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A b s t r a c t .  We present a new approach to surface tracking applied to 
3D medical data with a deforraable model. It is based on a parametric 
model composed of a superquadric fit followed by a Free-Form Deforma- 
tion (FFD)~ that gives a compact representation of a set of points in a 
3D image. We present three different approaches to track surfaces in a 
sequence of 3D cardiac images. From the tracking, we infer quantitative 
parameters which are useful for the physician, like the ejection fraction, 
the variation of the heart wall thickness and of the volume during a car- 
diac cycle or the torsion component in the deformation of the ventricle. 
Experimental results are shown for automatic shape tracking and motion 
analysis of a time sequence of Nuclear Medicine images. 

1 Introduction 
The analysis of cardiac deformations has given rise to a large amount of research 
in medical image understanding. Indeed, cardiovascular diseases are the first 
cause of mortal i ty  in developed countries. Various imaging techniques make it 
possible to get dynamic sequences of 3D images (3D§ The temporal  resolu- 
t ion of these techniques is good enough to obtain a sufficient number of images 
during a complete cardiac cycle (contraction and dilation). These images are 
perfectly adapted to s tudy the behavior of the cardiac system since they visual- 
ize how the heart  walls deform. Processing these images opens numerous fields 
of applications, like the detection and analysis of pathologies. 

The recent techniques of imagery, like Nuclear medicine data  and Scanner, 
provide more and more precise resolution in space as well as in time. This means 
tha t  the data  available to the radiologist are larger and larger. To establish a 
reliable and fast diagnosis, the physician needs models tha t  are defined by a 
small number  of characteristic quantities. 

Since it is characteristic of the good health of the heart,  the left ventricle mo- 
tion and deformation has been extensively studied by medical image processing 
groups as well as hospitals. Since its creation in 1989, our group has pioneered 
work in the use of deformable models to extract  the left ventricle {2, 6, 5]. Other 
groups as well have also given various contributions to the understanding of the 
complex deformation of the ventricle [1, 9, 10, 11]. 

A parametr ic  model is wed-suited when dealing with a huge amount  of da ta  
like for object tracking in a sequence of 3D images. In a previous paper  [3], we 
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introduced a parametric deformable model based on a superquadric fit followed 
by a Free-Form Deformation (FFD). We show in this paper how we use this 
parametric model to make an efficient tracking of the LV wall in a sequence of 
3D images. The reconstruction and representation of a time sequence of surfaces 
by a sequence of parametric models will then allow to infer some characteristic 
parameters which are useful for the physician, like the ejection fraction, the 
variation of the heart  wall thickness and of the volume during a cardiac cycle or 
the torsion component in the deformation of the ventricle. 

2 A parametric model  to fit 3D points 
In this section, we sketch the deformable model that  we use for efficient tracking 
of the cardiac left ventricle. For more details and references on the complete 
algorithm, see [3]. In brief, we first fit 3D data  with a superellipsoid, and then 
refine this crude approximation using Free Form Deformations (FFDs). 

2.1 F i t t i n g  3D data  w i th  s u p e r q u a d r i c s  

The goal of the algorithm is to find a set of parameters such that  the superel- 
lipsoid best fits the set of data  points. Superquadrics form a family of implicit 
surfaces obtained by extension of conventional quadrics. Superellipsoids are de- 
fined by the implicit equation: 

= 1. (1) 

Suppose that  the data  we want to fit with the superellipsoid are a set of 3D 
points (Xd, Yd, Zd), i ---- 1 , " ' ,  N.  Since a point on the surface of the superellipsoid 
satisfies F = 1, where F is the function defined by equation (1), we seek for the 
minimum of the following energy (see [3] for a geometric interpretation): 

N 

E(A)  - ~ [1 - F(xd,  yd, zd, al,a2,a3,el,e2)] 2 . (2) 
i----1 

2.2 Ref inement  of  the  fit w i th  Free Form Deformat ions  (FFDs)  

To refine the previous parametric representation, we use a global volumetric 
deformation called FFD. The main interest of FFDs is that  the resulting defor- 
mation of the object is just defined by a small number of points. This typical 
feature allows us to represent voluminous 3D data by models defined by a small 
number of parameters.  

Def in i t ion  of  F F D s  FFDs are an application from ]R 3 to ]R 3, defined by the 
tensor product  of trivariate Bernstein polynomials. This can be written in a 
matrix form: X = B P ,  where B is the deformation matrix N D  x N P  (ND: 
number of points on the superellipsoid, NP:  number of control points), P is 
a matrix N P  x 3 which contains coordinates of the control points and X is a 
matr ix N D  x 3 with coordinates of the model points (see [3] for details). 
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T h e  inverse  p r o b l e m  The superellipsoid fit provides a first parametric ap- 
proximation of the set of 3D data, which is often a crude one. We use FFDs to 
refine this approximation. Therefore we need to solve the inverse problem: first 
compute a displacement field 6X between the superellipsoid and the data, and 
then, after having put  the supereUipsoid in a 3D box, search the deformation 
6 P  of this box which will best minimize the displacement field ~iX: 

1~n IIB6 P - 6 X[[ 2 (3) 

S i m u l t a n e o u s  d e f o r m a t i o n  of  t w o  surfaces  An essential feature of this algo- 
ri thm is tha t  FFD is a volumetric deformation. This means that  several objects 
can be deformed simultaneously with only one FFD. Using only one model means 
tha t  the two surfaces are put  in a same control point box, and the minimization 
of equation (3) is done simultaneously on the union of both displacement fields. 
Moreover, our model gives an interpolation of the 3D deformation everywhere in 
the volume between the two surfaces. Figure 4 shows the result of the algorithm 

Epicardium 
Endocardium 

Separate computation Simultaneous computation 
0.007448 0.008236 
0.012838 0.014376 

Table 1. Least-square errors I IBP-XI I  between original data and parametric models. 
Left column: each model is computed independently. Right column: the two models are 
computed with one FFD. 

for the reconstruction of the epicardium and the endocardium, simultaneously 
computed with only one FFD. The approximation errors, corresponding to the 
computat ion using two FFDs or only one FFD, are presented table 1. One can 
see that  using two FFDs for the two surfaces leads to a bet ter  quality of approx- 
imation. On the other hand, using only one FFD allows to reduce the number of 
parameters  by half, yielding to a larger compression of the information needed 
for the description of the parametric model. It also permits to infer from this 
single FFD, a deformation field over the entire space, due to the volumetric 
formulation of FFDs. In the particular case of cardiac deformations, it allows 
to estimate the deformation of any point included in the volume between the 
epicardium and the endocardium, namely the myocardium. 

We show in Figure 1 the effect of the Free Form Deformation applied on the 
volume between the two superellipsoids. To visualize this volume information, we 
show the image of segments linking these two surfaces. The FFD being computed 
to obtain simultaneously the epicardium and the endocardium surfaces deforms 
also the segments that  link the surfaces. 

3 D y n a m i c  t r a c k i n g  o f  t h e  l e f t  v e n t r i c l e  

In this section, we apply this model to the tracking of the left ventricle in SPECT 
cardiac images. 
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Fig. 1. Volumetric deformation. FFD previously computed simultaneously from the 
two isosurfaces is applied to rigid links between the superellipsoid models and provides 
an elastic volumetric deformation of the myocardium. 

3.1 D e a l i n g  w i t h  a t ime  sequence 

General deformable models usually need an initialization that  is close enough 
to the solution. This is well suited for tracking in medical images since the 
deformation between two images is small and the model can start  with the 
solution in the previous image as initialization for the current one. 

With our parametric deformable model, the initialization is made automati- 
cally through the superquadric fit (see section 2.1), and then refined by the FFD. 
It is thus possible to make the reconstruction of each data  set independently. 
However, having a previous refined model permits us to get an increasing preci- 
sion in the reconstruction. This leads to three possible approaches for tracking 
that  are presented in figure 2. 

Independent representation This first approach consists of applying to each 
3D image the complete model. The advantage is that  to define the model at time 
n, we do not need any previous model information but only the superellipsoid 
and the control point box for this data. 

This approach does not make use of the fact tha t  the results at t ime n is 
close to the already computed o n e  at time n - 1. This means that  there is not a 
temporal  processing but a successive computation of static frames. 

R e c u r s i v e  r e p r e s e n t a t i o n  This method is a real temporal tracking. The com- 
plete model is applied only to the data of the first image, and then for time n, 
the model is obtained from the one at time n - 1. This means that  the shape 
obtained at time n - 1 is itself put into a control point box instead of a superel- 
lipsoid in section 2.2. It results that  the surface at time n is obtained from the 
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Fig.  2. Left: three different approaches to deal with a temporal sequence. 1 : Data 
reconstruction at each time step using the superquadric and FFD fit. 2 : Data recon- 
struction at time step n using the FFD from the model found at time n - 1 .3 : Data 
reconstruction at time step n using only the FFD from the model found at time 1. 
Right: time evolution of the least square error between the data and model for the 
8 frames. The three curves correspond to the three approaches. The larger error is 
obtained with approach 1. 

superellipsoid at t ime 1 iteratively deformed by the sequence of the n first con- 
trol  point  boxes. This has the advantage  of being more and more precise when 
t ime increases since an accumulat ion of boxes allows the reconstruct ion of more  
complex shapes. However, since all previous boxes are needed to reconst ruct  the 
da t a  at  t ime n, this may  be a difficulty when dealing with a long sequence of 
images. 

Independent  representat ion  wi th  a reference deformat ion  The third  
approach  is a t rade-off  between the two previous ones. The complete  model  is 
applied only to the da t a  of the first image, and then for t ime n, the model  is 
obta ined  from the one at t ime 1. This means tha t  the first reconstruct ion at 
t ime 1 is considered as a reference deformat ion of the superellipsoid. At t ime n, 
this reference shape is put  into a control point  box like in section 2.2. It  results 
t h a t  the surface at t ime n is obtained from the superellipsoid at t ime 1, followed 
by two deformat ions  defined by the  reference control  point  box and the current  
box. This has the advantage  of bo th  previous approaches.  The  approximat ion  is 
more  precise, being the i terat ion of two boxes and each da t a  set can be retrieved 
f rom only one box and the first box and superellipsoid parameters .  This is thus 
independent  of the length of the t ime sequence. 

Since in pract ical  applicatio11~, this me thod  is as precise as the second one, 
as shown in figure 2, this is th , '  ,~,'~ we have chosen for the result presented in 
the next  section. 
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3.2 A p p l i c a t i o n  t o  t h e  left  v e n t r i c l e  t r a c k i n g  in s p a t i o - t e m p o r a l  
data ( 3 D + T )  

We present in this section applications of the tracking algorithm on 3D+T car- 
diac images. 

The models were computed on the following time sequence: Nuclear medicine 
data  (SPECT sequence), with 8 successive time frames during one cardiac cycle. 
Each image is a volume of 64 • 64 x 64 voxels. The original 3D images are 
visualized as a series of 2D cross-sections (according to the Z axis) in figure 3. 

Fig. 3. 3D image of the left ventricle (SPECT data). Order of sections: from left to 
right and from top to bottom. 

M o r p h o l o g i c a l  s e g m e n t a t i o n  a n d  r e p r e s e n t a t i o n  o f  t h e  d a t a  In order to 
get time sequences of 3D points which correspond to the anatomical structure 
that  we want to track (epicardium and endocardium of the cardiac left ventricle), 
and therefore fit our model on these sets of points, we have to segment the original 
data. As one can visually remark on Figures 3, this is not an easy task because 
the SPECT images are quite noisy. 

To obtain an accurate and robust segmentation, we must combine thresh- 
olding with mathematical  morphology and connected components analysis (as 
in Hoehne [8]). We first choose a threshold which grossly separates the ventri- 
cle (high values) from the rest of the image. The same value is chosen for the 
whole sequence of images. Then we extract the largest connected component for 
each of the resulting 3D binary images, and perform a equal number of erosions 
and dilations (morphological closings). This last operation is necessary to bridge 
little gaps and smooth the overall segmentation. Finally, the extraction of the 
sequence of isosurfaces from that  last sequence of images provides the sequence 
of sets of 3D points tha t  we need as input for the complete reconstruction and 
tracking algorithm. 
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Pig. 4. Time sequence of the epicardium and the endocardium. Left: isosurfaces ob- 
tained by data segmentation (4500 + 1500 points). Right: representation by two para- 
metric models (2 x 130 parameters). 

To understand the complex behavior of the cardiac muscle, we have to recover 
the deformations of both  the internal and external walls of the myocardium, 
namely the endocardium and the epicardium. I t  is possible to represent the 
complete myocardium by only one deformable superellipsoid-based model (as in 
Figure 2). However, by recovering the large concavity which corresponds to the 
ventricular cavity, which means a strong displacement constraint, it follows tha t  
all the other constraints are negliged, thus involving a smoothing effect on the 
surface model. On the other hand, the shape of the myocardium looks very much 
like two deformed concentric ellipsoids, and it is thus natural  to use two models 
to recover the two cardiac walls. 

Figure 4 represents the dynamic sequence of the segmented and reconstructed 
surfaces, using one model as explained in Section 2.2. 
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3.3 Quantitative analysis 

The reconstruction and representation of a time sequence of surfaces by a se- 
quence of parametric models permits to extract some characteristic parameters 
and give interpretation or diagnosis on the patient. In the major  domain of 
cardio-vascular diseases, and especially to study the cardiac muscle, the useful 
parameters for diagnosis are mainly the ejection fraction, the variation of the 
heart  wall thickness and of the volume during a cardiac cycle or the torsion com- 
ponent in the deformation of the ventricle. Similar parameters are also obtained 
in the work of [10] to quantify the left ventricle deformation. 

With this goal in mind, we use our sequence of models to compute the volume 
of the ventricular cavity, and also to extract the time trajectory of each point of 
the surface during a cardiac cycle. The assumption made is that  the deformation 
of a point in the parameterization of the surface corresponds to the deformation 
of the material point of the tissue. Of course, some other constraints could be 
added to get a bet ter  correspondance between the two physical surfaces. In 
12, 5], local geometrical properties based on curvature are used to improve the 
matching between two curves, surfaces or images in a context of registration. 
However since the deformation is nonrigid, the differential constraints are not 
always very significant. 

V o l u m e  e v o l u t i o n  To evaluate the ejection fraction, we need a way to compute 
the evolution in the time sequence of the ventricle cavity volume. We use the 
discrete form of the Gauss integral theorem to calculate the volume of a region 
bounded by a grid of points. More details on this formula can be found in [4]. 
We applied this calculation of endocardium volumes to the sequences of both 
data  points and parametric models obtained in the previous sections. Once we 
have the values of the volume along a cardiac cycle, we can easily obtain the 

V d  - V c  
ejection fraction (calculated precisely as : V - - - ' ~  ' with V d  volume at dilation 

(end diastole), V c  volume at contraction (end systole), see for example [7]. The 
results presented in figure 5 show that: 

- The evolution of the volume has the expected typical shape found in medical 
l i t terature [7]. Moreover, estimation of the ejection fraction on our example 
gives a value of 68%, that  is in the range of expected values from medical 
knowledge [7]. 

- The volumes found for data  and models are almost identical as seen from 
the error curve. The relative average error along the cycle is 0.42%. This 
proves that  our model is robust with respect to the volume estimation. Of 
course, the ejection fraction is also obtained with a very small relative error 
(0.19%). 

- The volume evolution found for initial superellipsoid models before FFD, 
have also a very similar shape. However, there is a size ratio due to the over- 
estimation of the volume before the FFD. This ratio is almost constant in 
time, which makes possible to get a good estimate of the ejection fraction 
directly from the initial model. This proves that  the superellipsoid model 
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Fig. 5. Endocardium volume during the cardiac cycle. Left: volume of the data. Right: 
volume of the superellipsoid model. 

provides a good global estimate of the shape. Also, the volume of the su- 
perellipsoid can be obtained analytically from its set of parameters without 
the previous discrete approximation (for details, see I4]). 

T r a j e c t o r i e s  Listing the successive positions of a parametric point of the de- 
formed surface model along the time sequence, we obtain the trajectory followed 
by this point. Figure 6 shows the trajectories of the node points between the 
end diastole and the end systole. One can see that  the model catches the charac- 
teristic twist component of the motion. This torsion has been quantified by the 
decomposition of the displacement vectors in cylindrical coordinates: 

---, 0 = A r c o s (  x (4) 

Z - ~ . Z  

The z-axis for the cylindrical representation correspond to the z-axis of inertia 
of the superellipsoid model. To measure the torsion, we compute the difference 
of the ~ parameters for the two points that  represent the same parametric point 
during the contraction, Figure 7 represents the mean values of 8' - ~ (in radians) 
along the different latitudes. One can see that  the torsion is in the range 10 - 12 
degrees which is the expected range. 

The pointwise tracking of the deformation permits to give an evaluation of 
the velocity field during the sequence. The visualization of these displacements 
by different colors, according to their range, on the surface shows up clearly areas 
on the ventricle where the deformation is weak (see Figure 6). This visualization 
could be used by the physician to help localize pathologies like infarcted regions. 
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Fig. 6. Left: trajectories of the model's points during a cardiac cycle. The two surfaces 
represent the the models at end of diastole (dilation) and systole (contraction). Right: 
range of the displacements of the model's points during a cardiac cycle. 

Wa l l  t h i cknes s  Another important  feature that  is useful for the diagnosis is 
the evolution of the wall thickness during the cardiac contraction. Computing 
only one model to recover the deformation of both the epicardium and the endo~ 
cardium permits to calculate easily this parameter.  Figure 7 shows the evolution 
of the wall thickness over time for a given point. This thickness has been com- 
puted as the difference of the p parameters for two parametric points on the 
epicardium and the endocardium. Figure 8 represents the volumetric deforma- 
tion of a volume element inside the myocardium muscle. This element is defined 
by two corresponding rectangle elements on each of the two parameterized sur- 
faces (epicardium and endocardium). The nodes of these rectangles are linked 
by curvilinear segments tha t  show the volumetric effect of the FFD (see Section 
2.2). 

4 C o n c l u s i o n  

We presented a new approach to surface tracking applied to 3-D medical data  
with a deformable model. It is based on a parametric model that  gives a compact 
representation of a set of points in a 3-D image. Three approaches were presented 
to use this model in order to track efficiently the left ventricle walls in a sequence 
of 3D images during a cardiac cycle. The model is able to track simultaneously 
the endocardium and the epicardium. Experimental results have been shown for 
automatic shape tracking in time sequences. 

The reconstruction and representation of a time sequence of surfaces by a 
sequence of parametric models has then permit ted to infer some characteristic 
parameters which are useful for the physician. 
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Fig.  7. Left: mea~ torsion during the cardiac cycle along the z-a~ds (0 and 50 represent 
the two poles of the parameterization). Right: evolution of the wall thickness during 
the cardiac cycle for one point of the volumetric model. 

F ig .  8. Volumetric deformation of a volume element inside the myocardium during the 
cardiac cycle (3 time steps). Top: volume element between the superellipsoid models. 
Bottom: volume element between the final models, after the volumetric deformation. 
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We currently consider adding to our work hard displacement constraints like 
the ones available from the recent imaging technique denoted tagged MRI. 
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