 %337

in (0.35◦, 1.31◦)), 0.35◦ (0.18◦, 0.54◦), and 0.47◦ (0.14◦, 1.01◦), respectively.338

These quantify observation measurement error in heading, pitch, and roll.339

Animal speed is linearly predicted from log-transformed flow noise level340

(R2 = 0.77, Appendix S2).341

DIC values are shown in Figure 3. Model M0 was favoured from 1′ to 5′.342

Model M5 performed better for the rest of the dive except for 4 dive portions343

(at 12′, 18′, 25′, 45′) where M10 was favoured. M0 better performance at the344

beginning of the dive (similar fit with lower complexity) can be explained by345

the whale’s negligible pitch anomaly at this stage leading to the equal pitch346

assumption. The improvement provided by M5 and M10 for the rest of the347

dive (better fit despite higher complexity) suggests a non negligible pitch348

anomaly and consequent need for equation (6). Model M5 performed better349

than M10 for most of the dive (similar goodness-of-fit with lower complex-350

ity) indicating that the flexibility introduced by setting σp = 5◦ should be351

preferred to σp = 10◦. Nonetheless, M10 outperformed M5 for some dive352

portions (better fit despite higher complexity) with higher amplitude pitch353

anomaly. Overall, results strongly favor the unequal pitch assumption and354

σp = 5◦. The following results are exclusively based on model M5, but this355

choice is not critical, as localization results are similar by using σp = 10◦356

(distance between tracks: 17.4 ± 14.5 m). The whale’s estimated 3D track357

is illustrated in Figure 4 (interval estimates are provided as Appendix S5).358

The absolute distance between the results from the independent acoustic359

survey localizations and the estimated track from M5 is 38.3± 18.7 m. For360

comparison a standard dead-reckoning track fitted using a Kalman Filter is361

also shown (distance between tracks: 151.6± 88.9 m). Estimated speed and362
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pitch anomaly is illustrated in Figure 5. The whale initiated its dive with a363

strongly negative pitch anomaly (−20◦), pitch anomaly rapidly reached zero364

(t ∈ [0′00, 0′40]) and stabilized (peak-to-peak lesser than 4◦, t ∈ [2′00, 6′00]365

and up to 15◦ for t ∈ [6′00, 7′50]). At depth (t ∈ [7′50, 35′30]), the whale alter-366

nated sections with either moderate pitch anomaly variations (peak-to-peak367

lesser than 10◦) or strong variations (peak-to-peak up to 40◦). During the368

ascent (t ∈ [35′30, 51′20]), the whale had a positive pitch anomaly (between369

5◦ and up to 28◦). At depth, sections of large speed were associated with370

moderate pitch anomaly variations and sections of low speed were associated371

with strong pitch anomaly variations, suggesting that the whale alternated372

complex rotational movements at low speed and more regular movements373

at higher speed. During the ascent, the whale always kept a positive pitch374

while the vertical speed could be negative (as low as −0.40 m/s) as illustrated375

in Figure S2-2 (Appendix S2). The whale alternated active fluking (strong376

variations in speed) and passive gliding (no variation) with a strong positive377

pitch anomaly for the whole ascent.378

4. Discussion379

We used a relatively simple “data driven” model, where expected ori-380

entation is a function of accelerometer and magnetometer measurements,381

expected speed is a function of measured noise and pitch anomaly is a func-382

tion of speed and measured changed in depth. Measurement error on the383

observed quantities was assumed Gaussian, with known variance (except for384

variance in the speed vs. flow noise relationship, which was estimated). This385

approach can be expected to produce a realistic track where high quality386

(i.e., low error), high frequency data are available that relate closely to ani-387

mal orientation and speed. DTAGs generate exactly such data. By contrast,388

where the data give less accurate information about animal movement or po-389

sition, and/or are collected much less frequently, then it becomes necessary390

to include assumptions about the underlying movement behaviour of the an-391

imal in the model – for example using a biased correlated random walk, with392

model parameters representing centres of attraction or repulsion and corre-393

lation between time steps (e.g. McClintock et al., 2012). A good example of394

such data is Argos satellite tags (see, e.g. McClintock et al., 2015). One ad-395

vantage of our approach is that the track is not constrained by assumptions396

about movement behaviour. Disadvantages include it: (1) requires high qual-397

ity data; (2) does not incorporate biological knowledge of animal movement398
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behaviour (except in the specification of different error variances in differ-399

ent diving phases); (3) does not directly allow biological inferences about400

movement (in contrast with, e.g., the multi-state models of McClintock et al.401

(2012) – although such inferences could be made in a second analysis stage;402

(4) cannot be used for simulating tracks, since it relies on input data at each403

time step. Therefore, the most appropriate approach depends on the data404

available and the goals of the analysis.405

Reconstructing 3D tracks from accelerometer, magnetometer, and depth-406

meter data alone, by implicitly assuming that the animal is moving in the407

direction of its longitudinal axis, might lead to biased inferences (see Figure408

4). As illustrated in Figure S2-2 (Appendix S2), the whale’s movement direc-409

tion does not necessarily coincide with its longitudinal axis during the ascent.410

Therefore the animal is capable of having a movement direction different to411

its own axis, issuing a serious warning against the equal pitch assumption.412

The inability to estimate speed when the animal is approximately horizontal413

(Appendix S2) represents an additional argument against reconstructing 3D414

tracks from accelerometer, magnetometer, and depthmeter data alone.415

Following previous work (e.g. Simon et al., 2009; Ware et al., 2011) we416

estimated speed from an independent source, modeling the speed/noise re-417

lationship using the animal’s steep descent phase, formalized via a loglinear418

relationship. The estimated track consistency with independent acoustic419

locations suggests that this procedure is sensible, at least for the first 30420

minutes of the dive when acoustic data were available. However, using flow421

noise as a proxy for animal speed has its own limitations. It can be sensitive422

to changes in background noise during the dive (e.g. presence of sonar, boat423

motor, animal sounds). Difficulties are expected if the goal is to reconstruct424

tracks at the surface, when other sources might contribute significantly to425

acoustic noise (e.g. wave lapping) – a solution for this is discussed later.426

Further, animal speed estimates from flow noise assume that the speed-flow427

noise relationship is independent of the animal orientation (discussed in more428

detail later).429

The key advantage of including an independent estimate of speed was430

the ability to relax the equal pitch assumption, clearly supported by the431

data (Figure S2-2) and by our localization results. For example, the whale432

was able to be oriented upwards while moving downwards (e.g. during the433

ascent), with differences up to 28◦ between 3D orientation of its longitudinal434

axis and its speed vector. Consequently, accounting for complex animal435

movements by dissociating animal translation and rotation movements seems436
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necessary to produce reliable 3D tracks. We have considered a fixed, known437

variance for pitch anomaly and concluded that a 5◦ was a sensible choice for438

our example. Another approach might be to consider an unknown variance439

for pitch anomaly. Hence, provided a reasonable vague prior, variance would440

be estimated while reconstructing the track, and (at least in theory) a time-441

dependent variance might be considered.442

We considered DIC as a model selection metric because it was readily443

implemented in OpenBUGS. We acknowledge DIC’s use is controversial, and444

that other approaches have been suggested (see, e.g., discussion papers fol-445

lowing Spiegelhalter et al. (2002, 2014)). It may, for example, be possible446

to implement a Gibbs Variable Selection or related approach (see O’Hara &447

Sillanpää (2009) for review) to estimate the posterior model probability for a448

model with 0 variance in pitch anomaly vs a model with a non-zero variance449

prior.450

Pitch anomaly does not necessarily describe a pitch movement of the451

animal in its own frame; instead it is the difference between the animal’s452

longitudinal axis pitch and the pitch of its speed vector (both on the Earth453

frame). Depending on the animal’s roll, pitch anomaly can be the result of454

a pitch movement (in the animal frame) if roll is null or equal to ±180◦, of a455

heading movement (in the animal frame) if roll is equal to ±90◦, or a com-456

bination of both. Average roll was 4.9◦ (95 % in (−39.6◦, 20.5◦)) during the457

descent, −5.0◦ (−53.7◦, 35.2◦) at depth, and 1.0◦ (−15.8◦, 23.0◦) during the458

ascent. Consequently, variations in pitch anomaly here mainly depict pitch459

movements (in the animal frame) slightly combined with heading movements.460

We have not included heading anomaly in the model. Similarly as for pitch,461

heading anomaly could be defined as the difference between the heading462

of the longitudinal axis of the animal and the heading of its speed vector.463

A positive heading anomaly would represent movements when the animal464

points its longitudinal axis more on the starboard side than expected by its465

swimming direction, and vice versa. The reason for not including heading466

anomaly in the model is that it is not possible, given the available data, to467

compute both pitch and heading anomalies. Considering only pitch anomaly468

is a parsimonious choice: the most likely explanation for the discrepancy be-469

tween measured depth and the depth predicted by the 3D orientation of the470

animal and its speed norm is through a vertical shift of the speed vector, i.e.471

pitch anomaly.472

The model handles four sources of errors: observation measurement errors473

on accelerometer/magnetometer data (ΣA and ΣM), on depth data (σ2
z), and474
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internal errors due to differences between 3D orientations of the animal body475

and speed (σ2
p), and on the prediction of speed from flow noise (σ2

v). The476

model propagates measurement and process errors into parameter estimate477

errors. However, it still apparently underestimates the location estimates478

precision, as indicated by the independent acoustic localizations (Figure 4479

and Appendix S5). Variances of parameter estimates are conditional on the480

model being true. This is strictly unrealistic, as the model still represents481

an oversimplification of the mechanism underlying animal 3D displacement482

and flow noise. Therefore, while ignoring them should be avoided, confidence483

intervals associated with locations should be handled with caution.484

There are (at least) 4 additional sources of errors ignored by the model:485

(1) Strictly, the speed considered is the speed of the animal with respect486

to the water mass. We consequently reconstructed the track in the water487

mass frame, not in the Earth frame. If water speed (in the Earth frame)488

is not negligible with respect to animal speed (in the water mass frame),489

track reconstruction might be biased. Were current speeds available one490

could incorporate them by adding a correction term in equation (8); (2) the491

calibration of the orientation of the tag to the whale frame was assumed492

to be an error free process, and potential tag shift over time ignored. An493

option would be to estimate calibration angles while reconstructing the track494

to propagate calibration errors to uncertainties on animal 3D orientation.495

Further research on the impacts of this calibration procedure on DTAG based496

by-products is welcome; (3) while errors on the prediction of the speed from497

the noise level are considered (equation (7)), errors on the parameters of the498

relationship (av, bv, σv) or on the relationship itself are ignored – the use499

of a more advanced relationship, calibrated while reconstructing the track is500

an interesting perspective; (4) a known error-free variance σ2
p was used. As501

mentioned earlier, an option would be to estimate σ2
p. The consequences of502

assuming a known calibrated speed-noise relationship and a known variance503

σ2
p on the track reconstruction process are explored in Appendix S6.504

No explicit track smoothing was implemented. The reconstructed track505

regularity (Figure 4) is the consequence of the estimated speed regular-506

ity (Figure 5), itself the consequence of flow noise regularity, caused by507

smooth animal movement. Another option to smooth the track would be508

to consider explicitly autocorrelation in animal 3D orientation and speed.509

This might help when speed could not be inferred from flow noise (e.g.510

tags without acoustic sensors). One possible implementation is to add two511

sets of latent variables, angular speeds (vh(t), vp(t), vr(t), e.g. vh(t) =512
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(h(t + ∆t) − h(t))/∆t) and accelerations (ax(t), ay(t), az(t), e.g. ax(t) =513

(vx(t+∆t)− vx(t))/∆t), assumed unbiased with known behavioral state de-514

pendent variances, . As an illustration, the angular speed statistics (mean515

± standard deviation) of our whale differ across behavioral states: descent516

(pitch: −1.0 ± 3.7◦/s; heading: 0.0 ± 2.0◦/s; roll: 0.5 ± 3.0◦/s), at depth517

(−0.8 ± 5.5◦/s; −0.1 ± 5.0◦/s; 0.0 ± 5.0◦/s), and ascent (−0.2 ± 3.0◦/s;518

0.0± 2.5◦/s; 0.0± 2.2◦/s). Acceleration (3 coordinates altogether) also differ519

across states: descent (0.000±0.091 m/s2), at depth (0.001±0.200 m/s2), and520

ascent (0.000± 0.081 m/s2). The latter values could also be used to smooth521

animal tracks computed from acoustic surveys, as described by Laplanche522

(2012).523

One of the advantages of implementing the model in a Bayesian frame-524

work is that incorporation of additional data sources and propagating corre-525

sponding observation errors is conceptually straightforward. Acoustic based526

localization could be used as direct observations or provide time of arrival527

differences (TDOA) data instead of computed localization, by combining our528

model with that of Laplanche (2012), which would deal with propagating529

TDOA errors to localization estimates.530

We made some approximations to speed up model fitting computations:531

(1) we broke the full model into three parts (3D orientation, speed-flow noise532

and track reconstruction) and (2) analyzed some parts in one minute chunks,533

using Gaussian distributions to cascade uncertainty between chunks (see Sec-534

tion 2.3 and Appendix S4). These approximations are expected to have a535

negligible influence on the estimated track since they concern only the vari-536

ance of orientation and position. Nevertheless, we see four main drawbacks537

in our implementation: (1) it is not compatible with additional independent538

positional information (GPS or acoustic based), except for at the first time539

point; (2) it removes the possibility to correct for animal acceleration while540

computing animal orientation from accelerometer data. Although animal541

acceleration is negligible for large species, like the beaked whale considered542

here, it would be questionable for smaller, rapid species like dolphins or pin-543

nipeds; (3) it prevents calibrating tag orientation while reconstructing the544

track, and (4) it removes the possibility to account for animal orientation545

and speed to predict flow noise and compare to data for the whole dive.546

Clearly HPR are a valuable tool, giving the potential to speed up exten-547

sive computations. Whether this potential is realized is case specific: in our548

case, because of the independence of some latent variables over time, parts549

of the computation could be carried out in parallel with almost no loss in550
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inference accuracy. This might no longer be the case if the model were ex-551

tended. Another option to reduce computation time might be implementing552

the model in a likelihood based approach, e.g. via an extended Kalman-filter,553

another research avenue we are pursuing.554

Reconstructing tracks from accelerometer, magnetometer and depthmeter555

tag data happens routinely regardless of potential hidden dangers in doing so.556

The need for methods incorporating observation error and providing preci-557

sion measures on estimated tracks is clear. We have shown that the approach558

described here, allowing (1) the estimation of speed from flow noise and con-559

sequently (2) the dissociation of the 3D orientation of the animal longitudinal560

axis and the 3D orientation of its speed vector, is an important step towards561

such goal. We suggest that practitioners should evaluate the validity of the562

equal pitch assumption on their species before reconstructing 3D tracks. Our563

methods – considering equal/unequal pitch assumption, comparing outputs564

and fits, and using independent localization – are an option. It allowed us565

to design a new descriptor on marine mammal movement: pitch anomaly.566

We believe that making assumptions explicit via a mathematical model is567

a relevant approach in gathering current knowledge about animal behavior,568

identifying gaps, and allowing new insights.569
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Figure 1: Directed acyclic graph (DAG) illustrating the relationship between model pa-
rameters and measured variables. Measured variables (in dark grey) are either modeled as
random variables (circles and rounded rectangles) or are considered as known (rectangles).
Parameters (in white) are either defined by a stochastic formula (circles and rounded rect-
angles) or are deterministic resultants of upstream nodes (rectangles). Variables indexed
with t are time-dependent (grey polygon). The 3D orientation of the animal (h(t), p(t),
r(t)) is estimated from the accelerometer and magnetometer (Aa,obs(t), Ma,obs(t)) data.
The 3D orientation and norm (h(t), p′(t), v(t)) of the animal speed vector is used to com-
pute the 3D speed vector (vx(t), vy(t), vz(t)) and resulting track (x(t), y(t), z(t)). The
model allows for the possibility that the animal has a swimming direction (p′(t)) that is
distinct from, yet statistically related to, the 3D orientation of its body (p(t)).
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Figure 2: Pitch anomaly ∆p(t) = p(t)− p′(t) is the difference between the pitch (p(t)) of
the orientation of the animal’s longitudinal axis (black arrows) and the pitch (p′(t)) of the
animal’s speed vector (grey arrows). A positive pitch anomaly highlights movements when
the animal points its longitudinal axis higher than expected by its swimming direction, and
vice versa. The 3D whale track (grey line) and vectors are projected on a vertical plane.
The color legend for pitch anomaly is the same as what is used in Figure 4 (green: no
anomaly; from yellow to red: increasing positive anomaly; from cyan to violet: decreasing
negative anomaly), angles between pairs of arrows have been inflated in the current plot
for the ease of representation.
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Figure 3: DIC values computed separately for each minute of the dive for modelsM0 (black
dots, values greater than 200 are represented as empty dots), M5 (dark grey squares), and
M10 (light grey circles).
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Figure 4: Estimated 3D whale track (x-axis, y-axis, dot size) and pitch anomaly (color).
The whale dives at t0 = 0 (A), ends its descent and starts to actively search for prey at
depth at tB = 7′50 (B), starts to reascend at tC = 35′30 (C), and resurfaces at tend =
51′20 (D). Independent acoustic localization from surrounding AUTEC hydrophones are
represented (full black squares, E) together with points on the estimated track at the same
timing (empty black squares). The whale covers a total curvilinear distance of 5170 m
(descent (AB): 895 m; at depth (BC): 2845 m; ascent (CD): 1430 m). Estimated whale
track by processing accelerometer, magnetometer, and depthmeter data with a Kalman
filter is represented (grey line) together with location at acoustic localization timing (grey
squares).
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Figure 5: Point estimate of whale speed (top, in black) and pitch anomaly (bottom, in
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Mean speed during the descent is 1.91±0.17 m/s, 1.72±0.42 m/s at depth, and 1.51±0.28
m/s during the ascent. Mean pitch anomaly is −0.5± 2.9◦ during the descent, 3.5± 5.6◦

at depth, and 14.8± 5.5◦ during the ascent. Interval estimates are also represented on the
plots (in grey). At depth, sections of large speed are associated with small pitch anomaly
variations, and vice versa.

28



Appendix S1 – Statistical model for accelerometer
and magnetometer measurement errors

Accelerometer and magnetometer measurements normalized with respect to
the norms of the earth gravitational and magnetic fields, Aa,obs(t)/||Ae||
and M

a,obs(t)/||Me||, would have a constant unit norm if earth gravita-
tional and magnetic fields were the only components in accelerometer and
magnetometer measurements. In practice, both norms are time-dependent,
as a result of other sources of acceleration, plus noise. By modelling errors
on each of the 3 accelerometer coordinates as independent and normally dis-
tributed (discussed below) with variances σ2

A(t), the variance of the squared
norm [||Aa,obs(t)||/||Ae||]2 is 6σ4

A(t) + 4σ2
A(t) ≃ 4σ2

A(t) (by neglecting the
fourth-order term, since σA ≪ 1; see values below for σA(t)). One can find a
similar formula for the variance of the squared norm [||Ma,obs(t)||/||Me||]2.
Consequently, the time-dependent covariance matrices in equation (3) are
here diagonals, ΣA(t) = σ2

A(t)I and ΣM (t) = σ2
M (t)I, with variances σ2

A(t)
and σ2

M (t) equal to a quarter of the variances of the norms ||Aa,obs(t)||/||Ae||
and ||Ma,obs(t)||/||Me|| which are directly measurable. Plots of ||Aa,obs(t)||
and ||Ma,obs(t)|| (not shown) strongly suggest consideration of distinct but
constant variances for the animal descent, active searching for prey, and as-
cent (sequences AB, BC, and CD illustrated in Figure 4). Computed values
are respectively for these three stages 1.12, 1.90, and 1.12 % for σA(t) and
0.61, 0.97, and 0.33 % for σM (t).

Low resulting errors on orientation estimates (standard deviations on
orientation angles are 0.78◦ on average, cf. main document’s results sec-
tion) and location estimates could be potentially biased, as discussed in the
main document. Errors in orientation and location estimates are computed
assuming the model is true. Possible improvements to the error structure
might include (i) considering correlated errors across the three magnetome-
ter and accelerometer axes, leading to non diagonal covariance matrices
ΣA(t) and ΣM (t), (ii) considering auto-correlated errors, and (iii) using
non-Gaussian distributions, particularly distributions defined on the circle.



Appendix S2 – Statistical model for speed from
background noise level

Animal speed can theoretically be estimated (vest(t)) from accelerometer,
magnetometer, and depthmeter data alone

vest(t) = |vz(t)|
√

1 + 1/ tan p(t) (S2–1)

where vz(t) = (z(t + ∆t) − z(t))/∆t is the vertical speed computed from
depth meter data and p(t) is the pitch of the animal computed from the
accelerometer and magnetometer. The use of equation (S2–1) is problematic
for two main reasons. The first is that accelerometer, magnetometer, and
depthmeter data provide no information on animal speed when the animal
is horizontal (equation (S2–1) does not apply if p(t) = 0). As a corollary,
the computation of animal speed from accelerometer, magnetometer, and
depthmeter data with low pitch values is unreliable and highly sensitive to
measurement error. The second reason is that, as considered in the present
paper, animal orientation is not necessarily the orientation of its speed vector
v(t), and consequently speed computed from accelerometer, magnetometer,
and depthmeter data could be misleading. One could, however, use Equation
(S2–1) to compute a reliable estimate of the speed norm from accelerometer,
magnetometer, and depthmeter for periods of high pitch when the equal
pitch assumption is likely to hold. As Simon et al. (2009), we consider the
section of the dive when the animal is fluking and steeply descends from
the sea surface to reach the foraging depth, and hence when the equal pitch
assumption is most likely to hold. We apply equation (S2–1) to all samples
(n = 384) during the animal descent for which the pitch is greater than 60◦

(an arbitrary threshold).
Background acoustic noise level is expected to increase with animal speed

as a consequence of water flow on the sensor. Figure S2.1 shows the observed
relationship between estimated speed for the above data versus measured
noise level on the tag (on a logarithmic scale). An ordinary linear regression
yielded the relationship, for data from descent with pitch > 60◦ of E{v(t)} =
4.53+1.16 log10(NL(t)), with a residual standard error σv = 0.08 m/s (R2 =
0.77). The fit is shown in Figure S2.1.

Also shown in Figure S2.1 are the samples (n = 330) during the animal
ascent for which the pitch is greater than 60◦. A similar regression on these
data yielded somewhat different regression parameters (E{v(t)} = 4.73 +
1.37 log10(NL(t)), with a residual standard error σv = 0.12 m/s, R2 = 0.84).
We postulate that ascent should not be considered to calibrate the speed-
noise relationship, as during this stage the direction of the movement differs



from the animal’s axis (Figure S2.2: on two occasions a positive pitch, i.e.
head oriented upwards, is observed concurrently with a negative vertical
speed, i.e. animal moving downwards). We hypothesize that the discrepancy
between the descent and ascent calibration results (Figure S2-1) is that for
the latter movement direction can differ from the animal’s longitudinal axis.
We therefore calibrated the speed-noise relationship with descent data, when
the animal is actively navigating downwards, to predict animal speed from
the noise level for the rest of the dive.

Currently this model does not consider differences of flow noise due to
animal orientation and does not propagate errors on estimates av, bv, and
σv to location uncertainties. This is discussed in the main document.
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Figure S2.1: Measured noise level (NL) and speed norm (v) computed by
dead reckoning from accelerometer, magnetometer, and depthmeter data.
Samples with pitch angle p(t) ≥ 60◦ during the whale descent (t ∈ [0, 470] s;
384 samples; in green), during the ascent (t ∈ [2130, 3080] s; 330 samples; in
orange), and remaining points (in grey; for a better presentation of points
during the descent and the ascent, speed values greater than 2.5 m/s are
censored and are represented as crosses). Speed is linearly related to the
logarithm of the noise level by using data from the descent (R2 = 0.77;
green line) or the ascent (R2 = 0.84; red line). Data from the descent
are used to calibrate the relationship connecting v to NL. Predicted speed
norm is E(v) = av + bv log10(NL) (av = 4.53, bv = 1.16), standard error is
σv = 0.08 m/s.
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Figure S2.2: Pitch and vertical speed during the whale ascent. Pitch is com-
puted from the accelerometer and accelerometer data (orange) and vertical
speed is computed from the depth sensor data (green). On two occasions
(around t = 41 and t = 46 minutes), the animal is oriented upwards (pitch is
positive) while moving downwards (vertical speed is negative), showing that
the direction of the animal movement is different from its longitudinal axis.
Therefore, the equal pitch assumption does not to hold during the ascent,
and the calibration of the relationship from the noise level during this stage
is ill-advised.



Appendix S3 – BUGS code

As detailed in Appendix S4, computations are completed in three steps (CS
1, CS 2, CS 3). First, animal 3D orientation is computed from accelerometer
and magnetometer data by simulating BUGS model orientation (code
below). Second, parameters of the relationship connecting speed to noise
level are found by regression (Appendix S2). Third, animal 3D track is
computed from the animal orientation found in CS 1, regression parameters
found in CS 2, and depth and noise level data, by simulating BUGS model
track (code below). Propagation of errors from measurements to 3D track
is described in Appendix S4.

Index i ∈ {1, . . . , I} is an index over time stamps, I is the number of
time stamps, and time for index i is denoted t_i[i]. Although the track
considered in this study was processed at a constant, 1-second time step,
the BUGS code has been written to deal with any time step (smaller, larger,
or adaptive). Time stamps are provided as data to the BUGS models.

In the orientation BUGS model, sigma_A and sigma_M refer to the stan-
dard deviations of the norms of ||Aa,obs(t)||/||Ae|| and ||Ma,obs(t)||/||Me||
(see Appendix S1). Such values are behavioral state-dependent and are
therefore indexed by I_state (descent: 1, searching for prey: 2, ascent: 3).
Variables sigma_A_i[i] and sigma_M_i[i] refer to σA(t) and σM (t), which
are equal to half sigma_A and sigma_M (Appendix S1). Since sigma_A_i[i]
and sigma_M_i[i] represent the standard deviation of the average accelerom-
eter and magnetometer error over a time step of duration t_i[i+1]-t_i[i]

– while sigma_A and sigma_M are values for a 1-second time step – val-
ues sigma_A_i[i] and sigma_M_i[i] need to be adjusted in case of time
steps smaller or larger than 1 second, which is achieved, by still assum-
ing independent accelerometer and magnetometer errors, by dividing by
sqrt(t_i[i+1]-t_i[i]).

✞ ☎

model orientation {

# h e a d i n g , pitch , roll of the whale

# e a r t h frame

for(i in 1:I){

# heading

h_i[i] ~ dunif ( -180 ,180)

h_cos_i[i] <- cos(h_i[i]/180* pi)

h_sin_i[i] <- sin(h_i[i]/180* pi)

# pitch

p_i[i] ~ dunif (-90,90) # used by the acc/mag data model

p_cos_i[i] <- cos(p_i[i]/180* pi)



p_sin_i[i] <- sin(p_i[i]/180* pi)

# roll

r_i[i] ~ dunif ( -180 ,180)

r_cos_i[i] <- cos(r_i[i]/180* pi)

r_sin_i[i] <- sin(r_i[i]/180* pi)

}

# a c c e l e r a t i o n and magnetic field

# e a r t h frame

for(i in 1:I){

Ax_earth_i[i] <- 0#ax_i[i]

Ay_earth_i[i] <- 0#ay_i[i]

Az_earth_i[i] <- -g#+az_i[i]

Mx_earth_i[i] <- bx

My_earth_i[i] <- by

Mz_earth_i[i] <- bz

}

# a c c e l e r a t i o n and magnetic field

# w h a l e frame

for(i in 1:I){

Ax_whale_i[i] <- p_cos_i[i]* h_cos_i[i]* Ax_earth_i[i]+ p_cos_i[i

]* h_sin_i[i]* Ay_earth_i[i]+ p_sin_i[i]* Az_earth_i[i]

Ay_whale_i[i] <- (-r_cos_i[i]* h_sin_i[i]-r_sin_i[i]* p_sin_i[i

]* h_cos_i[i])*Ax_earth_i[i]+( r_cos_i[i]* h_cos_i[i]-r_sin_i[

i]* p_sin_i[i]* h_sin_i[i])*Ay_earth_i[i]+ p_cos_i[i]* r_sin_i[

i]* Az_earth_i[i]

Az_whale_i[i] <- (r_sin_i[i]* h_sin_i[i]-r_cos_i[i]* p_sin_i[i]*

h_cos_i[i])*Ax_earth_i[i]+(- r_sin_i[i]* h_cos_i[i]-r_cos_i[i

]* p_sin_i[i]* h_sin_i[i])*Ay_earth_i[i]+ r_cos_i[i]* p_cos_i[i

]* Az_earth_i[i]

Ax_whale_mes_i[i] ~ dnorm(Ax_whale_i[i],pi_A_i[i])

Ay_whale_mes_i[i] ~ dnorm(Ay_whale_i[i],pi_A_i[i])

Az_whale_mes_i[i] ~ dnorm(Az_whale_i[i],pi_A_i[i])

Mx_whale_i[i] <- p_cos_i[i]* h_cos_i[i]* Mx_earth_i[i]+ p_cos_i[i

]* h_sin_i[i]* My_earth_i[i]+ p_sin_i[i]* Mz_earth_i[i]

My_whale_i[i] <- (-r_cos_i[i]* h_sin_i[i]-r_sin_i[i]* p_sin_i[i

]* h_cos_i[i])*Mx_earth_i[i]+( r_cos_i[i]* h_cos_i[i]-r_sin_i[

i]* p_sin_i[i]* h_sin_i[i])*My_earth_i[i]+( p_cos_i[i]* r_sin_i

[i])*Mz_earth_i[i]

Mz_whale_i[i] <- (r_sin_i[i]* h_sin_i[i]-r_cos_i[i]* p_sin_i[i]*

h_cos_i[i])*Mx_earth_i[i]+(- r_sin_i[i]* h_cos_i[i]-r_cos_i[i

]* p_sin_i[i]* h_sin_i[i])*My_earth_i[i]+( r_cos_i[i]* p_cos_i[

i])*Mz_earth_i[i]

Mx_whale_mes_i[i] ~ dnorm(Mx_whale_i[i],pi_M_i[i])

My_whale_mes_i[i] ~ dnorm(My_whale_i[i],pi_M_i[i])

Mz_whale_mes_i[i] ~ dnorm(Mz_whale_i[i],pi_M_i[i])



}

# standard deviations and precisions

# accelerometer and magnetometer data

for(i in 1:I){

# the sd of one 3d coordinate component is half the sd of the

norm

# A and M are averages over t_i[i+1]-t_i[i] samples

sigma_A_i[i] <- sigma_A[I_state[i]]/ sqrt(t_i[i+1]-t_i[i])/2

sigma_M_i[i] <- sigma_M[I_state[i]]/ sqrt(t_i[i+1]-t_i[i])/2

pi_A_i[i] <- 1/( sigma_A_i[i]* sigma_A_i[i])

pi_M_i[i] <- 1/( sigma_M_i[i]* sigma_M_i[i])

}

}
✝ ✆
✞ ☎

model track {

# h e a d i n g , pitch , roll of the whale

# E A R T H frame

for(i in 1:I){

# heading

h_i[i] ~ dnorm(h_mes_i[i],pi_h_i[i])I( -180 ,180) # from the acc

/mag data model

# pitch

p_i[i] ~ dnorm(p_mes_i[i],pi_p_i[i])I(-90,90) # from the acc/

mag data model

pprime_i[i] ~ dnorm(p_i[i],pi_p)I(-90,90)

dp_i[i] <- p_i[i]-pprime_i[i]

}

# speed (m/s)

# EARTH frame

for(i in 1:I){

v_pred_i[i] <- a_v+b_v*log(noiselevel[i])/log (10)

v_i[i] ~ dnorm(v_pred_i[i],pi_v)I(0,)

}

for(i in 1:I){

vx_i[i] <- cos(h_i[i]/180* pi)*cos(pprime_i[i]/180* pi)*v_i[i]

vy_i[i] <- -sin(h_i[i]/180* pi)*cos(pprime_i[i]/180* pi)*v_i[i]

vz_i[i] <- sin(pprime_i[i]/180* pi)*v_i[i]

}

# location (m)

# E A R T H frame

x_i[1] <- 0

y_i[1] <- 0

z_i[1] ~ dnorm (0,1.0E-8)I(,0)

for(i in 1:I){

x_i[i+1] <- x_i[i]+vx_i[i]*(t_i[i+1]-t_i[i])



y_i[i+1] <- y_i[i]+vy_i[i]*(t_i[i+1]-t_i[i])

z_i[i+1] <- z_i[i]+vz_i[i]*(t_i[i+1]-t_i[i])

}

# whale known location

for(i_mes_xy in 1: I_mes_xy){

x_mes_i[i_mes_xy] ~ dnorm(x_i[i_mes_xy_i[i_mes_xy]],pi_x_i[

i_mes_xy ])

y_mes_i[i_mes_xy] ~ dnorm(y_i[i_mes_xy_i[i_mes_xy]],pi_y_i[

i_mes_xy ])

}

# whale depth (from depth -meter)

for(i in 1:(I+1)){

z_mes_i[i] ~ dnorm(z_i[i],pi_z_i[i])I(,0)

}

# standard deviations and precisions

# known location

for(i_mes_xy in 1: I_mes_xy){

pi_x_i[i_mes_xy_i[i_mes_xy ]] <- 1/( sigma_x_i[i_mes_xy_i[

i_mes_xy ]]* sigma_x_i[i_mes_xy_i[i_mes_xy ]])

pi_y_i[i_mes_xy_i[i_mes_xy ]] <- 1/( sigma_y_i[i_mes_xy_i[

i_mes_xy ]]* sigma_y_i[i_mes_xy_i[i_mes_xy ]])

}

# depth

for(i in 1:(I+1)){

sigma_z_i[i] <- sigma_z

pi_z_i[i] <- 1/( sigma_z_i[i]* sigma_z_i[i])

}

# speed

pi_v <- 1/( sigma_v*sigma_v)

# angles

pi_p <- 1/( sigma_p*sigma_p)

for(i in 1:I){

pi_p_i[i] <- 1/( sigma_p_i[i]* sigma_p_i[i])

pi_h_i[i] <- 1/( sigma_h_i[i]* sigma_h_i[i])

}

}
✝ ✆



Appendix S4 – Procedure to distribute track com-
putations on a High Performance Resource (HPR)

The HBM presented in the main document could theoretically be used to
process tag data and compute animal 3D orientation and location for the
complete track. Computation time for this is, however, prohibitive given
the large number of parameters (3D orientation, speed and location at each
time step) to be simulated by the MCMC sampler. In order to speed up
computations, the parameter estimation procedure is completed in three
consecutive steps. First (later referred to as Computation Step 1, CS 1),
point estimates of the heading, pitch, and roll (denoted hest(t), pest(t), and
rest(t)) and respective variances (σ2

h(t), σ
2
p(t), and σ2

r (t)) are computed from
the accelerometer and magnetometer data by simulating the HBM defined
by equations (1) to (4). The BUGS code for this reduced model is provided
in Appendix S3. Second (CS 2), parameters of the relationship connecting
speed to noise level are found by using noise level data, depth data, and point
estimates of the animal pitch found in CS 1 (details are provided in Appendix
S2). Third (CS 3), animal 3D track is computed from the orientation found
in CS 1, regression parameters found in CS 2, depth data, and noise level
data. In CS 3, the animal location and orientation are simulated by using
the priors

{

h(t) ∼ Normal(hest(t), σ2
h(t))

p(t) ∼ Normal(pest(t), σ2
p(t))

(S2–2)

together with the HBM defined by equations (5) to (10). The BUGS code for
this reduced model is also provided in Appendix S3. Initializations for CS1
were computed by adding noise to accelerometer and magnetometer data
(using noise model described in Appendix S1) before calculating heading,
pitch, and roll as suggested by Johnson & Tyack (2003). Initializations
for CS3 were computed by adding noise to heading and pitch output from
CS1 (using equation S2–2) as well as to depth measured values and by
reconstructing tracks by dead-reckoning.

To take advantage of high performance resources (HPR), animal location
and orientation (CS 1 and 3) are computed by splitting the whole track into
m consecutive pieces (time stamps are relabeled tj,i = t0 +

∑j−1

j′=1
∆tj′ + i,

∆tj is the duration of piece j ∈ {1, . . . ,m}, i ∈ {0, . . . ,∆tj}). Tag data at
time t ∈ [t0, tend] provide information on the orientation of the animal only
for time t and information on the location of the animal only for subsequent
timing [t, tend]. Consequently, computation of animal orientation (CS 1) for
all pieces can be carried out independently of each other and computation



of animal location (CS 3) can be carried out sequentially. The error on the
animal estimated location at the end of some piece j ∈ {1, . . . ,m − 1} is
propagated as an error on the ’observed’ location at the beginning of piece
j + 1. This could be achieved by updating equation (9) accordingly, the
’observed’ coordinates of the animal at time tj+1,0 would be in that case

{

x(tj+1,0) ∼ Normal(xest(tj,∆j
), σ2

x(tj,∆j
))

y(tj+1,0) ∼ Normal(yest(tj,∆j
), σ2

y(tj,∆j
))

(S2–3)

where xestj (tj,∆j
), yestj (tj,∆j

) are the point estimated x- and y- coordinates of

the animal at time tj,∆j
and σ2

x(tj,∆j
), σ2

y(tj,∆j
) their respective variances.

Computations for pieces j ∈ {1, . . . ,m} would still need to be carried out
one after the other (simulation of piece j requires the output for piece j−1)
and could not be parallelized in order to take benefit from HPR. Another
option is to carry out CS 3 for all pieces independently of each other and
to propagate localization errors by post-processing. In that case, CS 3 is
performed by setting x(tj,0) and y(tj,0) to zero with null variances (j ∈
{1, . . . ,m}). For j = 1 to j = m − 1, the point estimate and the variance
of the location estimate at time tj,∆j

are added to the point estimates and
variances of the location estimate for times tj+1,0 to tj+1,∆j+1

. This option,
enabling the distribution of track computations on a HPR, has been applied
in order to produce the results presented in the main document.

The complete track was split into 51 1-minute consecutive pieces and a
remaining 20-second piece (m = 52, ∆tj = 60 for j ∈ {1, . . . , 51}, ∆t52 =
20). Computation of the orientation of the animal (CS 1) and of the location
of the animal (CS 3) required the simulation of 11, 000 and 20, 000 samples
per chain, respectively (see Section 2.3 for more details). For each 1-minute
piece, and for each chain, CS 1 and CS 3 respectively required 20 s and
75 minutes of computation time on a single core of an Intel R© Xeon E5-
2680v2 2.8Ghz 10-core processor. The computation time for the complete
dive is consequently of approximately 65 h, which is reduced to 75 minutes
by using HPR on 52 cores. Simulation of 4 chains required 5 hours, which
could have been reduced to 75 minutes by using 208 cores.

The HPR used in this study (EOS) is structured into 1224 Intel R© Xeon
E5-2680v2 2.8GHz 10-core processors which are scheduled and controlled
by the SMURL resource manager. Simulations were dispatched to 6 proces-
sors (60 cores) by using CHDB software running with Intel R© MPI library.
CHDB (http://www.calmip.univ-toulouse.fr/spip/spip.php?article465) was
originally designed for bioinformatics purposes to drive the processing of
large number of data files on a cluster by the repeated use of a single pro-
gram. In our case, we used CHDB to process BUGS batch files – one file



per track piece and initialization – with BUGS software. An example of a
batch file (here first initialization of the first track piece) is provided below.

✞ ☎

modelCheck(’model/m6_track.R’)

modelData(’data/data_m6_tC1.txt ’)

modelCompile (1)

modelInits(’init/init_m6_tC1_chain1.txt ’,1)

modelUpdate (1000 ,10)

modelSaveState(’log/state_m6_tC1_chain1.txt ’)

samplesSet(’deviance ’)

samplesSet(’h_i ’)

samplesSet(’p_i ’)

samplesSet(’pprime_i ’)

samplesSet(’dp_i ’)

samplesSet(’x_i ’)

samplesSet(’y_i ’)

samplesSet(’z_i ’)

samplesSet(’v_i ’)

modelUpdate (1000 ,10)

samplesStats (’*’)

modelSaveState(’log/state_m6_tC1.txt ’)

#samplesCoda(’*’,’coda/coda_m6_tC1_chain1.txt ’)

modelQuit ()
✝ ✆

BUGS output files (table containing parameter statistics) were later
loaded into R and merged together (post-processing described earlier) by
using R code below:

✞ ☎

TRACK=read.table(paste(’track/track_tC1.txt ’,sep=’’),header=TRUE)

for(i_traj_id in 2:52){

traj_id=paste(’C’,i_traj_id ,sep=’’)

TRACK_i=read.table(paste(’track/track_t ’,traj_id ,’.txt ’,sep=’’),

header=TRUE)

# point and interval estimates for heading (h), pitch (p), roll

(r), speed norm (v)

# just copy -paste

TRACK[c(’h’,’p’,’p2’,’r’,’v’,’h_val2 .5pc’,’h_val97 .5pc’,’p_val2

.5pc ’,’p_val97 .5pc ’,’r_val2 .5pc ’,’r_val97 .5pc ’,’p2_val2 .5pc

’,’p2_val97 .5pc’,’v_val2 .5pc’,’v_val97 .5pc’,’dp_val2 .5pc’,’

dp_val97 .5pc ’)][nrow(TRACK) ,]=TRACK_i[c(’h’,’p’,’p2’,’r’,’v

’,’h_val2 .5pc’,’h_val97 .5pc’,’p_val2 .5pc’,’p_val97 .5pc’,’

r_val2 .5pc’,’r_val97 .5pc ’,’p2_val2 .5pc ’,’p2_val97 .5pc ’,’



v_val2 .5pc’,’v_val97 .5pc ’,’dp_val2 .5pc ’,’dp_val97 .5pc ’)][1,]

# point estimates for horizontal location (x and y)

# add

TRACK_i[’x’]= TRACK_i[’x’]+ TRACK[’x’][ nrow(TRACK),]

TRACK_i[’y’]= TRACK_i[’y’]+ TRACK[’y’][ nrow(TRACK),]

# variances for horizontal location (x and y)

# add

TRACK_i[’x_sd ’]= sqrt(TRACK_i[’x_sd ’]^2+ TRACK[’x_sd ’][ nrow(TRACK)

,]^2)

TRACK_i[’y_sd ’]= sqrt(TRACK_i[’y_sd ’]^2+ TRACK[’y_sd ’][ nrow(TRACK)

,]^2)

TRACK=rbind(TRACK ,TRACK_i [-1,])

}

# interval estimates for horizontal location (x and y)

TRACK$x_val2 .5pc=TRACK$x -2* TRACK$x_sd

TRACK$x_val97 .5pc=TRACK$x +2* TRACK$x_sd

TRACK$y_val2 .5pc=TRACK$y -2* TRACK$y_sd

TRACK$y_val97 .5pc=TRACK$y +2* TRACK$y_sd

write.table(TRACK ,’track_full.txt ’,quote=FALSE)
✝ ✆



Appendix S6 – Investigating sensitivity to variance
in pitch anomaly and flow noise relationship

Animal track in this study was reconstructed by using the speed-noise rela-
tionship calibrated using data from the animal descent (av = 4.53, bv = 1.16,
σv = 0.08) with a moderate pitch anomaly (σp = 5◦). One could theo-
retically calibrate the speed-noise relationship using data from the animal
ascent, although this appears strongly ill-advised since during this stage the
direction of the movement differs from the animal’s axis (Appendix S2).
One could also consider a higher pitch anomaly (σp = 10◦), although once
again this seems ill-advised since model comparison strongly suggested to
consider the more moderate value σp = 5◦. Nevertheless, to explore the sen-
sitivity of the localization process to such choices, we compare the animal
track’s reconstruction considering the 4 possible combinations of: (1) either
the animal descent or ascent to calibrate the speed-noise relationship and
(2) either moderate (σp = 5◦) or high (σp = 10◦) pitch anomaly (Figure
S6-1). The distance between the track presented in the main document and
(respectively) the track using data from the animal descent and σp = 10◦,
data from the animal ascent and σp = 5◦, and data from the animal ascent
and σp = 10◦ are 17.4± 14.5 m, 124.6± 70.5 m, and 173.9± 92.6 m. As dis-
cussed, the model, while considering various sources of errors, assumes that
parameters av, bv, σv, and σp are perfectly known. We therefore highlight (i)
the critical choice for ’known’ parameters (in this case av, bv, σv, and σp) in
the track reconstruction process and the need, as was done here, to support
the choice of their values from data, and (ii) the underestimate of confi-
dence intervals width on estimated locations since variances of parameter
estimates are conditional on the model being true, which ignores additional
variability not accounted for in the model. In our case, results ignore errors
originating from the divergence between the truth and the model for the
speed-noise relationship (inaccurate parameter values or relationship) and
the pitch anomaly process (inaccurate parameter value or relationship).
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Figure S6.1: Reconstructed track for different options of calibration of the
speed-noise relationship and different amplitude of pitch anomaly. The track
presented in the main document (green; color line in Figure 4) has been
reconstructed by calibrating the speed-noise relationship using data from
the animal descent with a moderate pitch anomaly (σp = 5◦). Other options
are considered (orange: calibration using data from the descent, σp = 10◦;
blue: ascent, σp = 5◦; red: ascent, σp = 10◦). Locations found from the
independent acoustic survey are also plotted (black dots).


